

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

An Integrated Framework for Checking Concurrency-related Programming Errors Qichang Chen and Liqiang Wang Department of Computer Science University of Wyoming {qchen2, wang}@cs.uwyo.edu

Abstract

Program 1 Thread 1 Thread 2 deposit(int val){ deposit(int val){ int tmp = bal; int tmp = bal; tmp = tmp + val; tmp = tmp + val; bal = tmp; bal = tmp; } }

Developing concurrent programs is intrinsically difficult. They are subject to programming errors that are not present in traditional sequential programs. Our current work is to design and implement a hybrid approach that integrates static and dynamic analyses to check concurrency-related programming errors more accurately and efficiently. The experiments show that the hybrid approach is able to detect concurrency errors in unexecuted parts of the code compared to dynamic analysis, and produce fewer false alarms compared to static analysis. Our future work includes but is not limited to optimizing performance, improving accuracy, as well as locating and confirming concurrency errors.

Program 2 Thread 1 Thread 2 deposit(int val){ deposit(int val){ synchronized(o){ synchronized(o){ int tmp = bal; int tmp = bal; tmp = tmp + val; tmp = tmp + val; } } synchronized(o){ synchronized(o){ bal = tmp; bal = tmp; } } } }

Figure 1. Examples in Java demonstrating data races and atomicity violations.

1

Introduction cesses (i.e., accesses to the same shared variable and at least one access is a write) and the threads use no explicit mechanism to prevent the accesses from being simultaneous. An example is shown in Figure 1, which is adopted from [4]. In Program 1 of Figure 1, conflicting accesses to the shared variable bal can happen simultaneously without any protecting lock, hence a data race occurs. Atomicity violation is not as well-known as deadlock and race condition. An atomicity violation occurs when an interleaved execution of a set of code blocks (expected to be atomic) by multiple threads is not equivalent to any serial execution of the same code blocks. Program 2 in Figure 1 eliminates the data race in Program 1 by adding a lock o. However, Program 2 is still incorrect if the deposit method is required to be atomic. An atomicity violation occurs in Program 2 when the two synchronization blocks in thread 2 execute between the two synchronization blocks in thread 1, which leads the result of bal to be incorrect. Detecting concurrency-related software errors are based on three main techniques of program analysis: dynamic

Today, multicore/multiprocessor hardware has become ubiquitous, which enforces concurrent programming to become a common technique. Although for the past decade we have witnessed incrementally more programmers writing concurrent programs, the vast majority of current applications are still sequential and can no longer benefit from the hardware improvement without significant redesign. In order for software applications to benefit from the continued exponential throughput advances in new architectures, the applications will need to be well-written concurrent software programs. However, developing concurrent programs is intrinsically hard due to the fact that concurrency introduces a whole new class of errors that do not exist in sequential programs. Three of the most common concurrency errors are deadlock, data race and atomicity violation. Deadlocks and data races are well-known and have been studied for a long time. A deadlock occurs when all threads are blocked, each waiting for some action by one of the other threads. A data race occurs when two concurrent threads perform conflicting ac1

analysis, static analysis, and model checking. Dynamic analysis reasons about behavior of a program through observations of its executions. To detect concurrency errors, dynamic analysis extends the traditional testing techniques. It tries to look for potential concurrency errors by searching specific patterns based on the current observed events, even the errors do not show up in the current execution paths [10, 7, 12, 13, 9]. Static analysis makes predictions about a programs runtime behavior based on analyzing its source code [8]. The strength of static analysis is that it can consider all possible behaviors of a program. However, it may produce false positives (i.e., false alarms), because some aspects of a program’s behavior, such as alias relationships, values of array indices, and happens-before relationships, are very difficult to analyze statically. The drawback is that static analysis tends to produce many false alarms which make it very difficult for the programmer to sort out the actual errors from them. Static and dynamic analyses can be combined in various ways. Static analysis can be used to reduce the overhead of dynamic analysis [2]. For example, static analysis can show that some statements are not involved in any data races or atomicity violations and hence do not need to be instrumented; this can significantly reduce the overhead of dynamic analysis by up to a factor of 20 [1]. Conversely, dynamic analysis can help static analysis by providing more accurate runtime information. In order to exploit the complementary benefits of different program analyses, we are designing a hybrid approach that integrates static, dynamic analysis and constraint solving. Generally, we perform static analysis for program source code to generate a summary of the program. When an instrumented program runs, we collect the observed events together with the static summary to build abstracted tree structures, which are used for checking concurrencyrelated programming errors. To help programmer distinguish real bugs from other benign or false warnings, we use symbolic analysis together with a constraint solver to confirm the reported warnings.

