Eng. & Tech. Journal, Vol. 28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys Sheelan R. Areef* Received on: 3 / 1 /2009 Accepted on: 5 / 8 /2010

Abstract Nickel-Titanium shape memory alloy (Nitinol or NiTi) is a fascinating material for dental applications. In this work the alloy has been produced by powder metallurgy approach. The effect of Mg and Zn additives studied on the; hardness, porosity percentage, and corrosion rate has been studied. Master Samples (without additives) were prepared using powder mixture of 55 wt% Ni and 45 wt% Ti by mixing them in a ball mill for two hours, then compacted at 300, 400, 500, 600, 700, and 800 Mpa, then sintered at 950 oC for 9 hours under controlled atmosphere (argon). The same approach was used for the prepared samples with Mg and Zn additions compacted at 800 Mpa. XRD examination shows that the sintered samples are consisting of two phases martensite and austenite at room temperatures, this mean thermal NiTi shape memory alloy. From the results, it was found that Mg additives increase hardness and decrease the corrosion rate while Zn additives increase the corrosion rate.

‫ﺘﺄﺜﻴﺭ ﺍﻟﺯﻨﻙ ﻭﺍﻟﻤﻐﻨﻴﺴﻴﻭﻡ ﻋﻠﻰ ﺴﻠﻭﻙ ﺍﻟﺘﺄﻜل ﻟﺴﺒﺎﺌﻙ ﺫﺍﻜﺭﺓ ﺍﻟﺸﻜل‬ ‫ﺍﻟﺨﻼﺼﺔ‬ ‫ ﺘﻴﺘﺎﻨﻴﻭﻡ( ﻤﻥ ﺍﻟﻤﻭﺍﺩ ﺍﻟﺴﺎﺤﺭﺓ ﺍﻟﻤﺴـﺘﺨﺩﻤﺔ ﻓـﻲ ﺍﻟﺘﻁﺒﻴﻘـﺎﺕ‬-‫ﺘﻌﺘﺒﺭ ﺴﺒﺎﺌﻙ ﺫﺍﻜﺭﺓ ﺍﻟﺸﻜل )ﻨﻴﻜل‬ ‫ ﺘﻡ ﺍﻨﺘﺎﺝ ﺍﻟﺴﺒﺎﺌﻙ ﻓﻲ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﺒﻁﺭﻴﻘﺔ ﻤﻴﺘﺎﻟﻭﺭﺠﻴﺎ ﺍﻟﻤﺴﺎﺤﻴﻕ ﻭﺘﻡ ﺩﺭﺍﺴﺔ ﺘـﺄﺜﻴﺭ ﺍﻀـﺎﻓﺎﺕ‬.‫ﺍﻻﺴﻨﺎﻥ‬ .‫ﺍﻟﻤﻐﻨﻴﺴﻴﻭﻡ ﻭﺍﻟﺯﻨﻙ ﻋﻠىﺎﻟﺼﻼﺩﺓ ﻭﻨﺴﺒﺔ ﺍﻟﻤﺴﺎﻤﻴﺔ ﻭ ﻤﻌﺩل ﺍﻟﺘﺎﻜل‬ , (55 wt% Ni ) ‫ﺘﻡ ﺘﺤﻀﻴﺭ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻻﺴﺎﺱ )ﺒﺩﻭﻥ ﺍﻀﺎﻓﺎﺕ( ﺒﺨﻠﻁ ﺍﻟﻤﺴﺎﺤﻴﻕ ﺒﻨﺴﺏ ﻭﺯﻨﻴـﺔ‬ ،300 ) ‫( ﺒﻭﺍﺴﻁﺔ ﻁﺎﺤﻭﻨﺔ ﺍﻟﻜﺭﺍﺕ ﻟﻤﺩﺓ ﺴﺎﻋﺘﻴﻥ ﺜـﻡ ﺘـﻡ ﻜـﺒﺱ ﺍﻟﺨﻠـﻴﻁ ﺒﻀـﻐﻁ‬45 wt% Ti) ‫ ﺴﺎﻋﺎﺕ ﻭﺒﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ‬9 ‫( ﻤﻴﻜﺎﺒﺴﻜﺎل ﻭﺒﻌﺩﻫﺎ ﺍﺠﺭﺍﺀ ﻋﻤﻠﻴﺔ ﺍﻟﺘﻠﺒﻴﺩ ﻟﻤﺩﺓ‬800‫ﻭ‬700 ،600،500،400 ‫ ﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺍﺴﺘﺨﺩﻤﺕ ﻟﺘﺤﻀﻴﺭ ﺍﻟﻨﻤـﺎﺫﺝ ﻤـﻊ‬.‫ ﻭﺒﺠﻭ ﻤﺴﻴﻁﺭ ﻋﻠﻴﻪ ﺒﻭﺍﺴﻁﺔ ﻏﺎﺯ ﺍﻻﺭﻜﻭﻥ‬ο‫ ﻡ‬950 .‫ ﻤﻴﻜﺎﺒﺴﻜﺎل‬800 ‫ﺍﻻﻀﺎﻓﺎﺕ ﻭﺘﻡ ﻜﺒﺴﻬﺎ ﻋﻨﺩ ﻀﻐﻁ‬ ‫ﺍﻭﻀﺢ ﺍﺨﺘﺒﺎﺭ ﺤﻴﻭﺩ ﺍﻻﺸﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ ﺒﺎﻥ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﻤﻠﺒﺩﺓ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﻁﻭﺭﻴﻥ ﻫﻤﺎ ﺍﻟﻤﺎﺭﺘﻨﺴـﺎﻴﺕ‬ ‫ﻭ ﻭﺠﺩ ﻤﻥ ﺨـﻼل‬. ‫ﻭﺍﻻﻭﺴﺘﻨﺎﻴﺕ ﻋﻨﺩ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻟﻐﺭﻓﺔ ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺴﺒﻴﻜﺔ ﺫﺍﻜﺭﺓ ﺍﻟﺸﻜل ﺍﻟﺤﺭﺍﺭﻴﺔ‬ .‫ﺍﻟﻨﺘﺎﺌﺞ ﺍﻥ ﺃﻀﺎﻓﺔ ﺍﻟﻤﻐﻨﺴﻴﻭﻡ ﻴﻘﻠل ﻤﻌﺩل ﺍﻟﺘﺎﻜل ﺒﻴﻨﻤﺎ ﺍﻀﺎﻓﺔ ﺍﻟﺯﻨﻙ ﻴﺯﻴﺩ ﻤﻌﺩل ﺍﻟﺘﺎﻜل‬

