Therefore, S(f ) = T 2 sinc2 (πf T ). Option (c) is correct. 1 Q2: S(f0 ) = 0 ⇒ sin(πf0 T ) = 0 ⇒ f0 = T Option (a) is correct. Q3: Fourier transform can be calculated as: Z X(f ) =
∞
exp(−σt) exp(−2πjf t)dt =
0
1 σ + 2πjf
1 Therfore, S(f ) = |X(f )|2 = 2 σ + 4π 2 f 2 Option (c) is correct. Q4: Energy contained within the band [−f, f ] is calculated as: Z f df 0 1 2πf −1 E(f ) = = tan 2 2 02 πσ σ −f σ + 4π f Therefore, total energy of the signal is: lim E(f ) =
f →∞
1 2σ
From definition, σ 0.9 ⇒ f90 = tan E(f90 ) = 2σ 2π
0.9π 2
Option (b) is correct. Q5: Using differentiation property, x(t) = sinc(tT ) ←→ Therefore, S(f ) =
4π 2 f 2 rect2 T2
1 rect T
t t dx(t) 2πjf ⇒ ←→ rect T dt T T
t T
Option (d) is correct. Q6: Note that, Z E(f ) =
f
S(f 0 )df 0
0
dE(f ) Then, S(f ) = = f 2 exp(−σf ). df Option (d) is correct. σf S(f ) = f exp − , f > 0. The Fourier transform therefore, can 2 σf exp (−2πjf T ) , f > 0 X(f ) = f exp − 2
Q7: The magnitude response is given by: |X(f )| = be calculated as:
p
2
The signal is given by Inverse Fourier transform: Z ∞ Z 0 X(f ) exp(2πjf t)df X(f ) exp(2πjf t)df + x(t) = 0 Z Z−∞ ∞ ∞ X(f ) exp(2πjf t)df X(−f ) exp(−2πjf t)df + = 0 0 Z ∞ Z ∞ X(f ) exp(2πjf t)df X ∗ (f ) exp(−2πjf t)df + = 0
0
Now, ∞
Z
∞
Z X(f ) exp(2πjf t)df =
0
0
σf f exp − exp(2πjf (t − T ))df 2
and Z
∞
X ∗ (f ) exp(2πjf t)df =
0
Z 0
Therefore,
Z x(t) = 0
∞
∞
σf exp(2πjf (t + T ))df f exp − 2
σf 2f exp − cos(2πf T ) exp(2πjf t)df 2
Option (a) is correct. Q8: Autocorrelation can be calculated as follows: Z ∞ Rx (τ ) = x(t)x(t + τ )dt −∞ Z ∞ 1 1 exp − t2 + (t + τ )2 dt = 2 −∞ 2π Z ∞ 1 τ2 1 exp − 2(t + τ /2)2 + dt = 2 2 −∞ 2π 2Z ∞ 2 τ 1 1 y √ exp − = √ exp − dy 4 2 2 π 2π 2 −∞ 1 τ = √ exp − 4 2 π
Replacing y =
√
2(t + τ /2)
Option (b) is correct. Q9: Fourier transform of Autocorrelation function, Rx (τ ) (which equals to the ESD of x(t)) can be calculated as: Z ∞ S(f ) = Rx (τ ) exp(−2πjf τ )dτ −∞ Z ∞ 1 1 = √ exp − (τ + 4πjf )2 − 4π 2 f 2 dτ 4 2 π −∞ 2 Z ∞ (τ + 4πjf ) 1 y √ = √ exp(−4π 2 f 2 ) exp − dy Replacing y = 2 2π 2 −∞ 2 2 = exp(−4π f ) Using the identity given in Q1 Option (b) is correct. Q10: Note that x(t) can be rewritten as follows: ( exp(−σt) [exp(jωt) + exp(−jωt)] t ≥ 0 x(t) = 0 elsewhere
3
Fourier transform, X(f ) of the signal can be found as follows: Z ∞ x(t) exp(−2πjf t)dt X(f ) = −∞ Z ∞ Z = exp(−(σ − jω + 2πjf )t)dt + 0
Loading⦠Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Week3 Solution.pdf. Week3 Solution.pdf. Open. Extract. Open with. Sign In. Main menu.