ACTA UNIVERSITATIS APULENSIS

No 17/2009

CRITERIA FOR UNIVALENCE OF CERTAIN INTEGRAL OPERATORS

V. Ravichandran Abstract. In this paper, we determine conditions on β, αi and fi (z) so o1/β n R Q z is univalent in that the integral operator β 0 ξ β−1 ni=1 (fi (ξ)/ξ)1/αi dξ the open unit disk. We also obtain similar results for the integral operator  R z β−1 1 P β 0 ξ exp ( ni=1 αi fi (ξ)) dξ β . 2000 Mathematics Subject Classification: 30C45. 1. Introduction An analytic function that maps different points in the open unit disk U := {z ∈ C : |z| < 1} to different points in C is a univalent function. Such functions have been studied for long time. Let A be the class of all analytic functions f (z) defined in U and normalized by the conditions f (0) = 0 = f 0 (0) − 1. Let S be the subclass of A consisting of univalent functions. Pascu [2] has proved the following theorem: Theorem 1 ([1],[2]) Let β ∈ C, γ ∈ R and <β ≥ γ > 0. If f ∈ A satisfies 1 − |z|2γ zf 00 (z) f 0 (z) ≤ 1 (z ∈ U ), γ then the integral operator  Z Fβ (z) = β

z

ξ

0

is in S.

141

β−1 0

f (ξ)dξ

 β1

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

We denote by Sβ the class of functions f ∈ A satisfying 2 0 z f (z) f 2 (z) − 1 < β (0 < β ≤ 1; z ∈ U ) while Sβ∗ denote the class of functions f ∈ A satisfying 0 zf (z) < β (0 < β ≤ 1; z ∈ U ). − 1 f (z) Using Theorem 1, Pescar [4] proved the following theorem. Theorem 2 ([4]) Let α, β ∈ C and <β ≥ <α ≥ 3/|α|. If f ∈ S1 satisfies the condition |f (z)| ≤ 1 (z ∈ U ), then the integral operator ( Z Hα,β (z) = β

z

ξ β−1



0

f (ξ) ξ

) β1

 α1 dξ

(1)

is in S. Using Theorem 1, Breaz and Breaz [1] extended Theorem 2 and obtained the following theorem. Theorem 3 (Theorem 1, p.260 [1]) Let α, β ∈ C and <β ≥ <α > 3n/|α|. If fi ∈ S1 (i = 1, 2, · · · , n) satisfies the conditions |fi (z)| ≤ 1

(z ∈ U,

i = 1, 2, · · · , n),

then the integral operator ( Z Fα,β (z) = β

) β1

1

z

ξ β−1

0

 n  Y fi (ξ) α i=1

ξ



is in S. Using Theorem 1, Pescar [5] obtained the following theorem. 142

(2)

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

Theorem 4 (Theorem 1, p.452 [5]) Let f ∈ A and β ∈ C satisfies √ 3 3 1 ≤ <β ≤ |β| ≤ . 2 If |zf 0 (z)| ≤ 1

(z ∈ U ),

then the function  Z Tβ (z) = β

z

ξ β−1

β ef (ξ) dξ

 β1

0

is in S. By Schwarz’s Lemma (see below), the only function f ∈ A with |f (z)| ≤ 1 is f (z) = z and hence the hypothesis of Theorem 3–4 are satisfied only by a single function f (z) = z. In this paper, we extend Theorem 2 and Theorem 4 to obtain a sufficient conditions for univalence of a more general integral operator. We also prove some related results. The class of functions to which our theorems are applicable is non-trivial (when Mi 6= 1 for some i). To prove our main results, we need the following lemma: Lemma 1 (Schwarz’s Lemma) If the function w(z) is analytic in the unit disk U , w(0) = 0 and |w(z)| ≤ 1 for all z ∈ U , then |w(z)| ≤ |z| (z ∈ U ),

|w0 (0)| ≤ 1

and the either of these equalities holds if and only if w(z) = z, where || = 1.

2. Univalence Criteria For fi ∈ A (i = 1, 2, · · · , n) and α1 , α2 , . . . , αn , β ∈ C, we define an integral operator by ( Z Fα1 ,α2 ,··· ,αn ;β (z) := β

) β1

1

z

ξ β−1

0

 n  Y fi (ξ) αi i=1

ξ



.

