

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

EFFICIENT SPEECH INDEXING AND SEARCH FOR EMBEDDED DEVICES USING UNITERMS Changxue Ma and Woojay Jeon Applied Research and Technology Center Motorola, Inc. Schaumburg, IL, U.S.A. ABSTRACT In this paper, we present an efficient method of speech indexing and search using phoneme sequences called uniterms. In the indexing stage, a collection of uniterms and uniterm sequences is extracted from the target speech database by applying statistical scoring to each data item’s phoneme lattice. In the search stage, each speech query’s phoneme lattice is used to select candidate uniterms from the collection. These uniterms are applied in a speech recognition engine to convert the speech query into a uniterm lattice, from which we obtain a set of candidate uniterm sequences, each of which can be mapped to a search result item. Not only is this method a significant improvement over previous phoneme-based methods, it is shown that explicit sequential comparison of uniterms in query and target data can be avoided using the proposed method without loss of search performance. Avoiding sequential comparison allows better handling of transposition of words, and for the case where queries have word orders different from their intended targets, the proposed method can potentially bring about significant improvement. Index Terms— speech indexing, speech search 1. INTRODUCTION Embedded devices are ever increasing in functionality and stored content, creating demand for more advanced and innovative interaction methods. Speech-based search is a natural way for people to retrieve content such as personal contacts, photos, videos, and voice mail, as well as weather forecasts, news, and device-specific commands and bookmarks. The purpose of speech search is to identify speech segments in a database that putatively match a given speech query. While one could achieve this by using automatic speech recognition (ASR) to convert speech to text and then applying text search, there is much interest in directly searching over phonemic lattice transcriptions, rather than words or sentences, in a vocabulary-independent, content-independent manner [1]. This “sememeless” method can be more appropriate for efficiently searching arbitrary, spontaneous speech containing unknown vocabulary without requiring accurate

ASR. It is ever more feasible in resource-limited embedded devices that must practically handle all sorts of names, places, and foreign terms that cannot be easily covered by a phonemic dictionary. For robust phoneme-based indexing of conversational speech, past studies have used multiple phoneme hypotheses rather than best paths to compare query with target [2, 1]. More precise comparison algorithms have also been proposed [3], but phonemic lattices still suffer from high phoneme recognition error rates as well as the loss of context information. A general method for indexing weighted automata has also been shown to give results comparative to subword methods [4]. One limitation of phoneme-based indexing and sequential matching is that it requires word sequences in queries to be more or less identical to those of their intended targets. However, a query such as “I went to San Francisco yesterday” should be regarded the same as “Yesterday, I went to San Francisco” in a practical speech search system. Recently, we showed that speech indexing and search can be made more robust by lumping phoneme sequences into more discriminative units called “uniterms,” [5]. In this paper, we exploit uniterms further by noting that they allow more flexible matching techniques which can better handle word order problems. We employ a statistical scoring method that uses local conditional probabilities between consecutive uniterms, instead of matching whole sequences via dynamic programming, thereby alleviating errors with “out-of-order” queries (word order different from intended target). With “inorder” queries (word order coincides with intended target), we show that there is no performance loss when using the proposed method. At the same time, we continue to maintain vocabulary-independence and content-independence because the uniterms are data driven. Our method is also computationally efficient and therefore suitable for application in embedded devices. 2. UNITERM-BASED INDEXING The first step in the proposed method is to extract a set of uniterms and uniterm sequences from the target database.

e

c b

a

a

c

:

Uniterm sequence set St

b

p (x1 , · · · , xM | L) = c

b

f

Target database AB CA :

b

a

1 : t : T

b

≈

:

Uniterm set Ut

Fig. 1. Schematic of data indexing process. For the t-th target data item, a phoneme recognizer generates a phoneme (lowercase letters) lattice, from which a set Ut of uniterms (uppercase letters) is extracted. Uniterms with high scores are used to create a set St of uniterm sequences. U1 , · · · , UT and S1 , · · · , ST are consolidated into uniterm set U and uniterm sequence set S, respectively. “×” represents arbitrary scores.