* Applied Science Department, University of Technology /Baghdad 5651

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

twinned martensite. The twinned martensite has 24 variants, i. e., 24 sub types with different crystallographic orientations [6]. On the other hand, when martensite is induced by stress these 24 variants of twinned martensite become only one variant. As a consequence, there is a crystallographic orientation, aligned with the stress direction, which is called detwinned martensite. The austenite phase is stable only at high temperatures, having a single variant with a body-centered cubic crystal structure. Martensitic transformation explains the shape recovery in SMA. This transformation occurs within a range of temperatures which varies according to the chemical content of each specific alloy [7]. In general, four characteristic transformation temperatures can be defined: Ms and Mf, which are the temperatures at which the formation of martensite starts and ends, respectively, and As and Af, which are the temperatures at which the formation of austenite starts and ends, respectively. The aim of this work is to Produce thermal NiTi (a sample consisting of martenictic and austenitic phases at room temperature), by powder metallurgy approach and Studying the effect of Zn and Mg addition on the hardness, porosity percentage and corrosion rate. 2. Experimental Ni-Ti powder (master mixture; 55 wt% Ni with 45 wt% Ti) was prepared using a ball mill for mixing the powder

1. Introduction Shape memory alloys (SMA) constitute a group of metallic materials with the ability to recover a previously defined length or shape when subjected to an appropriate thermomechanical load [1]. When there is a limitation of shape recovery, these alloys promote high restitution forces. Because of these properties, there is a great technological interest in the use of SMA for different applications. Although a relatively wide variety of alloys present the shape memory effect, only those that can recover from a large amount of strain or generate an expressive restitution force are of commercial interest. Particularly important among them are alloys based on Ni-Ti and on Cu, such as Cu-Zn-Al and Cu-Al-Ni. SMA based on Ni-Ti are the alloys most frequently used in commercial applications because they combine good mechanical properties with shape memory. [2] Basically, SMA presents two welldefined crystallographic phases, i.e., austenite and martensite [3]. Martensite is a phase that, in the absence of stress, is stable only at low temperature; in addition, it can be induced by either stress or temperature. Martensite is easily deformed, reaching large strains (~8 %) [1]. Depending on the type of transformation experienced by these alloys, the crystal structure of martensite can be either monoclinic or orthorhombic [4, 5]. When martensite is induced by temperature, it is called 5652

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

for two hours. This mixture was used to prepare samples with 0.1, 0.2, and 0.3 wt% of Mg and then for Zn additions. After mixing, six master samples each weighting 5 grams, they were compacted at 300, 400, 500, 600, 700 and 800MPa respectively, by placing the powder in a die made from D2 tool steel with a diameter of 15mm. Samples with additions of 0.1, 0.2 and 0.3 wt% Mg and similar percentage of Zn were also prepared and compacted at 800MPa. Following the compaction, all samples were sintered at 950 °C for 9 hours (the samples were allowed to heat up with same the heating rate) under argon atmosphere and then cooling down, at the furnace-cooling rate, to room temperature. The sintering process for all specimens has been done under controlled atmosphere (argon gas) to avoid the samples oxidation. Following that, the samples were ground and polished. Corrosion rate was measured for each sample were obtained from anodic and cathodic polarization curves using artificial saliva as an electrolyte at 37oC with a scan rate of 5mV/sec and potential range of (-0.25-0.25 V), the exposed surface area (of the sample) to artificial saliva was 0.78 cm2. Vickers hardness was also measured. The average of 10 readings was taken. The phases formed by sintering were detected using the XRD for all of the samples. The porosity percentage was also measured on the basis of density [8], Porosity % = [1-(actual density/ theoretical density)] x100 ….. (1)

3. Result and Discussion 3.1 XRD Pattern All of the prepared master samples were compacted at various pressures and prepared samples (master with additives) were compacted at (800 MPa) and all of the samples were sintered at 950 °C for 9 hours. The low compaction rate used is essential to give enough time for the particles to be bonded to each other and therefore increase the density. The sintering temperature used (950 °C) was about 0.8 of the melting temperature of the NiTi intermetallic compound (Tm =1310 °C), and holding at this temperature for 9 hours under controlled argon atmosphere will result in complete sintering reaction due to the enhancement of the interdiffusion between Ti and Ni which in turn leads to an increase in the amount of NiTi phase produced and to a better shape memory effect [9]. The phases produced as a result of the sintering process were investigated using the XRD technique. It is seen from Fig. (2, 3 and 4) that there are probably no pure metals present, which proves that the sintering time and temperature used in this work result in complete sintering reaction. The absence of any oxides is attributed to the controlled argon atmosphere used during the sintering process. Fig (2, 3 and 4) Shows that the master sample and master samples with 0.3 Wt % of Mg and Zn respectively compacted at 800 MPa consisted mainly of two phases (the martensitic phase M and the austenitic phase B2 at which the volume fraction

5653

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

ρ o = (ρ Ni × at % Ni ) + (ρ Ti × at % Ti )

of the martensitic phase was more than the austenitic one) in addition to Ti2Ni and Ni3Ti. The formation of Ti2Ni and Ni3Ti might be attributed to the slow cooling of the samples with the furnace cooling rate whereas, in the sintering conditions used throughout this work, the Gibbs free energies for Ni3Ti and Ti2Ni were less than that for NiTi and it seems difficult to obtain a final equilibrium structure of NiTi alone just by solid - state diffusion, [10]. 3.2 Vickers Hardness Hardness measurements were made for all of the samples, the hardness values were taken as the average of 10 random readings Fig. (5) Shows that as the additives percentage is increased, (for Mg additives) the measured hardness value will increase. This agrees with the fact that as, the bonding between the particles is better (i.e. better interdifusion) it is in turn leads to more pores elimination. While the percentages of Zn added (0.1, 0.2, and 0.3wt %) have no significant influence on the hardness because of evaporate of Zn at 950 oC and this increased in hardness may be from high compacting pressure at 800 Mpa.