(3)

When α1 = α2 = · · · = αn = α, Fα1 ,α2 ,··· ,αn ;β (z) becomes the integral operator Fα,β (z) considered in Theorem 3. 143

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

Theorem 5 Let 0 < βi ≤ 1. Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy the conditions |fi (z)| ≤ Mi (Mi ≥ 1; z ∈ U, i = 1, 2, · · · , n). If α1 , α2 , . . . , αn , β ∈ C, <β ≥ γ and γ :=

n X 1 + Mi (1 + βi )

|αi |

i=1

,

(4)

then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S. Proof.

Define the function h(z) by n  zY

Z h(z) := 0

i=1

fi (ξ) ξ

 α1

i

dξ.

Then we have h(0) = h0 (0) − 1 = 0. Also a simple computation yields 1

0

h (z) =

 n  Y fi (z) αi z

i=1

and

n

zh00 (z) X 1 = h0 (z) αi i=1



 zfi0 (z) −1 . fi (z)

(5)

From equation (5), we have 00   n X zh (z) 1 zfi0 (z) ≤ +1 h0 (z) |αi | fi (z) i=1   n X 1 z 2 fi0 (z) fi (z) = +1 . |αi | fi2 (z) z i=1 From the hypothesis, we have |fi (z)| ≤ Mi by Schwartz Lemma, yields |fi (z)| ≤ Mi |z| (z ∈ U,

144

(z ∈ U,

(6)

i = 1, 2, · · · , n) which,

i = 1, 2, · · · , n).

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

Using this inequality in the inequality (6), we obtain 00  2 0  n X zh (z) z fi (z) 1 ≤ Mi 2 +1 h0 (z) |αi | fi (z) i=1  2 0  n X z fi (z) 1 Mi 2 − 1 + 1 + Mi . ≤ |α | f (z) i i i=1 Since fi ∈ Sβi , in view of (4), the equation (7) yields 00 n X zh (z) 1 + Mi (1 + βi ) < = γ. h0 (z) |αi | i=1

(7)

(8)

Multiply (8) by 1 − |z|2γ , γ we obtain 1 − |z|2γ γ

00 zh (z) 2γ h0 (z) ≤ 1 − |z| < 1 (z ∈ U ).

Since <β ≥ γ > 0, it follows from Theorem 1 that  β1  Z z β−1 0 ξ h (ξ)dξ ∈ S. β 0

Since  Z β 0

z

ξ β−1 h0 (ξ)dξ

 β1

( Z = β

ξ β−1

0

) β1

1

z

 n  Y fi (ξ) αi i=1

ξ



= Fα1 ,α2 ,··· ,αn ;β (z), the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S. Theorem 6 Let α1 , α2 , . . . , αn , β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) and <β ≥ γ :=

n X βi . |α | i i=1

(9)

If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S. 145

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

Proof.

From (5), we get 00 X 0 n zh (z) zfi (z) 1 ≤ − 1 h0 (z) fi (z) |α | i i=1

and by using (9) and fi ∈ Sβ∗i , we obtain 00 n zh (z) X βi ≤ = γ. h0 (z) |α | i i=1 This, as in the proof of Theorem 5, shows that 1 − |z|2γ zh00 (z) h0 (z) < 1 (z ∈ U ) γ and therefore, by Theorem 1, z

 Z β

ξ β−1 h0 (ξ)dξ

 β1 ∈ S.

0

Therefore the function Fα1 ,α2 ,··· ,αn ;β (z) defined by (3) is in S. Example 1 Let α, β ∈ C, 0 < βi ≤ 1 (i = 1, 2, . . . , n) satisfy n

1 X <β ≥ βi . |α| i=1 If fi ∈ Sβ∗i (i = 1, 2, · · · , n), then the function Fα,β (z) defined by (2) is in S. β1 In particular, if α, β ∈ C, 0 < β1 ≤ 1 satisfy <β ≥ |α| and f ∈ Sβ∗1 , then the function Hα,β (z) defined by (1) is in S. For i = 1, 2, . . . , n, let αi , β ∈ C and fi (z) ∈ A. Define the integral operator Tα1 ,...,αn ;β (z) by ( Z Tα1 ,...,αn ;β (z) = β

z

ξ β−1 exp

0

n X i=1

146

! αi fi (ξ) dξ

) β1 .

(10)

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

Theorem 7 Let fi ∈ A (i = 1, 2, · · · , n) satisfy |zfi0 (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U ).

