

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Building Business Processes or Assembling Service Components: Comparison and Combination of BPEL and SCA Zhile Zou, ChenTing Zhao, Man Zhang Institute of Computing Theory & Technology, XiDian University, Xi’An, 710071, P.R. China {zouzhile, zhaochenting,zhangman.cz}@gmail.com Abstract The Service-Oriented Architecture (SOA) has attracted lots of attentions these days. However, SOA is essentially a design methodology that has existed for decades, and doesn’t provide enough details about the development, reuse and integration of the services. The Business Process Execution Language for Web Services (BPEL) has offered a formal specification for integrating loose-coupled services and building flexible business processes. And the newly emerging Service Component Architecture (SCA) provides a set of specifications which describe a model for implementing SCA service components and assembling existing services. Although both BPEL and SCA provide a mechanism for the service reuse and integration in SOA, they focus on different aspects and provide different solutions. Through the comparisons and discussions of their features, it is proved that they complement each other in nature and can be combined to achieve useful service reuse patterns for building non-trivial applications in SOA.

1. Introduction SOA is an IT architectural style that supports integrating your business as linked services or repeatable business tasks that can be accessed when needed over a network [8]. These services are self-contained, ”loosely coupled”, and have well-defined interfaces. Loose-coupling enables the services to be effectively reused on different occasions, and at the same time no changes are necessary for the original services. The Business Process Execution Language for Web Services (BPEL) [4] provides an orchestration paradigm to build flexible business processes through reusing and composing available services. In orchestration, a central process takes control over the involved services and coordinates the execution of different operations on the services involved

in the interaction. The involved services do not know (and do not need to know) that they are involved into a composition and that they are a part of a higher business process. Besides, WSIF [6] can be utilized to support the agnostic service binding in BPEL processes [15] , i.e. legacy systems like EJB and JCA can also be integrated into BPEL processes as long as their interfaces are described in WSDL documents1 . This consists with the idea that the services in SOA are not restricted to web services. Although WSIF provides the capability of invoking different kinds of services through an universal approach, it doesn’t form a component-based architecture. As an extension of WSIF, the Service Component Architecture (SCA) [3] not only offers the universal invocation capability, it is also an architecture within which service components can be reused and assembled into applications. Through assembling service components, a better layered architecture can be achieved for the enterprise applications, and the business logic and IT logic can clearly be split. At the same time, the development, modification and deployment of the applications are also facilitated. BPEL and SCA complement each other in nature: BPEL can provide the higher level orchestration, while SCA modules or subsystems can offer the lower level business functions required by the BPEL processes. Thus, it is desirable to combine the capabilities of BPEL and SCA to obtain useful service reuse patterns in SOA. In this paper, BPEL is utilized to take the higher level control of the orchestrated services of various forms; while the SCA components, modules and subsystems are assembled to provide coarse-grained partner services for the BPEL processes. Besides, BPEL is also used as the implementation of the SCA service components. In this way, useful reuse patterns for the services of various forms can be achieved. The rest of this paper is organized as follows: In the following Section, the SCA Assembly Model is introduced to 1 Due to the name of [4], it causes an illusion that the BPEL integrations are restricted to web services. However, WSIF is not a standard feature of BPEL, and different BPEL servers have different extensions

deliver some necessary preliminaries for the Service Component Architecture; In Section 3, some important features of BPEL and SCA are compared, and the nature that they complement each other is further discussed; In Section 4, the combination of BPEL and SCA is investigated, and our useful service reuse patterns are also delivered; we compare our approach with related work in Section 5; our conclusions and future works are presented in Section 6.

2 SCA Assembly Model The SCA Assembly Model consists of a series of artifacts defined by elements contained in XML files, and provides a model for assembling tightly coupled services and loosely coupled service-oriented systems. Module is the SCA deployment unit, within which the service components are tightly coupled and can be invoked with the by-reference semantics; while the services published by different modules are loosely-coupled, and interact using the by-value semantics. Typically, modules are assembled into Subsystems, which in turn are assembled and deployed into an SCA system. In the following paragraphs, the artifacts related to the SCA module are firstly introduced in details; then, the structures of SCA subsystems and systems are illustrated. A motivating example is also provided in details.

