A. SÁNCHEZ ROTARY ENGINE RANGE EXTENDER VER. 05/2.017 Author:

ANTONIO SÁNCHEZ Estepona. Málaga. Spain Contact: [email protected]

A. Sánchez Rotary Engine (Range Extender version).

This novel internal combustion rotary-cylinder engine performs 4-stroke cycle without reversing movements and drastically reducing parts number, because it does not use a valve2 mechanism. Lubrication and cooling systems are autonomous with simple design. Currently 4-stroke reciprocating engines have limited performance because losing power by driving the complex valve mechanism, and reversing the piston and connecting rod masses each stroke. Further, valves operation limits the maximum rotation speed. Reversion produces vibrations that subtract power. Static configuration of engine block prevents homogeneous cooling by direct air, being necessary the intermediation of a pumped water cooling system that increases build price, complicates maintenance and affects reliability. Operation with valves limits breathing capacity and increases pollutant emissions, especially nitrogen oxides. Another disadvantage of conventional engines is the difficulty of operating with hydrogen because head space limitations, that difficult placement of more than one nozzle or spark plug and because all phases are made in the same combustion chamber. Currently rotary engines do not use valves, but are similar in complexity to alternative engine and have less performance. Wankel engine has an elongated combustion chamber, which adversely affects combustion efficiency. In addition, rotor configuration hinders lubrication and cooling, and limits compression ratio.

This rotating-cylinder engine model is designed to drive an electric generator in an ultracompact Range Extender. Engines currently used in range extender are complex as conventionals, with similar price, efficiency and volume. Electric vehicle needs a very efficient range extender able to 2

A. Sánchez Rotary Engine (Range Extender version).

use alternative fuels, that not reduce useful space, not increase weigh, with minimal maintenance and above all, that does not significantly increase final price. That is the propulsor expected to achieve with this invention. This engine does not lose power by moving auxiliary mechanisms (valve train, lubrication and cooling pumps, fan..). The mass of the rotor is also the inertial flywheel. Intake and exhaust ports can be large and do not brake the piston by pressure or vacuum. Without a speed limit in valve operation, and without flow limitations in intake and exhaust ports, the engine can rotate faster and be more efficient and powerful.

A. Sánchez Rotary Engine, is a ultra-compact and yet high performance propeller that develops 4-stroke cycle, with lubrication, combustion and cooling efficient systems. Cooling is done in two ways: by direct-forced air on the external surfaces of the stator and rotor, and internally by pumped and cooled lubricant. As the rotor rotates, moving parts make a non-reciprocating movement stop-free without reversing their masses, because parts are in permanent rotation. It is built in steel and aluminum in its different alloys and treatments according to part requirements. Stator (1) is a cylindrical cavity with a plurality of outer fins in the most heat affected sector, an intake port (1A), an exhaust port (1B) and a spark plug housing (1C), all of which are synchronously distributed to optimize the operating phases.

3

A. Sánchez Rotary Engine (Range Extender version).

Stator houses a rotor (2). This is a cylinder that also houses an inner cylinder radially oriented (2A) and openned towards the outside. This open side have an airtightnes seal (3), which is strongly applied against the lips of the radial cylinder and against the stator. A plurality of fan blades (2D) are arranged between the outer cylindrical tube of the rotor and its inner radial cylinder. Rotor also houses piston (8), connecting rod (7) and crankshaft (6) assembly. The rotor spins by supporting on the stator its central shaft (2E) that is divided into two half-shafts: upper and lower. To support them, stator has two attached frames (1G). Each frame consists of a central part with a bearing (1F) that supports the central axis, and with a planetary gear (1E) concentric thereto. This central part extends in three radial arms that are attached to the stator cylinder whith bolts. The crankshaft have at each end a satellite gear (6A). Each satellite is meshed with a planetary. The number of teeth of each planetary is equal and is double in relation to the one of each satellite.

4

A. Sánchez Rotary Engine (Range Extender version).

The carter (5) rotates solidly with the rotor, being attached under it. Take advantage of the rotating movement to push the lubricant through the circuit. At rest it contains all the lubricant. The carter is formed by two cuvettes connected to each other by two hollow circular segments. A cuvette has two distributed windows that leading inside the crankcase through two passive valves (2C). The opposing cuvette has holes leading inside of the radial cylinder seal guides. The carter also takes advantage of the pressure-vacuum created by the piston strokes in the area that sweeps the crankshaft assembly, to pump lubricant, which in the suction phase is attracted directly to piston and cylinder, lubricating and cooling. The carter is cooled by the air sucked by the rotor blades.