Let αi , β ∈ C (i = 1, 2, . . . , n) and γ > 0 be the smallest number such that 2

n X

Mi |αi | ≤ (2γ + 1)

2γ+1 2γ

.

(11)

i=1

Then, for β ∈ C, <β ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S. Proof.

Define the function h(z) by Z h(z) :=

z

exp

n X

0

! αi fi (ξ) dξ.

i=1

Then we have h(0) = h0 (0) − 1 = 0. Also a simple computation yields ! n X 0 h (z) = exp αi fi (z) i=1

and

n

zh00 (z) X = αi zfi0 (z). 0 h (z) i=1

(12)

By Schwartz’s Lemma, we have |zfi0 (z)| ≤ |z|, (z ∈ U, i = 1, 2, · · · , n), and therefore we obtain, from (12), 00 n n X zh (z) X 0 ≤ |α | |zf (z)| ≤ ( Mi |αi |)|z|. i i h0 (z) i=1 i=1 Thus

n 1 − |z|2γ zh00 (z) |z|(1 − |z|2γ ) X Mi |αi | (z ∈ U ). h0 (z) ≤ γ γ i=1

For the function Q : [0, 1] → R defined by Q(t) = t(1 − t2γ ), γ > 0, the maximum is attained at the point t = 1/(2γ + 1)1/2γ and thus we have 2γ

Q(t) ≤

(2γ + 1) 147

2γ+1 2γ

.

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

In view of this inequality and our assumption (11), we obtain 1 − |z|2γ zh00 (z) h0 (z) ≤ 1 (z ∈ U ) γ and, by Theorem 1, Tα1 ,...,αn ;β (z) is univalent in U for β ∈ C with <β ≥ γ. Also we have the following result. Theorem 8 Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n). Let fi ∈ Sβ∗i (i = 1, 2, · · · , n) satisfy |fi (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U;

i = 1, 2, . . . , n).

and γ > 0 be the smallest number such that 2

n X

Mi |αi |(1 + βi ) ≤ (2γ + 1)

2γ+1 2γ

.

(13)

i=1

Then, for β ∈ C, <β ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S. Proof.

From (12), we have 00 X n zh (z) ≤ |αi | h0 (z) i=1

0 zfi (z) fi (z) |fi (z)| 0   n X zfi (z) − 1 |fi (z)| ≤ |αi | 1 + fi (z) i=1 ≤

n X

Mi |αi |(1 + βi )|z|.

i=1

The remaining part of the proof is similar to the proof of Theorem 7. Similarly we have the following result. Theorem 9 Let fi ∈ Sβi (i = 1, 2, · · · , n) satisfy |fi (z)| ≤ Mi

(Mi ≥ 1;

z ∈ U;

i = 1, 2, . . . , n).

Let αi , β ∈ C, 0 ≤ βi ≤ 1 (i = 1, 2, . . . , n), and γ > 0 be the smallest number such that n X 2γ+1 2 Mi2 |αi |(1 + βi ) ≤ (2γ + 1) 2γ . (14) i=1

Then, for β ∈ C, <β ≥ γ, the function Tα1 ,...,αn ;β (z) defined (10) is in S. 148

V. Ravichandran - Criteria for Univalence of Certain Integral Operators

References [1] D. Breaz and N. Breaz, An univalent condition for an integral operator, Nonlinear Funct. Anal. Appl. 11 (2006), no. 2, 259–263. [2] N. N. Pascu, On a univalence criterion II, in Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153–154, Univ. “Babe¸s-Bolyai”, Cluj. [3] N. N. Pascu, An improvement of Becker’s univalence criterion, in Proceedings of the Commemorative Session: Simion Sto¨ılow (Bra¸sov, 1987), 43–48, Univ. Bra¸sov, Bra¸sov. [4] V. Pescar, New criteria for univalence of certain integral operators, Demonstratio Math. 33 (2000), no. 1, 51–54. [5] V. Pescar, Certain sufficient conditions for univalence, Hokkaido Math. J. 32(2) (2003), 451–455. [6] V. Pescar and S. Owa, Some criteria for univalence of certain integral operators, Int. J. Math. Math. Sci. 2004, no. 45-48, 2489–2494. Author: V. Ravichandran Department of Mathematics University of Delhi Delhi 110 007 India email: [email protected]

149

ACTA UNIVERSITATIS APULENSIS No 17/2009 ...