2.1

SCA Module

An SCA module is the largest composition of tightlycoupled components that are developed and deployed together, and it is also the basic unit of loosely-coupled composition within an SCA System. A typical structure of the SCA module is shown in Figure 1:

Figure 1. SCA Module A module is composed of a set of implementations, components, external services, entry points, and the wires that interconnect them together. Implementations are the only module parts that provide the concrete implementation of the business functions. SCA allows you to choose from any one of a wide range of implementation technologies, such as Java, BPEL or C++. The

configurable aspects of an implementation are together referred as its component type, which consists of the offered services, properties, and the references to other services. Components contain the business logic of the module, and are derived by configuring the component type of the corresponding implementations. Further, different components can be derived by configuring the same implementation differently. Configuring business implementations at deployment time isn’t something new. Similar techniques have been used very widely in the development of J2EE applications, examples include the EJB deployment descriptor. The relationships among component, component type and implementation are depicted in [1] with Figure 2. In this way, the implementation is isolated from the configurable information, and these artifacts can effectively be reused.

Figure 2. Component and Implementation Entry Points provide necessary details for the service components to be accessed from outside the boundaries of the module. Each entry point contains an interface element identifying the offered service, one or more binding elements specifying the service accessing mechanisms, and a reference element pointing to the target service component. External Services represent the dependencies that the module has on the services provided elsewhere, outside the module. Each external service is declared by specifying the interface of the referenced service and the binding mechanisms suitable for accessing the offered business functions. Note that SCA is an extension of WSIF, different bindings can consequently be specified for the same Entry Point or External Service of a specific component. Finally, wires are used to connect the above module parts in order to make them working together. Within modules, wires connect entry points to service components, one service component to another, and service components to external services, as depicted in Figure 1. If the module component or entry point that is the source of the wire is defined in the same module file or module fragment file as the wire, then wires are defined by configuring references of components or entry points; otherwise, a wire is represented by a wire element which is a child of the module element or moduleFragment element.

2.2

SCA System

An SCA System consists of one or more SCA Subsystems and a set of wires connecting them together. Each SCA System represents a set of services providing an area of the business functionality that is controlled by a single organization [1]. In an SCA system, SCA subsystems are used to group module components which provide related business functions, through the configuration and administration of module properties, external services and entry points. A subsystem is connected to another subsystem through wiring. A typical structure of an SCA system and the contained subsystems is shown in Figure 2.

On the subsystem level, external services represent remote services that are external to the SCA system that uses the service, and entry points are used to declare the externally accessible services of a subsystem. After the configurations of the subsystems, subsystems are deployed into an SCA system.

2.3

A Motivating Example

The ”BigBank” sample is used to illustrate previously covered concepts in the SCA Assembling Module, and its implementation is available online2 . The BigBank sample is a financial application provides the following user services: account balance, making deposits and withdrawals, to purchase and sell stock, and to view current stock value. The sample is organized into two SCA modules: bigbank.webclient and bigbank.account. The bigbank.webclient module is used to provide user information and obtain user input, while the bigbank.account module is used to retrieve and store user information, account information, current stock information and the purchasing and selling of stock. The two modules interact via web services through SCA external service and entry point. More details about these modules are shown as follows: • The bigbank.account Module:

Figure 3. SCA System Similar to the wires within a module, wires within a subsystem are used to connect the related parts together. Typically, the sources of the wires can be module components, entry points or binding specific endpoint addresses, while the targets of the wires can be module components, external services or binding specific endpoint addresses. If the module component or entry point that is the source of the wire is defined in the same subsystem as the wire, then wires are defined by configuring references of module components or entry points; otherwise, a wire is represented by a wire element which is a child of the subsystem element. A module component is a configured module within a subsystem. The module referenced by a module component is said to implement the module component, and is specified through the module attribute of the moduleComponent element in the sca.subsystem file [1]. Each module component can contain some overrideable properties and references from the implementing module. The services or the references provided by a module component are defined by the entry points or the external services in the module which implements the module component.