+ (ρ additive × at % additive

)

….. (2) The porosity percentage is maximum for the samples compacted at 300 MPa and minimum for those compacted at 800 MPa which is in good agreement with the expectation; since as the compacting pressure is increased, the adhesion and interdiffusion between the particles is better which results in more elimination of pores. Fig. (6) shows that the porosity percentage decreases with increasing the additives (for each wt% of additives) and it is clear that the percentages of Zn added (0.1, 0.2, and 0.3wt%) have no significant influence on the porosity percentage but this a small decrease in porosity still higher than the porosity of master sample could be observed with increasing Mg &Zn addition from 0.1 to 0.2 to 0.3 wt% respectively (at 800 MPa) which could be increasing pores. 3.4 Corrosion Rate Determination Corrosion rate for the samples pressed at different pressure shown in Fig. (7). that Indicates the corrosion rate decreases with increasing the compacting pressure from 300 to 800 MPa, respectively, and this is attributed to the decrease in the porosity percentage which in turn reduces the surface area in contact with solution (artificial saliva) and this leads to a decrease in the measured corrosion rate. Fig.(8) indicate that the corrosion rate decreases with increasing the wt% of Mg, this can be attributed to the higher activity of Mg compared to Ni, therefore, the Mg acts as an anode

3.3

Porosity Percentages Porosity measurements have been made on the basis of density according to Eq. (1). For the master sample, the theoretical density is 6.5 g/cm3 [11]. And the measured density of the sample is its weight divided by the volume (the samples are of a disc shape with a diameter of 15mm). For the samples with additives, the theoretical density is:

5654

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

relative to the Ni which in turn results in a reduction in the corrosion rate of the bulk. The reason for this decrease in the corrosion rate with increasing the wt% of Mg added is due to the increase in the anodic area (Mg), therefore, the Mg is corroded more and the bulk is protected. But though the activity of Zn is less than that of Ti, the Ti form a protective oxide film which helps in keeping the corrosion rate not to influence by Zn addition. The reason for the increase in the corrosion rate with increasing the wt% of Zn added is due to the increase in the cathodic area (Zn) 4. Conclusions 1. The samples sintered at 950°C for 9 hours with 45 wt% Ti result in a two-phase structure (austenite and martensite) at room temperature.The samples with Mg and Zn additions also resulted in the same two phase structure at room temperature. 2. For the master samples; the higher the compaction pressure results in higher hardness, the lower the porosity percentage and the lower the corrosion rate. 3. The corrosion rate decreases with increasing the wt% of Mg. References [1] Hodgson DE, WuMH &Biermann RJ, Shape Memory Alloys, Metals Handbook. Vol.2 ASM international, Ohio, pp.897-902, (1990). [2]Abdul –Raheem Kadhim Abid-Ali "Investigation of Certain Shape Memory Alloys in space systems"

A thesis submitted to the college of engineering of the university of Babylon, October (2007). [3]Shape Memory Alloy Research Team (Smart), http:// smart.tamu.edu (2001). [4]Otsuka K&Ren X, Recent developments on the research of shape memory alloys. Intermetallics, 7: pp.511-528, (1999). [5]Wu SK& Lin HC. Recent development of TiNi- based shape memory alloys in Twain. Materials Chemistry and physics, 64: pp.8192, (2000). [6]Funakubo H. Shape Memory Alloys. Gordon &Bleach, New York, NY, USA. (1987). [7]Shape Memory Applications, Inc. http//www.sma-inc.com (2001). [8]J. T. Al-haidary & Shadi AlKhatiab Academy of Sience, Vol. 42, February"Manufacturing and characterization of dental shape memory alloy" materials Science and Engineering A 419, pp. (45-49) (2006). [9]Bing-Yun Li, Li-Liyi, "Shape Memory Effect of NiTi alloy", Chinese, pp. (96-97) (1999). [10]Li Bing-Yun, Li-Jian, Yi-Yi, "Porous NiTi Alloy Prepared from Elemental Powder Sintering", Chinese Academy of Science, January, pp (2847-2851) (1998). [11]T. W. Duerig et.al, "Engineering Aspects of Shape Memory Alloys", Butterworth- Heinemann, London, pp (15, 97, 207, 295-296,394-395, 446) (1990).