2 2.1

source code

static analyzer

instrumentation tool instrumented code

static summary trees

speculator

dynamic monitor

dynamic trees

hybrid trees

hybrid conflict-edge algorithm atomicity violation warnings

Figure 2. The architecture of the tool HAVE.

and builds tree structures. When we observe an unexecuted branch during dynamic analysis, the static summary of that unexplored branch is retrieved and instantiated using the recorded values. Thus, the instantiated summary speculatively approximates what would have happened if the branch had been executed. Finally, we check atomicity violations based on the hybrid tree structures, which contains both information from static analysis and dynamic analysis. We have evaluated the tool HAVE on 9 benchmarks totaling 284 thousand lines of code which include the largescale web servers (Apache Tomcat and Jigsaw). We have discovered 13 bugs (non-atomic transaction) involving 145 locations in source code with HAVE in contrast with 11 bugs involving 90 locations in source code using our previous purely dynamic approach. The average slowdown is 16.5x, which is about 4 times as our previous purely dynamic approach [11]. Hence, the hybrid approach reports fewer false positives than the previous static approaches [8, 1], and fewer false negatives (i.e., missed errors) than the previous dynamic approaches [7, 12, 11], at the sacrifice of performance. Figure 2 shows the architecture of our tool:HAVE, which consists of five components.

2.2

Limitations of HAVE

The analysis of HAVE is incomplete and unsound. First of all, no interprocedural analysis was applied during the stage of generating summaries. The summary itself is a condensed abstraction which is not a semantically equivalent to its source. Secondly, when the speculation is instantiated with the runtime information, some information could be missed since some symbolic names in that static summary might not be resolved, which leads to the incompleteness during post-stage analysis. It is also not sound because our approaches could report false positives due to ignoring value information. For example, in the statements of “if (x>0) then S1 else S2; if (x

Our Current Work Integrated Dynamic and Static Analysis for Atomicity Violation Detection

We have implemented the hybrid approach in a tool called Hybrid Atomicity Violation Explorer (HAVE) for detecting atomicity violations in multi-threaded Java programs [4]. In HAVE, we first perform a conservative intraprocedural static analysis to generate a static summary tree SST for each method in the program. When the instrumented program runs, our runtime system tracks and records accesses to shared variables and reference variables, 2

2.3

Thread Escape Analysis

practical. We will develop heuristics to turn off the monitoring selectively after relevant paths and interleavings have been tested. An instrumented program may run slowly at the start because of monitoring and checking. As the program runs, our analyzer caches the monitored events. For a code block, if relevant paths and events have been observed, the monitoring on the code block can be turned off to speed up the execution. Thus, the monitoring on frequently-executed code will be disabled soon, and the monitoring on infrequently-executed code remains so long lurking bug may be detected. Because most overhead resides in frequently-executed portions, the runtime overhead of the instrumented program will remain at very low level after initial executions. Specifically, we will explore the criteria for program state equivalence to identify redundant program states for monitoring thus reduces the overall runtime overhead. When our dynamic monitor observes a method call, it records the current program’s state into a succinct summary with regard to key program state conditions (e.g., the locks holding by the current thread, the calling context, the states of shared objects). So when a method call is invoked again under the same or a similar context, it is executed without monitoring. We will adopt some heuristics to help us set up the differentiation standards.