Figure 4. The bigbank.account Module The AccountServiceComponent provides an remotable account service and summaries the reports on the customer’s checking, saving and stock account. The AccountDataServiceComponent provides checking account, saving account and stock account information to the account services. The StockQuoteServiceComponent and the external StockQuoteWebService provides current quotes on stocks to the account services. The entry point AccountService publishes the account service over a web service binding for access by the web client module and other remote web services clients. • The bigbank.webclient Module: 2 The ”BigBank” sample shipped in Tuscany [19] is available at http://zouzhile.googlepages.com/webservices, including source code, assembly model files, and the diagrams created by us.

are addressed differently in BPEL and SCA. However, only stateful conversation and asynchronous invocation are compared in this section, since they are most closely related to the service reuse issue.

3.1

Figure 5. The bigbank.webclient Module The Web UI part is used for processing web requests and displaying account information to customers. The LoginServiceComponent and ProfileServiceComponent provide local services for managing the user states. The AccountServiceComponent and the external AccountService have a reference and a wsbinding to the bigbank.account for accessing the remote account service. • In an SCA system, subsystems are used to configure and administer modules. In this sample, two subsystems are created for the bigbank.account and bigbank.webclient modules, which are named ”samplebigbank-account-subsystem” and ”sample-bigbankwebclient-subsystem”, respectively. The ”samplebigbank-webclient-subsystem” contains a reference to the ”sample-bigbank-account-subsystem” that makes the two subsystems working together. The following figure shows the BigBank System.

Figure 6. The BigBank System

3 Comparisons of BPEL and SCA When building distributed applications, the most frequently considered issues include ACID, security, error handling, stateful conversation, asynchronous invocation, concurrency and synchronization, etc. Most of these issues

Stateful Conversation

For BPEL processes, stateful conversation is achieved by associating correlation sets with the messaging activities, such as receive, reply and invoke. Each correlation set in BPEL is a named group of properties that must be identical for all the messages in all the operations that carry the correlation set and occur within the corresponding scope until its completion [4]. Also, a pattern attribute is used to indicate whether the correlation set applies to the outbound (request) message, the inbound (response) message, or both. In this way, correlation set provides an application-level mechanism to match messages and conversations with the business process instances for which they are intended. And the states of the conversation are stored in the input/output variables of the correlated operations. In SCA, however, the scope of the conversation state is determined by the scope of the service interface. The scope of the service interface is indicated by the @Scope annotation on the service interface definition or on the service class itself. And for stateful conversations, the details of ID generation, state management and instance routing are all left to SCA containers, which results in minimal use of the middleware APIs. For example, a ”session” scoped service interface definition is shown below: import org.osoa.sca.annotations.*; @Scope(”session”) public interface bookSaleService{ void addToShoppingCart(Book book); ... } As specified in [2], the currently supported scope values are stateless, request, session and module, among which stateless is the default scope value. For stateless service, the service requests are handled separately by randomly selected runtime instances of the service; the request scoped service guarantees that all the local service invocations are delegated to the same service instance while servicing a remote service request; similarly, the session scoped service ensures that all requests in the same session are delegated to the same service instance until the session is ended or expired; finally, the module scoped service is instantiated as a service singleton at runtime, which results in that all requests within the same module are delegated to the same service instance. Despite the mechanism differences, stateful conversations can even be realized more easily between SCA service components and BPEL processes: the developers of the

service components only need to add an appropriate scope annotation to the service interface definition; while the designer of the BPEL process only need to define necessary correlation sets for the conversation.