5

A. Sánchez Rotary Engine (Range Extender version).

6

A. Sánchez Rotary Engine (Range Extender version).

OPERATION Engine operation shown in Figures 7, 8, 9 and 10. When rotor spins one turn on its axis, crankshaft rotates that same turn in conjunction with the rotor. As each satellite is geared to a fixed planetary, and each planetary has double number of teeth than each satellite, one turn of the rotor produces two counterclockwise turns in the crankshaft. Each turn of the crankshaft on its own axis produces two piston strokes outward and back. A complete turn of the rotor produces four strokes in the piston, each in 90º of rotor rotation. At each stroke, piston moves towards or away from the stator alternately, thereby varying the volume therebetween.

7

A. Sánchez Rotary Engine (Range Extender version).

Figure 7 shows the start of intake stroke. The rotor is rotating, while piston moves away from the stator, developing intake stroke. At the beginning of this stroke, the radial cylinder discovers the intake port, through which it draws air-fuel mixture. Intake stroke ends when piston reaches its maximum away point from the stator. At this point starts compression stroke that shown in figure 8. The piston starts stroke that approach it to the stator. Then, the rotor covers intake port and begins to compress the previously admitted mixture into the radial cylinder. At the end of this compression stroke, the radial cylinder discovers spark plug port, and simultaneously an electric spark jumps between the electrodes thereof, which causes ignition of the compressed fuel mixture. Inmediatelly afterwards, power stroke begins, as shows in figure 9. The piston receives the power thrust of fuel combustion, which is converted into positive thrust on the rotor and output shaft, by means of the mechanical conversion carried out by the connecting rod on the crankshaft, which turn applying its gears on the planetary, and thus rotates the rotor. At the end of the power stroke, the radial cylinder discovers the exhaust port. Then starts exhaust stroke that shown in Figure 10, in which the piston approaches the stator by pushing gases from inside radial cylinder to outside. At the end of this stroke the four operating phases have been completed, which will be repeated successively and uninterruptedly, keeping rotor powered.

8

A. Sánchez Rotary Engine (Range Extender version).

Heat generated by power strokes is carried outside by the fan blades of the rotor, which when rotated with this, impel fresh air that is admitted by the upper part, and is expelled by the lower one after having completely cooled the rotor. The stator dissipates heat in two ways: by radiation from its outer fins, and by permanent and complete contact of its internal cylindrical surface with the outer cylindrical surface of the rotor, which, when rotating, distributes heat, cools and regularises the temperature throughout all its cylindrical surface, guaranteeing the thermal homogenization of the stator-rotor assembly. To reduce stator thermic stress, exhaust pipe is an isolated part attached to stator with a gasket.

9

A. Sánchez Rotary Engine (Range Extender version).

The carter rotates, imparting lubricant on all the inner walls of the rotor and lubricating the parts that it contains. The cylinder seal is constantly applied against the cylindrical interior of the stator and against the open lips circumference of the radial cylinder, guaranteeing the tightness of the cylinder and also lubricating the cylindrical surfaces of the stator and rotor that spinning in permanent contact, since the oil reaches the seal pins, traversing them and filling the outer grooves of the seal in contact with the stator. In this seal, oil is under consecutive pressure and vacuum action.

CYLINDER HEAD SEAL

10

A. Sánchez Rotary Engine (Range Extender version).

OUTER SEALING OF ROTOR

ROTOR SEALS CUT

11

A. Sánchez Rotary Engine (Range Extender version).

ISOLATED EXHAUST PIPE (TO REDUCE STATOR THERMIC STRESS)

REINFORCED STATOR CONFIG

12

A. Sánchez Rotary Engine (Range Extender version).

13

A. Sánchez Rotary Engine (Range Extender version).

FIGURES: - Figure 1 shows a top view of the engine. - Figure 2 shows an elevation view of the engine. - Figure 3 shows A-A’ engine cut indicated in figure 1. - Figure 4 shows B-B' engine cut indicated in figure 2. - Figure 5 shows cut view of the lower planetary. - Figure 6 shows plant rotor and its projection in elevation, as well as the housing of the cylinder seal in sectional cut. - Figure 7 shows operating intake stroke. - Figure 8 shows operating compression stroke. - Figure 9 shows operating power stroke. - Figure 10 shows operating exhaust stroke. PARTS: 1 = Stator