In order to reduce the runtime overhead, we developed an integrated thread escape analysis that extends a dynamic escape analysis by incorporating static analysis. Our hybrid approach works in two phases: in the first phase, it performs static analysis on program source code to obtain the concise static summaries about accesses for all fields and method invocations; the second phase is a dynamic analysis: we monitor the actual field accesses during execution and perform an interprocedural synthesis on the runtime information and the static summaries to determine the escaped fields. In addition, if a field would become thread-shared eventually, our approach can treat this field as a thread-local object to avoid unnecessary overhead on it before it escapes. In this way, the tool HAVE introduced in Section 2.1 will focus on the thread-shared fields only. We implement our analysis for Java programs in a tool called HEAT (Hybrid Escape Analysis for Thread) [3] and evaluate it on several benchmarks and real-world applications. The experiment shows that the hybrid approach improves accuracy of escape analysis compared to existing approaches and significantly reduces overhead of subsequent program analyses on several benchmarks (in our experiment, specifically, a hybrid approach for checking atomicity violations). For example, many memory-intensive programs would take many hours to finish under previous dynamic or hybrid analysis because of overwhelming number of events generated from monitoring the field accesses. Our tool identifies more unshared fields, which in turn considerably trims down the number of monitored events and allows the dynamic or hybrid analysis to finish in a reasonable time.

3 3.1

3.3

To accurately locate and confirm programming faults, we need to check massive thread interleavings and feasible execution paths. The percentage of paths covered by dynamic analysis is usually small. For example, a program with 3 threads and 50 lines of code per thread may have more than 1069 different interleavings. We will use symbolic analysis techniques that implicitly analyze all possible thread interleavings under an execution. This may seem like an intractable task considering the fact that the number of interleavings is exponential. Advances in modern constraint solvers, however, suggest that this is quite feasible. We will model thread executions using suitable constraints and reduce the fault localization and confirmation problem to solve a set of constraints. Our symbolic analysis will be based on satisfiability modulo theories (SMT), which benefit from recent significant advances in Boolean satisfiability (SAT) solvers and SMT solvers. Specifically, we resort to a state-of-the-art constraint solver Yices [5] to resolve the constraints. In this approach, one needs to add a quadratic number of constraints (with respect to the total number of transitions). These constraints may pose a significant performance overhead for a SMT solver. We plan to use partial order reduction, which is based on a static analysis technique to find statically independent transitions, to reduce the number of

Ongoing and Future Work Interprocedural Speculation

We plan to extend our existing tool HAVE with interprocedural speculation. We perform an iterative contextsensitive interprocedural analysis on the static summary trees SST during speculation for different calling contexts. When we encounter a method call during speculation, we expand it based on its definition in SST and substitute the formal parameters with actual arguments. This contextsensitive approach enables us to resolve object references inside the method body for invocations at different sites.

3.2

Fault Localization and Confirmation

Reducing Runtime Overhead

Since the runtime overhead is usually huge in our hybrid approach as well as other dynamic analyses, reducing monitoring overhead will be critical to make the tool to be 3

constraints. In principle, we need only to add constraints to statements that are not statically independent.

4

Practice of Software (ETAPS), York, UK, March 2009. Springer-Verlag. [5] B. Dutertre and L. de Moura. The yices smt solver. Tool paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

Conclusions

This paper presents our existing, ongoing, and future work on a hybrid approach that integrates static, dynamic, and symbolic analyses to attack concurrency-related error detection. Combining static and dynamic analyses is an active research area in program analysis. We are exploring different approaches to integrate them. In our existing hybrid approach, the summaries from static analysis are instantiate with runtime values during dynamic executions to speculatively approximate the behaviors of branches that are not taken. Compared to dynamic analysis, the hybrid approach is able to detect concurrency error in unexecuted parts of the code. Compared to static analysis, the hybrid approach produces fewer false alarms. The future work includes but is not limited to developing a comprehensive approach to optimize performance, improve accuracy, locate and confirm concurrency errors.

5

[6] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In Proceedings of the 20th international conference on Computer Aided Verification (CAV). Springer-Verlag, 2008. [7] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multithreaded programs. In Proc. ACM Symposium on Principles of Programming Languages (POPL), pages 256–267. ACM Press, 2004. [8] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM Press, 2003. [9] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via access interleaving invariants. In Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM Press, 2006.

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions.

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dynamic data race detector for multi-threaded programs. ACM Transactions on Computer Systems, 15(4):391–411, Nov. 1997.

References [1] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller. Optimized run-time race detection and atomicity checking using partial discovered types. In Proc. 20th IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM Press, Nov. 2005.

[11] L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity errors in concurrent programs. In Proc. ACM SIGPLAN 2006 Symposium on Principles and Practice of Parallel Programming (PPoPP). ACM Press, March 2006. [12] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-threaded programs. IEEE Transactions on Software Engineering, 32(2):93–110, Feb. 2006.