Fig.1 shows the overall stages. From each speech recording item in the database, a phoneme lattice is created using an automatic speech recognizer with a phoneme loop grammar. From all paths in the lattice, all possible phoneme sequences of a fixed length (3 in the example) are extracted to create a list of uniterms. While a large number of phoneme strings can be extracted from a typical phoneme lattice, many can be erroneous or have little discriminative information. To extract those that are reliable, we apply a simple method of statistical scoring to find the strings that occur most frequently. To extract those that are discriminative, we make each uniterm long enough to contain a sufficient number of phonemes. For a uniterm u = (x1 , x2 , · · · , xM) consisting of M phonemes x1 , x2 , · · · , xM , we define a score representing how likely the uniterm lies in a given phoneme lattice L, as 1 log p (x1 , · · · , xM | L) + f (M) M

M Y

p (xi | xi−N +1 , · · · , xi−1 , L)

(2)

i=1

Uniterm set U, uniterm sequence set S

S(u) =

p (xi | x1 , · · · , xi−1 , L)

i=1

c a Phoneme lattice for item t A (a b a) B (b a c) C (c b c) :

M Y

(1)

The conditional probability represents how likely the phoneme string x1 , · · · , xM occurs in phoneme lattice L, and the log probability is divided by M to normalize for length. A heuristic function f (M) is also added to penalize short strings because longer strings are seen to be more discriminative. For example, f (M) = b log (M) where b = 0.02. Since it is hard to estimate the conditional probability in (1), we approximate it using N -gram probabilities:

The N -gram conditional probability p(xi | xi−N +1 , · · · , xi−1 , L) represents the probability of a phoneme occurring given N − 1 previously seen phonemes in L. Setting N = M would yield the most accurate computation of (2), but it is hard to reliably estimate the probabilities for large values of N , so we use some lower value. The simplest case of N = 1 uses only unigrams p (xi | L), while higher values can use more context via bigrams (N = 2), p (xi | xi−1 , L), or trigrams (N = 3), p (xi | xi−1 , xi−2 , L). The N -gram probabilities are estimated by counting the occurrence of phoneme sequences in all possible paths in L. To compensate for data sparsity, smoothing techniques are used to improve the measurements. For example, p (xi |xi−1 , xi−2) = αˆ p (xi |xi−1 , xi−2) + β pˆ (xi |xi−1) + γ pˆ (xi) + ε

(3)

where α, β, γ, and ε are empirical constants under the constraint α + β + γ + ε = 1. After keeping only those uniterms that exceed some score threshold, a set of uniterm sequences is obtained by substituting uniterms for the paths in the phoneme lattice. The uniterms and uniterm sequences extracted from all data items are consolidated into a universal uniterm set U and uniterm sequence set S. An inverted index ensures that each item in S can be mapped to one or more target data items that contain the uniterm sequence. 3. UNITERM-BASED SEARCH 3.1. Selection of uniterms from a phoneme lattice We now show how a search query is processed and matched against the target database. Fig.2 shows the overall search process. As we did for the target data items, a phoneme recognizer is used to convert a speech query into a phoneme lattice. Using the lattice, an initial set of uniterms L1 is selected from the universal uniterm set U by scoring each uniterm according to the N -gram method described in Sec.2 and retaining only those uniterms whose scores exceed some threshold. In the next stage, the set of uniterms extracted from the previous step in Sec.3.1 is further refined. Phoneme-level dynamic programming is used to measure the similarity between each uniterm and the best path of the phoneme lattice from which it was derived. Since each uniterm constitutes only a subset of the phoneme lattice, there will be insertion errors be-

e

c ASR Engine Phoneme loop

a

a b

c

c b

c

a b

f

c b

Speech query

A (a b a) D (a b f) B (b a c) C (c b c) :

b

b

E

C ASR Engine Uniterm loop

D C

A A

A

Uniterm lattice

CA DAC CEC :