CRITERIA FOR UNIVALENCE OF CERTAIN. INTEGRAL OPERATORS. V. Ravichandran. Abstract. In this paper, we determine conditions on β, αi and fi(z) so that the integral operator. { β ∫ z. 0 ξβ−1 ∏n i=1. (fi(ξ)/ξ). 1/αi dξ. }1/β is univalent in the open unit disk. We also obtain similar results for the integral operator. {β ∫ z. 0.

117KB Sizes 1 Downloads 121 Views

Recommend Documents

Acta No. 21_CTG_2017.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Acta No. 21_CTG_2017.pdf. Acta No. 21_CTG_2017.pdf. Open. Extract. Open with. Sign In. Main menu.

ACTA+No+47_15.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Main menu.

ACTA No 6 PREMIOS RECLA 2017.pdf
proyección Comunitaria - Sistema Nacional de Educación Continuada-SINEC. Persona (s) a cargo del Programa: Jenny Esperanza Sierra Olarte y Rosaura.

Acta No. 24-CT-SNTE-INAI-2016.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Acta No.

ACTA No 6 PREMIOS RECLA 2017.pdf
nueve (9) días del mes de agosto de 2017. MARÍA DEL ROSARIO BOZÓN GONZÁLEZ. Secretaria General. Page 3 of 3. ACTA No 6 PREMIOS RECLA 2017.pdf.

acta-constitucion.pdf
Liberación Nacional. El Salvador, C. A. 1o de Septiembre de 1992 1. /. INTRODUCCION. El día 1o de Septiembre de 1992 la dirigencia del FMLN se reunió en ...

Acta-19A.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Acta-19A.pdf.

ACTA
when samples with a higher Sb(III) content have to be analyzed. ... determination of Bi(III), especially Sb(III) and Cu(II), that can ... methanol containing ca. 20 wt.

Acta Mechanica
magnetic loadings are applied to the magnetoelectroelastic materials. Expressions for stresses, electric displacements, and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material a

Acta Sociologica
archy that the colonial Census allegedly con- structed. However, over time the logic of affirmative action, as I shall call it, undermined the usefulness of class and ...

acta 24Sept15.pdf
4.3 S'acorda pagar el domini de la pàgina web que fins ara pagava el Marcel. També es. pagarà un Hosting. Tot plegat sumaran una 60€/any. Whoops!

Acta-54.pdf
Rigoberto Benavides Zamora SAN RAMON. Karen María Vega Soto (en propiedad) TRES RIOS. José David Cavaría Quesada (en propiedad) RIO AZUL.

ACTA 101.pdf
Sign in. Loading… Page 1. Whoops! There was a problem loading more pages. Retrying... ACTA 101.pdf. ACTA 101.pdf. Open. Extract. Open with. Sign In.

acta psychologica
Repetition and phonological priming in picture naming. Our paradigm capitalizes on ..... picture-word interference. Canadian Journal of Psychology 36, 349-367.

Acta-18J.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Acta-18J.pdf.

Acta 6.pdf
Whoops! There was a problem loading more pages. Retrying... Acta 6.pdf. Acta 6.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Acta 6.pdf.

ACTA-001.16-PREGRADO.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. ACTA-001.16-PREGRADO.pdf. ACTA-001.16-PREGRADO.pdf. Open. Extract. Open with. Sign In. Main menu.Missing:

Acta 001.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Acta 001.pdf.

ACTA 011.pdf
Excursiones. - Camionetas. - Máquinita. Page 3 of 5. ACTA 011.pdf. ACTA 011.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying ACTA 011.pdf.

ACTA 43.pdf
Luis Carlos Villalobos Monestel ALCALDE MUNICIPAL. Vivian María Retana Zúñiga SECRETARIA AUXILIAR. Whoops! There was a problem loading this page.

ACTA 012.pdf
Page 1 of 54. PERATURAN MENTERI PERBURUHAN. NO. 7/1964*. TENTANG. SYARAT KESEHATAN, KEBERSIHAN SERTA PENERANGAN. DALAM TEMPAT KERJA. MENTERI PERBURUHAN,. Mengingat: Bahwa telah tiba waktunya melaksanakan ketentuan pada Pasal 8. Arbeidsregeling Nijver

ACTA No_7.pdf
Gómez informa Lo siguiente: Con relación a la situación del estudiante de Maestría en Gestión de la Producción. Animal, Daniel Arango Eastman, me permito ...

acta-201610-extract.pdf
Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. acta-201610-extract.pdf. acta-201610-extract.pdf. Op