[2] F. Chen, T. F. Serbanuta, and G. Rosu. jPredictor: a predictive runtime analysis tool for Java. In Proc. 30th International Conference on Software Engineering (ICSE), pages 221–230. ACM, 2008.

[13] M. Xu, R. Bodik, and M. D. Hill. A serializability violation detector for shared-memory server programs. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM Press, 2005.

[3] Q. Chen, L. Wang, and Z. Yang. HEAT: A Combined Static and Dynamic Approach for Escape Analysis. In 33rd Annual IEEE International Computer Software and Applications Conference (COMPSAC2009), Seattle, USA, July 2009. IEEE Press. [4] Q. Chen, L. Wang, Z. Yang, and S. Stoller. HAVE: Detecting Atomicity Violations via Integrated Dynamic and Static Analysis. In International Conference on Fundamental Approaches to Software Engineering (FASE), European Joint Conferences on Theory and 4

[image: Parameterized Model Checking of Fine Grained Concurrency]
Parameterized Model Checking of Fine Grained Concurrency

[image: An Integrated State- and Event-Based Framework for ...]
An Integrated State- and Event-Based Framework for ...

[image: An Integrated Security Framework For GOSS Power Grid ... - GitHub]
An Integrated Security Framework For GOSS Power Grid ... - GitHub

[image: An Architectural Framework for Interactive Music Systems]
An Architectural Framework for Interactive Music Systems

[image: AN EVIDENCE FRAMEWORK FOR BAYESIAN ...]
AN EVIDENCE FRAMEWORK FOR BAYESIAN ...

[image: An Integrated Cosimulation Environment for ... - Springer Link]
An Integrated Cosimulation Environment for ... - Springer Link

[image: Checking-For-Understanding-Tool-Kit.pdf]
Checking-For-Understanding-Tool-Kit.pdf

[image: Model Checking]
Model Checking

[image: Automated Architecture Consistency Checking for ...]
Automated Architecture Consistency Checking for ...

[image: Checking-for-Understanding-Rubric.pdf]
Checking-for-Understanding-Rubric.pdf

[image: Geometric Model Checking: An Automatic Verification ...]
Geometric Model Checking: An Automatic Verification ...

[image: Model Checking-Based Genetic Programming with an Application to ...]
Model Checking-Based Genetic Programming with an Application to ...

[image: Concurrency-aware compiler optimizations for hardware description ...]
Concurrency-aware compiler optimizations for hardware description ...

[image: Checking out Textbooks Checking In Textbooks]
Checking out Textbooks Checking In Textbooks

[image: An Extended Framework of STRONG for Simulation ...]
An Extended Framework of STRONG for Simulation ...

[image: Instrumentino: An open-source modular Python framework for ...]
Instrumentino: An open-source modular Python framework for ...

[image: An Event-based Framework for Characterizing the ...]
An Event-based Framework for Characterizing the ...

[image: Zemberek, an open source NLP framework for Turkic ...]
Zemberek, an open source NLP framework for Turkic ...

[image: An Empirical Framework for Automatically Selecting the Best Bayesian ...]
An Empirical Framework for Automatically Selecting the Best Bayesian ...

[image: IBPM: An Open-Source-Based Framework for InfiniBand ... - GitHub]
IBPM: An Open-Source-Based Framework for InfiniBand ... - GitHub

[image: Reference Framework for Handling Concept Drift: An ...]
Reference Framework for Handling Concept Drift: An ...

An Integrated Framework for Checking Concurrency ...

a programs runtime behavior based on analyzing its source code [8]. The strength of static analysis is that it can con- sider all possible behaviors of a program.

 Download PDF

 128KB Sizes
 1 Downloads
 236 Views

 Report

Recommend Documents

[image: alt]

Parameterized Model Checking of Fine Grained Concurrency

implementation of multi-threaded programs. Their efficiency is achieved by using Unbounded threads: We show how concurrent list based set data structures.

[image: alt]

An Integrated State- and Event-Based Framework for ...

Control software development plays an increasingly greater role in the in a distributed way, per functional aspect, such as, paper path, printing process, etc.