3.2

Asynchronous Invocation

In contrast to the call-and-return style of the synchronous invocations, asynchronous services are usually much more desirable for the long-running tasks in SOA, since the clients are not blocked after the service invocation. In BPEL, the interactions with asynchronous services are specified through invoke-receive activity pairs, where the output variable of the invoke activity must be omitted. In this way, the service operation is invoked through the invoke activity; and the result is returned through the receive activity at a later time. As to SCA, three different asynchronous programming models are supported: non-blocking calls, conversational services, and callbacks. Each of them is specified as follows: • The non-blocking calls correspond to the one-way operations. In the service interface definitions, every non-blocking method must return ”void” , have no declared exceptions, and be marked with an @OneWay annotation. • Conversational services are typically remotable session-scoped services. The corresponding service references are declared in the client implementation, and injected by SCA containers at runtime, as shown in the following example: package example.inventory; import org.osoa.sca.annotations.*; @Scope(”session”) @Remotable public interface InventoryService{ void registerRecord(Record record); ... } import org.osoa.sca.annotations.*; import example.inventory.InventoryService; @Remotable public class ManagerImpl implements InventoryManager{ @Reference InventoryService inventoryService; public void record(Record rec){ inventoryService.registerRecord(rec); } ... }

• Callbacks are used by bidirectional SCA services, which must implement two interfaces: one is for the provided service, the other is provided by the client for callback usages. Callbacks can be specified by marking the service interface definition with an @Callback annotation which takes the callback interface class name as a parameter, for example: import org.osoa.sca.annotations.*; @Remotable @Callback(LoanServiceCallback.class) public interface LoanService{ ... } import org.osoa.sca.annotations.*; @Remotable public interface LoanServiceCallback{ ... } For non-blocking calls, only an invoke activity needs to be specified in BPEL, and the output variable of the invoke activity must be omitted. For callbacks, the callback interface is derived from the portType defined in the WSDL document of the composed service which corresponds to the BPEL process. The definition of the callback interface is determined by the WSDL to Java mappings specified in [7]. Since BPEL can be used as the service component implementation, the BPEL process can be assembled into the SCA system via external service reference. In the BPEL process, an invoke activity is specified to invoke the remote service, and a receive activity is correspondingly specified to receive the result returned by the remote service through the callback interface. However, the client model specified previously for the conversational services are not suitable for BPEL processes, since it requires the client implementation hold a service reference. Instead, the interaction with remotable sessionscoped services can be implemented as specified in the previous subsection.

4 Combination of BPEL and SCA SCA is essentially a new technology neutral programming model designed specifically for building and assembling business solutions in SOA, and targeted for integrating and composing services. Although BPEL is proposed as a service integration standard, it is not a competitor of SCA. Instead, they focus on different SOA aspects, and complement each other in nature. In this section, the combination of SCA and BPEL is fully discussed.

4.1

BPEL as Component Implementation

When deployed to BPEL servers, the underlying business logic defined in a given BPEL process is hidden from its clients. From the client’s point of view, each deployed process looks exactly like a common web service, which has a WSDL document and can be invoked through SOAP messages, etc. Some open source tools are capable of generating the WSDL document directly from the BPEL process definition, such as the Active BPEL Designer [16]. As specified in Section 2, the implementations can be of various forms, including BPEL. A service component can be derived from a BPEL implementation with the following steps: First, declare its implementation type as ”implementation.bpel”; then, specify an entry point to make the service addressable, and it is wired to the service component by configuring the reference of the entry point, as shown in Figure 7.

Figure 7. Component Derived from BPEL Implementation After the component is configured from the BPEL implementation, it works exactly the same as other components derived from different implementations. In this way, the component can be assembled with other components (local or external) to form a module.