C

:

Initial uniterm set L1 ⊂ U

Phoneme lattice

A

A D C :

 :

Refined uniterm set L2 ⊂ U

Search Results

:

Uniterm sequence set L 3 ⊂ S

fore or after the uniterm. If all uniterms are the same length, however, this becomes a constant bias that can be ignored. Phoneme duration and score (log of the phoneme’s conditional probability) are incorporated in the calculation of the cost function for the dynamic programming. The cost V of a path from the start node at time t0 to end node at time t1 is V =

X

l (k, t0 , t1)

(4)

k

where l (k, t0 , t1) denotes the cost function of the k-th edge (phoneme) in the path, defined as sk · const a (equal) (t1 − t0) · const b (substitution) l (k, t0 , t1) = max (insertion) const c const c (deletion) (5) Here, sk is the score of the kth phoneme and const a, const b, and const c are empirical scaling factors. In our experiments, we choose 1/5, -100, and -3000, respectively. Higher cost indicates greater similarity. 3.2. Fine search using uniterm lattices In the final stage, a variety of search strategies are possible using the refined list of candidate uniterms and scores. The list itself may already be considered a “coarse search” result, and an inverted index can be used to retrieve the database items containing the uniterms with high scores. A more effective method is to apply speech recognition once again to the utterance, but this time using the selected uniterms as components of a loop grammar to obtain a uniterm lattice L′ . Using L′ , we can select a set of uniterm sequences from the universal

Top 20 Inclusion Rate

Fig. 2. Schematic of data search process. Using the query phoneme lattice, a set of uniterms is selected from the universal set U via statistical scoring and then refined via dynamic programming. The set of uniterms L2 is used with the ASR engine to obtain a uniterm lattice, which is then used to select a set L3 of uniterm sequences from the universal set S. Each sequence can be mapped to one or more target database items to obtain the final search results. The lattices in the figure are arbitrary examples.

72 70 68 66

6

7 8 9 10 Uniterm Length (Number of Phonemes)

Fig. 3. Inclusion rate (recall) of coarse search for n = 20 in equation (6) as a function of phoneme string length set S by computing smoothed trigram conditional probabilities p (ui | ui−1 , ui−2 , L′) in a manner similar to Sec.2, where ui is a uniterm. Since each uniterm sequence can be immediately mapped to one or more target data items that contain the sequence, the sequences with high scores give us our final “fine search” results. 4. EXPERIMENT AND DISCUSSION We use the ETSI advanced frontend standard for distributed speech recognition, which generates feature vectors of 39 dimensions per frame (12 MFCC plus energy, delta, and acceleration coefficients). The speech recognizer is MLite++, a Motorola proprietary HMM-based ASR engine for embedded platforms. The engine uses both context-independent (CI) and context-dependent (CD) subword HMMs trained on a large speaker-independent American English database. From each utterance, around 50 uniterms, each with a fixed length

Inclusion Rate (Recall)

100 90 80 70 Previous Phoneme−Based Method Previous Uniterm−Based Method Proposed Uniterm−Based Method

60 50

0

10

20 30 40 Number of Search Results

50

or 6 phonemes) because partial matches are possible when performing uniterm recognition in the fine search stage. Fig.4 shows the inclusion rate for varying values of n and fixed uniterm length. Consistent with previous findings [5], the uniterm-based methods perform significantly better than the phoneme-based method. We also see that there is no degradation of performance when we apply the proposed method in this experiment, where the word order of queries are consistent with those of the intended targets, compared to the previous uniterm-based method that relied on explicit sequential matching via dynamic programming. At the same time, preliminary experiments using queries with out-of-order words have indicated a significant increase in performance when using the proposed method. 5. CONCLUSION AND FUTURE WORK