[image: alt]

An Integrated Security Framework For GOSS Power Grid ... - GitHub

Sep 24, 2014 - potential network failures (N-1) ... in one of these roles in order to ... Users can't find out about data/services they don't have access for ...

[image: alt]

An Architectural Framework for Interactive Music Systems

Software Architecture, Interactive Systems, Music soft- ... synthesis of data media of different nature. ... forms (e.g. Max/MSP [19] and Pure Data [24]), and oth-.

[image: alt]

AN EVIDENCE FRAMEWORK FOR BAYESIAN ...

generalization, and achieve desirable recognition performance for unknown test speech. Under this framework, we develop an EM iterative procedure to ...

[image: alt]

An Integrated Cosimulation Environment for ... - Springer Link

Generic codesign flow of heterogeneous system. Once the system specification is translated into the internal representation suitable for the remaining codesign steps, hardware-software partitioning is done to find out the optimum solution satisfying

[image: alt]

Checking-For-Understanding-Tool-Kit.pdf

Stage 2: Evidence. What performances and products will reveal evidence of. meaning-making and transfer? By what criteria will performance be assessed, ...

[image: alt]

Model Checking

where v1, v2, v represents the current state and v., v, ..., v, represents the next state. By converting this ... one register is eventually equal to the sum of the values in two other registers. In such ... atomic proposition names. If

[image: alt]

Automated Architecture Consistency Checking for ...

implementation, design documents, and model transformations. of the same stage of a software development process, e.g., comparing UML sequence.

[image: alt]

Checking-for-Understanding-Rubric.pdf

(How much support is. the teacher providing to. get an answer?) Teacher provides a variety of ways. for students to respond based on the. general needs of the ...

[image: alt]

Geometric Model Checking: An Automatic Verification ...

based embedded systems design, where the initial program is subject to a series of transformations to It is required to check that the use of the definition and operand variables in the used when filling the buffer arrays. If a condition d

[image: alt]

Model Checking-Based Genetic Programming with an Application to ...

ing for providing the fitness function has the advantage over testing that all the executions In: Computer Performance Evaluation / TOOLS 2002, 200â€“204. 6.

[image: alt]

Concurrency-aware compiler optimizations for hardware description ...

semantics, we extend the data flow analysis framework to concurrent threads. duce two auxiliary conceptsâ€”Event Vector and Sensitivity Vectorâ€”in section 6, ...

[image: alt]

Checking out Textbooks Checking In Textbooks

(Note: You will need a barcode scanner to use the Destiny Textbook Checkout Manager. Your department has a number of scanners that you may use to check ...

[image: alt]

An Extended Framework of STRONG for Simulation ...

Feb 29, 2012 - Indeed, STRONG is an automated framework with provable Construct a local model rk(x) around the center point xk. Step 2. We call the sample size required for each iteration a sample size schedule, which refers to a.

[image: alt]

Instrumentino: An open-source modular Python framework for ...

Official Full-Text Paper (PDF): Instrumentino: An open-source modular ... 1. Introduction. In the process of scientific research, many laboratories around [18] N. Barroca, et al., Wireless sensor networks for temperature and The communicat

[image: alt]

An Event-based Framework for Characterizing the ...

for evolving networks, based on our framework. Categories and Subject Descriptors: H.2.8 Database. Management: Database Applications - Data Mining.

[image: alt]

Zemberek, an open source NLP framework for Turkic ...

source, platform independent NLP framework not only for Turkish but also all Turkic languages. In. This paper There is no agreed standard naming scheme defined for. Turkish yet. Most suffixes contain a production environment: AMD Athlon 64

[image: alt]

An Empirical Framework for Automatically Selecting the Best Bayesian ...

Keywords: Bayesian networks; Data mining; Classifi- cation; Search ... In deciding which classifier will work best for a given dataset there The software used to ...

[image: alt]

IBPM: An Open-Source-Based Framework for InfiniBand ... - GitHub

Evaluation of Computer and Communication Systems (MMB) and. Dependability and ... 2 These authors are with science+computing ag, Tuebingen, Germany.

[image: alt]

Reference Framework for Handling Concept Drift: An ...

In predictive analytics, machine learning and data mining the phenomenon [13] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive.

×
Report An Integrated Framework for Checking Concurrency ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