4.2

SCA Service as Partner Service

Figure 8. Reuse Pattern for Advanced BPEL & SCA Servers

In such cases, the reuse pattern is very similar to the common BPEL service integration: the BPEL process takes control the higher level orchestration; and the available services provide the required functions, play a role in the higher level process and are invoked at a certain time specified by the process definition. However, the selections of the partner services are more flexible in this reusing pattern. For the matchmaking approaches proposed in [10, 11], if a service cannot satisfy all the capability requirements, it is discarded; while in this reusing pattern, if a single qualified service is not available, existing services can be easily assembled with the SCA Assembly Model to satisfy the capability requirements without changing the original services or developing new services. • Some SCA servers may support BPEL, but they don’t offer the direct SCA service invocation capabilities. To be consistent with the SCA client model specified in [2], service delegates need to be provided by the SCA service provider for the remote services published by SCA modules or subsystems. These service delegates use the ModuleContext to look up and invoke the target services, as shown in Figure 9.

Partner services are integrated and orchestrated by BPEL processes. And with the WSIF agnostic binding support, the partner services can be of various forms, including those provided by deployed SCA modules or subsystems. However, the patterns with which the SCA services are reused and integrated in BPEL processes depend upon the infrastructure facilities offered by the BPEL servers, which are discussed as follows: • For those advanced SCA servers that support BPEL and the direct invocation of SCA services, such as the Websphere Process Server, the reuse pattern is shown in Figure 8:

Figure 9. Reuse Pattern for Common BPEL & SCA Servers

Each service delegate serves as an SCA service facade, which declares to offer all the business functions provided by the corresponding SCA service. When the service delegate receives a request from the BPEL process, it first uses the ModuleContext to locate the corresponding service; then forwards the request to the located service instance; finally, the service delegate returns the result to the BPEL process. Note that this reusing pattern is also suitable for those BPEL servers that don’t support SCA at all, such as Active BPEL Engine [17] and BPEL4J [18]. • For those servers that only provide the minimum BPEL runtime facilities, neither WSIF nor SCA is likely to be supported. In such cases, the following pattern depicted in Figure 10 can be utilized to reuse the available SCA services through the SCA client model.

Figure 10. Reuse Pattern for Common BPEL Servers In this pattern, web applications are built to look up and invoke the SCA services using ModuleContext. The service delegates receive SOAP requests from the BPEL process, perform necessary transformations and encapsulate the request data in HTTP request which is forwarded to the web applications. In turn, the service delegates can receive HTTP responses from the web applications through the HTTP WSDL binding [5], and the results is transformed and encapsulated in SOAP messages which is sent back to the BPEL process. This reuse pattern provides a paradigm for the less powerful BPEL servers to communicate with the SCA services, and is well consistent with the current SCA client models specified in [2].

5 Related Work Web Services are loose-coupled and intended to be reused in different applications. In [12], an Automated Information Router (AIR) is introduced to communicate with clients using different protocols through data format conversions. The service integration within AIR is made using

data-flow paradigm to route information and adapters that translate service specific data to a common representation using XML. In [13], the plug-and-play considerations about the service reusing is investigated, and an architecture based on stateless services and statefull messages is introduced. Within the architecture, the context (state) of the interaction is described with the Document Flow Model (DFM) and stored in the exchanged messages. The stateless services are capable of establishing the interaction context from the state information incorporated in the messages, and thus can easily be replaced or hotswapped. In our reusing patterns, WSIF is utilized to provide agnostic binding capability in order that different protocols are isolated from the business logic and can effectively be supported; the state scope of the interactions are specified by the scope of the service interface, and the conversation states are maintained by containers. As a mechanism of defining message format and recording conversation state, DFM can also be utilized in our patterns to support the hotswapping of the service components. Also, Cesare Pautasso and Gustavo Alonso present a different perspective on how to reuse web service compositions in [14]. The flexible binding is introduced to describe the relationship between a composition and its components; the blacklist and whitelist are used for evaluating the bindings; and reflection is used to expose the binding and registry services in the composition languages. In the reusing patterns specified in Section 4.2, available services are firstly assembled with the SCA Assembly Model to obtain a service providing the functions required by the BPEL process; then the obtained service is integrated into the process. Compared with the flexible binding approach, our reusing patterns handle the service integration tasks at two levels: the higher BPEL orchestration level and the lower service components assembly level. This improves the flexibility and reliability of the compositions. Further, the flexible binding can be utilized at the lower level to determine the services to be assembled.