2D = Fan Blades

1A = Intake Port

2E = Central Shaft

1B = Exhaust Port

2F = Seal Guide

1C = Spark Plug Housing

3 = Cylinder Seal

1D = Cooling Fins

3A = Seal Pin

1E = Planetary

3B = Seal Spring

1F = Bearing

4 = Spark-Plug

1G = Radial Arm

5 = Carter

2 = Rotor

6 = Crankshaft

2A = Radial Cylinder

6A = Satellite

2B = Crankcase Cover

7 = Connecting Rod

2C = Carter Valves

8 = Piston This document updated can be downloaded at this link:

https://drive.google.com/file/d/0B5up-ttiQIVLTDJPbExMUm15T00/view?usp=sharing A. Sánchez Rotary Engine is registered in Spanish Patent Office. N. 201700192, 201330865, ES200502516, P9701056 y 8603609. website: http://antoniosanchezmec.blogspot.com e-mail: [email protected]

14

A. Sánchez Rotary Engine (Range Extender version).

DESCRIPTIVE VIDEOS IN WWW.YOUTUBE.COM

Complete: https://youtu.be/6DELfTE90SM Rotor Seal: https://youtu.be/14X5Xk4NWqc Assembly Parts: https://youtu.be/NrDfWh_z8Qk Phases: https://youtu.be/EYhq0OzER2Q ABS Parts: https://youtu.be/RfBNu82QpUQ Cylinder Head Seal: https://youtu.be/57Hkr_dPGmA Cooling: https://youtu.be/xF9SDR2MP9U Lubrication: https://youtu.be/88T7LJN4bfM Compact Design: https://youtu.be/GEj0CZQF95U Thrust Conversion: https://youtu.be/KEeAGegqlcc

15

A. Sánchez Rotary Engine (Range Extender version).

A. SANCHEZ ROTARY ENGINE / CONVENTIONAL ENGINES COMPARATIVE 4-Stroke reciprocating engine is complex because it needs valves to operate. Valves and their associated mechanics are expensive in relation to the rest of the engine. It is necessary to lubricate. Moving them also consumes power. But in addition they occupy, with the spark plug, almost all the surface of the cylinder head. When installing 4 valves, a spark plug and an injector it is not possible to sufficiently size these devices for their optimal operation. For some alternative fuels this is a disadvantage. Likewise the surface limitations of the valve channels limit intake and exhaust flow, and therefore the maximum efficient speed of operation. Even more important is that valves have mechanically limited operation speed. A. Sánchez Rotary Engine purpose is to get a ultra-compact, cheaper and more efficient engine. The surface available for intake and exhaust ports, spark plugs or injectors is extraordinarily wide, as most stator circular inner surface is available. Have an extraordinary breathing capacity and the possibility of installing several nozzles and spark plugs (i.e. for hydrogen combustion). High valveless breathing capacity allows for more efficient operation at high speeds with no limitations on the use of alternative fuels. On the other hand, an alternative engine cooled by direct air does not homogenize the temperature in the combustion chamber-piston-cylinder assembly, alternating hot and cold areas. This causes irregular dilatation of the metallic mass, and adversely affects compression and combustion, and therefore, efficiency. Cooling with water corrects these drawbacks, but makes the engine more complex and bulky, more expensive to build and maintain. Moving the water through the different cavities of the engine consumes power. In A. Sánchez Engine design, cylinder, piston, connecting rod and crankshaft assembly operates exactly as in a conventional engine. The manufacturing process and reliability is the same. The difference is that this assembly rotates with the rotor. Piston never stops. Then, piston mass is not critical, reduces vibrations and, together with the large intake and exhaust ports, will undoubtedly allow higher turning speeds without difficulties with gas loading and combustion, to increase efficiency. The combustion chamber is very similar to a conventional engine. It is possible to advance ignition in relation to the position of the piston in the TDC up to 40º in the designed prototype. The rotor also acts as a fan by driving air through it as it rotates. As in a fan's propellers, the airflow performs a complex turbulent movement that cools and ensures the homonegeization of the temperature throughout the mass of the rotor. The circular faces of the rotor and stator that contact permanently, will equal their temperature with the particularity that the inner circular face of the stator exposed to the flame, will transfer its heat excess to the entire circular face of the rotor. It is to be

16

A. Sánchez Rotary Engine (Range Extender version).

expected that a stable temperature will be maintained without major differences in the entire mass of the stator and the rotor. Also is expected high capacity to evacuate heat.

