Design of Optimal Quantizers for Distributed Source Coding David Rebollo-Monedero, Rui Zhang and Bernd Girod

Information Systems Lab Dept. of Electrical Eng. Stanford University

25 Mar 03

Outline „ Theory

of optimal quantizer design

y Coding schemes y Optimality conditions and Lloyd algorithm „ Experiments

y Gaussian scalar asymmetric case y Distortion and rate-distortion optimized design

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

2

Motivation Low-cost sensor network Remote Sensor

Remote Sensor

Central Unit

Side Information

Local Sensor

Remote Sensor

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

3

Quantization Design Problem Sender 1 Quantization

Receiver Coding

Reconstruction

X1

q1(x1)

Q1

Encoder1

xˆ (q, y )

Decoder X2

q2(x2)

Q2

Encoder2

Sender 2

Xˆ 1

Q1

Xˆ 2

Q2

Y

Reconstructed Source Vectors

Source Vectors

Indices

Side Information

„ Given

lossless coder „ Design quantizers David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

4

State of the Art „ Heuristic,

sub-optimal design

„ Extension

of the Lloyd algorithm, network quantization

[Kusuma et al., 2001] [Muresan and Effros, 2002]

[Fleming and Effros, 2001] y Distortion-only optimized y Rates as functions of the quantization index [Fleming et al., to appear]

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

5

RD Optimized Design Quantization

Coding

Reconstruction

X1

q1(x1)

Q1

Encoder1

xˆ (q, y )

Decoder X2

q2(x2)

Q2

Encoder2

Xˆ 1

Q1

Xˆ 2

Q2

Reconstructed Source Vectors

Source Vectors

Indices

Side Information

Y

„ Rate

measure r(q,y) models coder „ Costs Lagrangian cost Distortion

Rate

J = (1 − λ ) D + λR

R = E[r (Q, Y )]

D = E[d ( X , Xˆ )]

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

6

Rate Measure

r ( q, y )

− log pQ|Y (q1 , q2 | y )

(

− log pQ1 (q1 ) pQ2 (q2 ) l1 (q1 ) + l2 (q2 ) − a log pQ1 (q1 ) − blog pQ1|Y (q1 | y )

)

R = E[r (Q, Y )]

Coding Scheme

H (Q1 , Q2 | Y )

Distributed Slepian-Wolf coding (also joint coding).

H (Q1 ) + H (Q2 )

Separate encoding, all dependencies ignored.

E[l1 (Q1 ) + l2 (Q2 )]

Specific codebook with codeword lengths li(qi).

a H (Q1 ) + b H (Q1 | Y )

Linear combinations of previous cases. More general coding characterization.

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

7

Disconnected Quantization Regions

R1 I1 x0=xinf

I2 x1

qth region Rq

RN

Ii x2

xi-1 xi ith interval

IM xM-1

x xM=xsup

„ Side

information helps distinguish source values „ Reusing intervals allows reducing distortion and entropy of quantization index

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

8

Optimal Reconstruction „ Centroid

condition in the case of quadratic distortion

measure „ Estimate source vectors given quantization indices and side information xˆ * ( q, y ) = E[ X | Q = q, Y = y ] xˆ ( q, y ) fX|Y(x|y)

y

x

Rq David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

9

Optimal Quantization „ Choose

quantization index to minimize estimated cost „ Nearest neighbor condition ∀x1

boundaries x1i of intervals correspond to intersection points of j1(x1,q1)

~ q1 * ( x1 ) = arg min j1 ( x1 , q1 ) q1

estimated cost at encoder 1

boundaries x1i, and indices q1 minimizing j1(x1,q1), define q1*(x1)

~ j1 ( x1 , q1 )

1 3

4 2

q= 1 2 3 4 1 2

x1

x11 x12 x13 x14 x15 David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

10

Estimated Cost Functions Estimated Lagrangian cost at encoder 1

~ ~ j1 ( x1 , q1 ) = (1 − λ ) d1 ( x1 , q1 ) + λ ~ r1 ( x1 , q1 )

Estimated distortion at encoder 1

~ d1 ( x1 , q1 ) = E[d (( x1 , X 2 ), xˆ ((q1 , Q2 ), Y )) | X 1 = x1 ] Estimated rate at encoder 1 distortion measure

reconstruction function

~ r1 ( x1 , q1 ) = E[r ((q1 , Q2 ), Y ) | X 1 = x1 ] rate measure

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

11

New Lloyd Algorithm Quantizer

Choose initial quantizers

Best Reconstructor Quantizer

Best Quantizer

Find best reconstructor for current quantizers

xˆ ( k ) (q, y )

Update rate measure for current quantizers

r ( k ) ( q, y )