6 Conclusion In this paper, we have presented several service reuse patterns through the combination of BPEL and SCA. Although both BPEL and SCA aims at integrating and reusing the available services, they achieve the goals in different paradigms. BPEL is a business process modeling language that reuses the services in the orchestration style, while SCA a service programming model that produces new services by assembling the existing service components. The agnostic service binding capability and the flexible assembly model are the most attractive features incorporated in SCA. With such features, various software components, such as EJB, BPEL and JCA, can be integrated in the BPEL process

and assembled to provide the desired functionalities. Consequently, a required BPEL partner service can be derived through assembling the service components if a single qualified service is not available. In this way, the flexibility of the integration is improved through the combination of BPEL and SCA, and useful reusing patterns are also produced depending on different SCA servers. We believe this is one of the earliest papers that deliver in-depth discussions about relationships between BPEL and SCA, and further the service reusing patterns through their combination. However, only a few SCA client models are specified in [2], which imposes too many restrictions on the possible reusing patterns. It is expected that a rich set of client models are supported in the future versions of the SCA specifications. Besides, the dynamic service binding is an important issue when integrating the available services, and lots of attentions and discussions have been taken to it. Our future efforts will also be made to further investigate the dynamic service binding issue in our service reusing patterns.

Acknowledgment This research is supported by the NSFC (National Natural Science Foundation of China) Grant No. 60373103 and 60433010, the SRFDP (Specialized Research Fund for the Doctoral Program of Higher Education) Grant 20030701015.

References [1] IBM, SAP, Oracle, BEA, Sybase, Siebel Systems, etc.: SCA Assembly Model Specification, http://www128.ibm.com/developerworks/library/specification/ws-sca/ [2] IBM, SAP, Oracle, BEA, Sybase, Siebel Systems, etc.: SCA Client and Implementation Model Specification for Java, http://www128.ibm.com/developerworks/library/specification/ws-sca/ [3] BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, Sybase: SCA White Paper, Building Systems using a Service Oriented Architecture, http://download.boulder.ibm.com/ibmdl/pub/software/dw/spe cs/ws-sca/SCA White Paper1 09.pdf [4] BEA Systems, IBM, Microsoft: Business Process Execution Language for Web Services, Version 1.1. IBM developerWorks (2003). Available from http://www128.ibm.com/developerworks/library/specification/ws-bpel/ [5] W3C: WSDL specification, http://www.w3.org/TR/wsdl [6] Apache Software Foundation: Web Services Invocation Framework, http://ws.apache.org/wsif/ [7] JCP.org: JAX-WS specification, available at http://jcp.org/en/ jsr/detail?id=101 [8] IBM developerWorks: New to SOA and Web Services, http://www-128.ibm.com/developerworks/webservices/newto/

[9] IBM developerWorks: Building SOA solutions with the Service Component Architecture, http://www128.ibm.com/developerworks/websphere/techjournal/0510 brent/0509 brent.html [10] Massimo Paolucci, Takahiro Kawamura, Terry R.Payne, and Katia Sycara: Semantic Matching of Web Services Capabilities. International Semantic Web Conference 2002: 333-347. [11] Naveen Srinivasan, Massimo Paolucci and Katia Sycara: An Efficient Algorithm for OWL-S Based Semantic Search in UDDI. First International Workshop, SWSWPC 2004. [12] Alberto Sillitti, Tullio Vernazza, Giancarlo Succi: Service Oriented Programming: A new Paradigm of Software Reuse. Software Reuse: Methods, Techniques, and Tools : 7th International Conference, ICSR-7, Austin, TX, USA, April 15-19, 2002. Proceedings [13] Peter Henderson and Jingtao Yang: Reusable Web Services. Software Reuse: Methods, Techniques and Tools: 8th International Conference, ICSR 2004, Madrid, Spain, July 5-9, 2009. Proceedings:185-194 [14] Cesare Pautasso and Gustavo Alonso: Flexible Binding for Reusable Composition of Web Services. Software Composition: 4th International Workshop, SC 2005, Edinburgh, UK, April 9, 2005. Revised Selected Papers. [15] WSIF & JSR-208: Flexible binding frameworks for today and tomorrow, http://webservices.syscon.com/read/46558.htm. [16] Active BPEL Designer, available at http://www.activeendpoints.com/products/activebpeldes/index.html. [17] Active BPEL Engine, available at http://www.activebpel.org/. [18] IBM alphaWorks: BPEL4J, http://www.alphaworks.ibm. com/tech/bpws4j [19] Apache Software Foundation: Tuscany, an open source SCA runtime, available at http://incubator.apache.org/tuscany/