5655

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

Table (1) purity and particle size of Ni, Ti, Zn and Mg Metal (Powder)

Purity (%)

Particle Size (μm)

Ni

99.9

16

Ti

99.5

150

Zn

99.5

80

Mg

99.9

45

Ni-powder

Ti-powder

Figure (1) particle shape of Ni and Ti powders.

Figure (2) XRD pattern of a master sample pressed at 800MPa and sintered at 950oC for 9 hrs.

5656

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

M B2 B2 Ni3Ti

M B2

M

Ni3Ti Ni3Ti

Figure (3) XRD pattern of the master with 0.3% Mg sample pressed at 800MPa and sintered at 950oC for 9 hrs

M

M B2

B2

M

Ni3Ti B2

Ni3Ti Ni3Ti

Figure (4) XRD pattern of the master with 0.3% Zn sample pressed at 800MPa and sintered at 950oC for 9 hrs.

5657

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

110 108 106

HV

104 102

Mg Additives

100

Zn Additives

98 96 94 92 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Wt % of Additives

Figure (5) Hardness values for the master with various additives of Mg& Zn pressed at 800MPa and sintered at 950oC for 9 hrs.

40 35

Porosity %

30 25 Mg Additives

20

Zn Additives

15 10 5 0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Wt % od Additives

Figure (6) Porosity percentages for the master with various additives of Mg& Zn pressed at 800MPa and sintered at 950°C for 9 hrs.

5658

PDF created with pdfFactory Pro trial version www.pdffactory.com

Eng. & Tech. Journal, Vol.28, No.18, 2010

Effect of (Zn & Mg) on Corrosion Behavior of Shape Memory Alloys

Corrosion Rate (mm/yr)

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0

200

400

600

800

1000

Com pacting Pre s s ure (MPa)

Figure (7) Corrosion rate (mm/yr) for the master sample pressed at different pressure and sintered at 950°C for 9 hrs.

1.6 Corrosion Rate (mm/yr)

1.4 1.2 1 Mg Additives

0.8

Zn Additives

0.6 0.4 0.2 0 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Wt % of Additives

Figure (8) Corrosion rate (mm/yr) for the master with various percentages of Mg & Zn pressed at 800MPa and sintered at 950°C for 9 hrs.

5659

PDF created with pdfFactory Pro trial version www.pdffactory.com

(Zn & Mg) on Corrosion Behavior of Shape.pdf

28, No.18, 2010 Effect of (Zn & Mg) on Corrosion Behavior of Shape.pdf. Eng. & Tech. Journal, Vol. 28, No.18, 2010 Effect of (Zn & Mg) on Corrosion Behavior of ...

163KB Sizes 2 Downloads 164 Views

Recommend Documents

Synergistic corrosion behavior of coated Ti60 alloys ...
corrosion due to the cyclic formation of volatile products during corrosion at 800 °C. However, an uneven .... (corresponding temperature of water bath is.

Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit ...
Jul 18, 2007 - plex at the service condition containing both water vapor and ClА anion. Wang et al. indicated that the reaction between chromium and ClА could reduce the corrosion resistance of alloys due to cyclic formation of volatile. CrCl3 duri

The Influence of Admixed Micelles on Corrosion Performance of ...
The Influence of Admixed Micelles on Corrosion Performance of reinforced mortar.pdf. The Influence of Admixed Micelles on Corrosion Performance of ...

Hydrodynamic effect on the behaviour of a corrosion ...
Available online 27 December 2005. Abstract. Influence of hydrodynamic ... +33 4 72 43 81 87; fax: +33 4 72 43 87 15. E-mail address: [email protected] ..... trolyte conductivity evolution due to the greater account of iron.

MG MIDGET
Aug 27, 2013 - nothing to show for it. The first order of business was to dig .... a charity drive car based in Arkansas, ... ran into another small issue. The cotter.