There are many rotary engine designs. Wankel engine is really more complex than alternative, more expensive to build and maintain and less efficient. Parts are difficult to machine and require special treatments. The main technical problem of the Wankel engine is inherent in its basic design. The rotor spins supported on the stator inner guide. This is not completely circular (epitrochoid). Then, the rotor mass applies its sharp vertex against the stator. This pressure strikes hard at medium-high speed when the vertex are pushed in by the stator. This necessarily causes compression leaks, seizures and wear. Cooling is complex and expensive in Wankel engine. The rotor is completely interior and exposed to the power flame on its three faces. To cool it properly it is necessary to use liquid pumped inside. Stator must also be liquid cooled, to homogenize temperature throughout its mass and avoid deformations that harms compression and combustion more. Lubrication in this engine is even more problematic, complex and expensive. The three rotor vertex with their seals not only continuously contact the stator, but are pressed and hit. It is then necessary for the seals to apply oil continuously to the stator surface. Each vertex must have a single seal, so the applied oil can not be collected and is burned at each combustion. Really, the pressure exerted by power strokes on the seals and the vibrations, prevent to obtain a minimum airtightness between the three chambers, with the associated problems. 17

A. Sánchez Rotary Engine (Range Extender version).

In A. Sánchez engine, tolerances between rotor-stator cylindrical surfaces in contact are similar as conventional piston-cylinder assembly. At all times there is a sheet of oil between these two bodies although the oil is isolated from the combustion chamber. The configuration of the seal ensures the tightness of the cylinder, mouth keeps oil continuously out. The lubricant that reaches this seal is subjected to consecutive pressure and vacuum by the action of the piston on the carter. This implies that there must be no leakage to the cylinder or to the intake or exhaust ports. Incomplete combustion is another disadvantage of Wankel engine. Power stroke start is mechanically critical and mismatches. Combustion chamber has a large surface area in relation to its volume. This difficult combustion and harms efficiency. Combustion in A. Sanchez engine is similar to conventional piston engine. If, on the above basis, we obtain combustion efficiency similar to alternative piston engine, then final performance of A. Sánchez engine will be increased by: - Elimination of losses by valves actuation. - Elimination of losses by pumping liquids. - Elimination of losses by vibrations (reversion of the piston, valves, etc). - More efficient because can spin at high r.p.m. - Can operate with hydrogen and other cheap fuels. Compared to Wankel engine, has these advantages: - Much simpler design: More reliable and easier to maintain, assemble, disassemble, etc. - Lower weight, less parts, cheap and easy to machining. It can have significantly lower final cost. - Good fuel combustion. Gets more fuel efficiency. - No burning oil. No need to add oil to the fuel. Less contamination. - Good sealing. It can achieve high compression ratios. A range extender is a reserve engine that can run every day, but it may not run in months or years. When it is more complex it has more possibility of failure. So simplicity in design and reliability after long periods of non-use become a priority. Also is important that add a range extender in an electric vehicle does not significantly increase price. For a single cylinder engine, 600 c.c. displacement, estimate dimensions are 35cm. diameter by 25cm. height, without ignition, exhaust, and carburetor devices. Electric generator, would be directly coupled to the output shaft (there is a 2:1 gear demultiply between the crankshaft and the output shaft). Weight reduction in relation to a single-cylinder engine 600c.c. air-cooled 4-stroke will reach 50%.

18

A. Sánchez Rotary Engine (Range Extender version).

Similar combustion efficiency that conventional 4-stroke, water-cooled piston engine is expected. Vibrations & reversions in piston and valve are supressed, in addition to not consuming power in moving oil & water pumps, and valves. Then, power available on the output shaft must be higher. The rotary configuration of all moving parts and counterweight of rotor mass should almost eliminate vibrations. Cylinder and piston rotates, and are housed in the stator. Noise must be less than conventional air-cooled engine.

19

A. Sánchez Rotary Engine (Range Extender version).

ENGINE PARTS (Plastic ABS version)

20

A. Sánchez Rotary Engine (Range Extender version).

COMPACT SIZE. LESS WEIGHT

ENGINE CUTAWAY

21

A. Sánchez Rotary Engine (Range Extender version).

A. SANCHEZ ROTARY ENGINE v2017

PISTON-CONROD-CRANKSHAFT ASSEMBLY

22

A. Sánchez Rotary Engine (Range Extender version).

“Weight saved in a compact part initiates an escalation of weight loss in all the supporting parts. That finally make a more efficient and safe automotive” may, 2.017

23

A. Sanchez Rotary Engine v2017_2.pdf

A. Sanchez Rotary Engine v2017_2.pdf. A. Sanchez Rotary Engine v2017_2.pdf. Open. Extract. Open with. Sign In. Main menu.

3MB Sizes 2 Downloads 124 Views

Recommend Documents

rotary engine pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. rotary engine ...

RX-7-Mazda-s-Rotary-Engine-Sportscar-Revised-2nd-Edition.pdf
Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. RX-7-Mazda-s-Rotary-Engine-Sportscar-Revised-2nd-Edition.pdf. RX-7-Mazda-s-Rotary-Engine

Sanchez- Complaint.pdf
922(9$) firearm, namely, a Colt model Lgl"L, .45 caliber. pistol, with serial number 7085181160, which. firearm had traveled in interstate commerce prior.