Find cost for current quantizers, reconstructor and rate measure

Update Rate Reconstructor & Rate

(1) k = 1 qi ( xi )

k = k +1

Convergence

J (k ) Y

End

N Find best quantizers for current ( k +1) q reconstructor and rate measure i ( xi )

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

12

Experiment Setup Source Value

Quantization Index

X

Q q (x)

Reconstructed Source Value

Q Encoder

Decoder

xˆ (q, y )



Y Z „ X ~ N (0, σ

2 X 2 Z

= 1)

Side Information

Noise

„ Z ~ N (0, σ ) „ X and Z statistically independent David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

13

Optimal Quantizers „ Distortion

optimized

y J=D, λ=0 y 4 quantization indices

„ Rate-distortion

optimized

y J= (1-λ)D+λR, λ > 0 y R=H(Q|Y)

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

14

Reconstruction and Cost Functions function

„ Estimated

cost function

xˆ (q , y )

~ j1(x1,q1) j (x , q )

„ Reconstruction

y

x

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

15

RD Optimized Design, R=H(Q) „ J=(1-

22

r ( q, y ) = − log pQ (q )

σ = = 5 dB σ σ X2

„ SNR OUT

=

D

18 16

2

„ SNR IN

2 X 2 Z

Wyner-Ziv Bound Conditional Asymmetric Distributed Independent with Side Info Uniform with Side Info

20

SNR SNR = σ X/D[dB] [dB] outOUT

„

λ )D+λ R

14 12

10 8

6

0

0.5

1

1.5

2

2.5

R [bit]

R [bit]

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

16

RD Optimized Design, R=H(Q|Y) „ J=(1-

λ )D+λ R

22

− log pQ|Y (q | y )

18

„ r ( q, y )

„ SNR IN

σ = = 5 dB σ σ X2

„ SNR OUT

2 X 2 Z

=

D

SNR=OUT SNR [dB] σ 2X/D[dB] out

=

20

Wyner-Ziv Bound Conditional Asymmetric Distributed Independent with Side Info Uniform with Side Info

16

14 12

10

8

6

0

0.5

1

1.5

2

2.5

R [bit]

R [bit]

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

17

Conclusions „ Design

of entropy-constrained quantizers with Lloyd algorithm „ Coding scheme modeled by rate measure r(q,y) „ Experiments with Gaussian statistics y Nearly-uniform quantizers y When R=H(Q) (and also J=D) ` Intervals highly reused ` Improvement w.r.t. classical EC quantizer (∆SNROUT≅1 dB at SNRIN=5 dB, grows with SNRIN)

y When R=H(Q|Y) ` Performance almost identical to conditional quantizer ` Also almost identical to classical EC, reusing intervals not as important

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

18

Design of Optimal Quantizers for Distributed Source Coding David Rebollo-Monedero, Rui Zhang and Bernd Girod

Information Systems Lab Dept. of Electrical Eng. Stanford University

25 Mar 03

Optimal Rate Measure „ Rate

measure needs to be updated

y If quantizer changes, then probability of quantization index changes rate measure

r (q, y ) = − log pS |Y (q | y )

quantization indices

(q1 , q2 )

old probability of quantization indices

r * (q, y ) = − log pQ|Y (q | y ) rate measure that minimizes (expected) rate

new probability of quantization indices

y Similarly for other coding cases y When working with specific codeword lengths, a method for designing improved codes is required „ Simpler

rate measures may lead to simpler estimated rate codeword lengths functions r (q, y ) = r (q ) = l1 (q1 ) + l2 (q2 ) rate measure

~ r1 ( x1 , q1 ) = ~ r1 (q1 ) = l1 (q1 ) estimated rate function at encoder 1

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

20

Distortion Optimized Design 35

„ J=D „4

quantization indices

„ SNR OUT

σ σ σ X2

=

D

25

2

=

SNR = σ X/D [dB] SNR [dB] out OUT

„ SNR IN

2 X 2 Z

30

Wyner-Ziv Bound (Rate=2) Conditional Asymmetric Distributed Independent with Side Info Ignoring Side Info Uniform with Side Info

20

15

10

5 -10

-5

0

5

10

15

20

SNR = σ 2X/[dB] σ 2Z [dB] SNR in IN

David Rebollo et al.: Design of Optimal Quantizers for Distributed Source Coding

21

DCC03 Presentation

Mar 25, 2003 - Design of Optimal Quantizers for Distributed Source Coding. 2. Outline ... YQrER. = R. D. J λ λ +. −. = )1(. Distortion. Rate. Lagrangian cost.

168KB Sizes 2 Downloads 333 Views

Recommend Documents

No documents