NitrAdine Corrosion test on Metal parts of dental appliances.pdf ...
good overall oral health. The use of denture cleaners helps to remove food debris and plaque that are adherent on the. removable orthodontic appliance (ROA). However one major problem of the routine use of these agents is that several of. them cause

MG Application.pdf
Website design 1 2 3 Yes Not Interested. Website maintenance 1 2 3 Yes Not Interested. Graphic design 1 2 3 Yes Not Interested. Newsletter publishing 1 2 3 ...

High corrosion-resistance nanocrystalline Ni coating on ...
magnesium alloy exhibited very high corrosion resistance in the rapid corrosion test illustrated in the ... resistance, which restricts the application of magnesium.

Effect of Zn enriched organics and multi micronutrients ...
Abstract: Field experiment conducted with sunflower in the farmers holdings to demonstrate the effect of Zn enriched organics and multi micro nutrients on the yield and nutrient uptake revealed that the application of 50 kg FYM enriched with 5 kg. Zn

High corrosion-resistance nanocrystalline Ni coating on ...
... of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, .... which was controlled by a computer and supported by.

Corrosion of Iron Lab.pdf
Whoops! There was a problem loading more pages. Retrying... Corrosion of Iron Lab.pdf. Corrosion of Iron Lab.pdf. Open. Extract. Open with. Sign In.

Effect of resistivity on the corrosion mechanism of mild ... - Springer Link
corrosion mechanism and obtain representative values of corrosion rates in ... Low-resistivity soils, for instance, generally contain high ..... ions is of interest.

MG and.pdf
URBD. SWA. IMG. ERNT. AOTS. BRU. UMG. ILTS. AMG. OEMG. URLS. URTS. ERPS. ATS. OLD. Page 1 of 1. MG and.pdf. MG and.pdf. Open. Extract. Open with.

Mg. Marcelo Calavia.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Mg. Marcelo ...

MG-47..pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. MG-47..pdf.

mental health watch - Mg
Sep 22, 2016 - the South African Review Boards, Departments of Health and Social ... shared by the stakeholders included television and radio shows and social media. ... For the purpose of this study we have used all data captured and ...

Comparison of electrochemical techniques during the corrosion of X52 ...
J. Genesca, R. Galvan-Martinez, ... G. Garcia-Caloca, R. Duran-Romero, J. Mendoza-Flores, .... In order to analyze the measured electrochemical noise data.

8. Optical characterizations of Zn-Doped CuO Nanoparticles (SAX).pdf
a Department of physics, St. Xavier's College, Palayamkottai - 627 002, Tamilnadu. b Department of Physics, Arignar Anna College, Aralvoymozhi - 629 301, ...

Decreasing the Measurable Concentrations of Cu, Zn ... - Springer Link
phytes in water without additional metals served as control groups. Incubation was carried out under the conditions of the natural photoperiod and temperature.

Effect of resistivity on the corrosion mechanism of mild ... - Springer Link
Effect of resistivity on the corrosion mechanism of mild steel in sodium sulfate solutions. S. ARZOLA1, M.E. PALOMAR-PARDAVEґ2 and J. GENESCA1,*.

Effects of turbulent flow on the corrosion kinetics of X52 ...
Zview software v.2.1 was used in the ... nalyse [26] software was used in EN data analysis. Potentio- .... Table 1 shows the best results obtained in the numerical si- mulation of ..... [23] Specification for Line Pipe, API Specification 5L, 42nd Edi

Comparison of electrochemical techniques during the corrosion of X52 ...
2 shows the best fitting parameters obtained in the nu- merical analyses. In this table ... ing, at each analysed frequency, the power spectral density. (PSD) of the ...

Opening: CCl –MG - WMO
Mar 1, 2014 - Information and Prediction Services (CLIPS) project by 2015 and work towards its transition ..... CCl in social media including Facebook, etc.

WQ_COUCEA05abc07b-Eagle-River-Cu-and-Zn-TMDL-Final-w-CL.pdf
WQ_COUCEA05abc07b-Eagle-River-Cu-and-Zn-TMDL-Final-w-CL.pdf. WQ_COUCEA05abc07b-Eagle-River-Cu-and-Zn-TMDL-Final-w-CL.pdf. Open. Extract.