SANCHEZ HERRERA, JOAQUIN.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. SANCHEZ HERRERA, JOAQUIN.pdf. SANCHEZ HERRERA, JOAQUIN.pdf. Open. Extract. Open with. Sign In. Main menu.

Rotary Basics.pdf
... up meet- ings by participating in a club service. project or by attending a club board. meeting, a Rotaract or Interact club. meeting, or an online meeting at one.

GIMENEZ SANCHEZ, JESUS.pdf
Page 1 of 1. Facultad de Ciencias Económicas y. Empresariales. Universidad Complutense de Madrid. Nombre del profesor/a Jesús Giménez Sánchez.

Untitled - Rotary Leuven
Volume della bottiglia. 750 ml, 1500 ml, 3000 ml, 6000 ml. Uve. Chardonnay 100%. Origine. Mix di unità di pedopaesaggio di Franciacorta. Sistemi d' ...

Rotary sensor plug
A Rotary potentiometer is a three terminal variable resistor with a rotating contact that forms an adjustable voltage divider. An adjustable potentiometer can open.

Untitled - Rotary Club Leuven
via Colzano, 32 25030 Adro (BS) +39 030 7450126 fax +39 030 7450322 [email protected] www.contadicastaldi.it. Volume della bottiglia.

SANCHEZ QUIROS, Isabel.pdf
Categoría académica PROFESOR CONTRATADO DOCTOR. Departamento DEPARTAMENTO DE ORGANIZACIÓN DE EMPRESAS. Teléfono 913942508.

SANCHEZ FUENTES, ANTONIO JESUS.pdf
Sign in. Loading… Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect ...

Rotary e estrutura.pdf
Page 2 of 17. O que é Rotary? • Rotary International é a associação federativa internacional dos. mais de 34.267 Rotary Clubs sediados em 215 países e ...

2007 Rotary History.pdf
Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. 2007 Rotary History.pdf. 2007 Rotary His

What is Rotary Friendship Exchange
However, the host club determines the nature of the exchange, the number of host families involved and the length of each stay. As the Team Program operates ...

Rotary e estrutura.pdf
... a problem loading more pages. Rotary e estrutura.pdf. Rotary e estrutura.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Rotary e estrutura.pdf.

Light Up Rotary -
A year later the “Rotary Endowment Fund,” as it was first labeled, received its first .... Pg. 2;. From the District Governor. Pg. 4;. The Rotary Foundation's. Beginning .... Vocational training teams, which are groups of professionals who travel

Light Up Rotary -
Grab your dinner ticket early and see you there! From my ..... email: [email protected] ... are not comfortable joining existing Rotary Clubs, they were free to come together and form their own Rotary ..... Governor's Challenge and award system.

Airport Rotary Foundation.pdf
Download. Connect more apps... Try one of the apps below to open or edit this item. Airport Rotary Foundation.pdf. Airport Rotary Foundation.pdf. Open. Extract.

Sanchez v Dahlke Trailer Sales.pdf
Page 1 of 36. 1. STATE OF MINNESOTA. IN SUPREME COURT. A15-1183. Court of Appeals Chutich, J. Dissenting, Anderson, J., Gildea, C.J., Stras, J.

Sanchez et al 2015.pdf
GluN2B subunit within 4 days following noise exposure. reduced behavioral signs of tinnitus for up to 2 weeks. (Guitton and Dudai, 2007; Brozoski et al., 2013).

Sanchez-Salguero etal.2017.Dendrochronologia FW2014.pdf ...
Page 1 of 14. Dendrochronologia 42 (2017) 80–93. Contents lists available at ScienceDirect. Dendrochronologia. journal homepage: www.elsevier.com/locate/dendro. TECHNICAL NOTE. An intensive tree-ring experience: Connecting education and research. d

SANCHEZ DEL REAL, JESUS ANTONIO.pdf
SANCHEZ DEL REAL, JESUS ANTONIO.pdf. SANCHEZ DEL REAL, JESUS ANTONIO.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying SANCHEZ ...

CV Miguel Sanchez Blanco Blog.pdf
... below to open or edit this item. CV Miguel Sanchez Blanco Blog.pdf. CV Miguel Sanchez Blanco Blog.pdf. Open. Extract. Open with. Sign In. Main menu.

ROTARY INTERSECTION TUTORIAL2.pdf
... intersections in the United States reported that converting. intersections from traffic signals or stop signs to roundabouts reduced injury accidents by 80 percent ...