[image: SELECTION AND COMBINATION OF ... - Research at Google]
SELECTION AND COMBINATION OF ... - Research at Google

[image: Combination of Trastuzumab and Radiotherapy ... - OMICS International]
Combination of Trastuzumab and Radiotherapy ... - OMICS International

[image: Comparison of Square Comparison of Square-Pixel and ... - IJRIT]
Comparison of Square Comparison of Square-Pixel and ... - IJRIT

[image: Combination of NH2OHÂ·HCl and NaIO4: a new and mild ... - Arkivoc]
Combination of NH2OHÂ·HCl and NaIO4: a new and mild ... - Arkivoc

[image: COMPARISON OF EIGENMODE BASED AND RANDOM FIELD ...]
COMPARISON OF EIGENMODE BASED AND RANDOM FIELD ...

[image: Combination of conflicting visual and non-visual ...]
Combination of conflicting visual and non-visual ...

[image: The Business Value of the Service Component Architecture (SCA) and ...]
The Business Value of the Service Component Architecture (SCA) and ...

[image: COMPARISON OF ACUTE AND DELAYED ANTIEMETIC EFFECT ...]
COMPARISON OF ACUTE AND DELAYED ANTIEMETIC EFFECT ...

[image: SCA - tgcthailand.com]
SCA - tgcthailand.com

[image: SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...]
SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...

[image: A combination of SharePoint and CRM to ensure atomic transactions ...]
A combination of SharePoint and CRM to ensure atomic transactions ...

[image: sca adesh.pdf]
sca adesh.pdf

[image: SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...]
SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...

[image: Efficiency and Equity Comparison of Cordon and Area ...]
Efficiency and Equity Comparison of Cordon and Area ...

[image: Appliance leakage current interrupter and nightlight combination]
Appliance leakage current interrupter and nightlight combination

[image: combination of statistical and rule-based approaches for spoken ...]
combination of statistical and rule-based approaches for spoken ...

[image: Cross-site Combination and Evaluation of Subword ...]
Cross-site Combination and Evaluation of Subword ...

[image: A Comparison of Issues and Advantages in Agile and Incremental ...]
A Comparison of Issues and Advantages in Agile and Incremental ...

[image: comparison and coupling of algorithms for collisions, contact and ...]
comparison and coupling of algorithms for collisions, contact and ...

Comparison and Combination of BPEL and SCA

entry points or binding specific endpoint addresses, while the targets of the wires ... http://zouzhile.googlepages.com/webservices, including source code, as-.

 Download PDF

 1015KB Sizes
 2 Downloads
 316 Views

 Report

Recommend Documents

[image: alt]

SELECTION AND COMBINATION OF ... - Research at Google

Columbia University, Computer Science Department, New York. â€ Google Inc., Languages Modeling Group, New York. ABSTRACT. While research has often ...

[image: alt]

Combination of Trastuzumab and Radiotherapy ... - OMICS International

Feb 28, 2018 - Overall Survival (OS) [1]. Many clinical trials and meta-analyzes have standardized the use of anthracyclines and Taxanes in the adjuvant.

[image: alt]

Comparison of Square Comparison of Square-Pixel and ... - IJRIT

Square pixels became the norm because there needed to be an industry standard to avoid compatibility issues over Euclidean Spaces'. Information and ...

[image: alt]

Combination of NH2OHÂ·HCl and NaIO4: a new and mild ... - Arkivoc

reactions1 as well as the carbon-metal atom bond formation such as Grignard's reagent,2-5 Chalcone containing electron donating â€“OMe group on the.

[image: alt]

COMPARISON OF EIGENMODE BASED AND RANDOM FIELD ...

Dec 16, 2012 - assume that the failure of the beam occurs at a deformation state, which is purely elastic, and no plasticity and residual stress effects are taken into account during the simulation. For a more involved computational model that takes

[image: alt]

Combination of conflicting visual and non-visual ...

non-linearity were detected when the data corresponding to the day on which a big amplitude error (in absolute value) could be ... Individual data analysis.

[image: alt]

The Business Value of the Service Component Architecture (SCA) and ...

9 Nov 2005 - The presentation, distribution or other dissemination of the information contained in this document is not a license, either express or ... United States, other countries, or both. Java and all Java-based platform and programming la

[image: alt]

COMPARISON OF ACUTE AND DELAYED ANTIEMETIC EFFECT ...

COMPARISON OF ACUTE AND DELAYED ANTIEMETIC EFFECT AND THE.pdf. COMPARISON OF ACUTE AND DELAYED ANTIEMETIC EFFECT AND THE.

[image: alt]

SCA - tgcthailand.com

IBM 6 platform and programming language neutrality in the composite applications which are built using SCA. A developer can focus on assembling composite applications and business goals rather than on the underlying implementation and infrastructure

[image: alt]

SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...

paper we propose low cost devices that give information precise enough to use in ... preliminary design, create concept, layout and master plan, but the accuracy.

[image: alt]

A combination of SharePoint and CRM to ensure atomic transactions ...

structured Data. Social. Engagement & ... Data. Interactions,. Activities &. Tasks. Information. Generation &. Analytics. Formalized ... One of the big benefits is to ...

[image: alt]

sca adesh.pdf

Sign in. Page. 1. /. 2. Loadingâ€¦ Page 1 of 2. Page 1 of 2. Page 2 of 2. Page 2 of 2. sca adesh.pdf. sca adesh.pdf. Open. Extract. Open with. Sign In. Main menu.

[image: alt]

SITE MEASUREMENT WITH COMBINATION OF POCKET PC AND ...

In present day, GPS technology presents various tools to use in survey. However, a high ... results of site information for many purposes, such as on-site meeting,.

[image: alt]

Efficiency and Equity Comparison of Cordon and Area ...

boundaries surround the city centre of Utsunomiya which can be considered as natural alternatives for ... The master data from the Utsunomiya 1992 PT survey.

[image: alt]

Appliance leakage current interrupter and nightlight combination

Apr 23, 2003 - ?cation/Data Sheet for RV4145A Integrated Circuit, Fairchild. (21) Appl. ... Powering an appliance includes an ALCI Plug having a. 361/45 78.

[image: alt]

combination of statistical and rule-based approaches for spoken ...

... Frey* and Leon Wong. Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA ... Applications of task classification include call routing and information International Conference on Speech and Language. Processing ...

[image: alt]

Cross-site Combination and Evaluation of Subword ...

Subword Spoken Term Detection Systems with uncertainty inherent to 1-best decoding. alarms, and are often not able to perform at false alarm rates.

[image: alt]

A Comparison of Issues and Advantages in Agile and Incremental ...

Mar 10, 2009 - The incremental and agile model used at the company is a selection of agile ... vated teams developing software in three month projects. (time-boxing) provide us with concise descriptions for each of the factors. â€¢ Benefit ...

[image: alt]

comparison and coupling of algorithms for collisions, contact and ...

Jun 8, 2006 - of the more complex one: the problem have often a large number of ... allow in the case of three-dimensional frictional contact problems to ...

×
Report Comparison and Combination of BPEL and SCA

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