Fig. 4. Results of fine search (with “in-order” queries) for varying number of search results n in equation (6). The proposed unitem-based method has similar performance compared to the previous uniterm-based method and significantly better performance than the phoneme-based method. of 8 phonemes, are extracted. Experiments were carried out on an audio database consisting of 1,156 utterances from six speakers. The content text is chosen from a wide range of song titles. For each utterance in the database, two to three other utterances have identical content but are from different speakers. The system performance is measured by how well the system, given an utterance from the database as a query, can match this utterance to the other utterances with identical content. The experimental setup conducted for this paper was identical to that of the previous study [5], with the word orders of queries coinciding with the word orders of intended targets. The inclusion rate (recall rate) is defined as Inclusion Rate =

T Pn T P n + F Nn

(6)

where T Pn stands for the number of true positives, F Nn stands for the number of false negatives, and n denotes the number of search results returned. Fig.3 shows the inclusion rate for the coarse search with varying uniterm length and n = 20. As previously mentioned[5], long uniterms (like long queries in text search) can provide more discriminative power in general, but can also cause relevant results to be missed: first, because they can make the system more vulnerable to phoneme recognition errors, and second, because they can become too narrow in scope and do not generalize well. In Fig.3, the performance improves linearly from length 6 to 8, but plateaus around 9 and 10 for our test data set. For even longer lengths, we expect the performance to drop. Also note that uniterms do not necessarily need to be shorter than the average word (5

In this paper we presented a speech indexing and search scheme for the fast retrieval of speech segments on embedded devices using phoneme sequences called uniterms. By using uniterms, we showed that speech search performance can be significantly improved over previous phoneme-based methods. Furthermore, by applying a combination of dynamic programming and statistical scoring, we showed that explicit sequential comparison of subword lattice paths via dynamic programming can be avoided without loss of search performance. This is encouraging because for the case where speech queries contain word orders different from their intended targets, this will make the new matching method significantly more effective. Extensive experimental results for this case scenario will be reported in the future. 6. REFERENCES [1] D. A. James and S. J. Young, “A fast lattice-based approach to vocabulary independent wordspotting,” in IEEE Int. Conf. Acoust., Speech. Signal Processing, 1994. [2] K. Ng and V. W. Zue, “Subword-based approaches for spoken document retrieval,” Speech Communication, vol. 32, no. 3, pp. 157–186, 2000. [3] O. Siohan and M. Bacchiani, “Fast vocabularyindependent audio search using path-based graph index,” in Proc. INTERSPEECH, 2005. [4] C. Allauzen, M. Mohri, and M. Saraclar, “General indexation of weighted automata – application to spoken utterance retrieval,” in Proc. HLT/NAACL, 2004, pp. 33– 40. [5] C. Ma, “Uniterm voice indexing and search for mobile devices,” in IEEE Int. Workshop on Multimedia Analysis and Proc., 2008.

[image: Efficient Indexing for Large Scale Visual Search]
Efficient Indexing for Large Scale Visual Search

[image: Distributed Indexing for Semantic Search - Semantic Web]
Distributed Indexing for Semantic Search - Semantic Web

[image: Position Specific Posterior Lattices for Indexing Speech]
Position Specific Posterior Lattices for Indexing Speech

[image: Efficient DES Key Search]
Efficient DES Key Search

[image: A Space-Efficient Indexing Algorithm for Boolean Query Processing]
A Space-Efficient Indexing Algorithm for Boolean Query Processing

[image: A Space-Efficient Indexing Algorithm for Boolean Query ...]
A Space-Efficient Indexing Algorithm for Boolean Query ...

[image: Lattice Indexing For Large-Scale Web-Search ...]
Lattice Indexing For Large-Scale Web-Search ...

[image: efficient model-based speech separation and denoising ...]
efficient model-based speech separation and denoising ...

[image: Efficient Local Histogram Searching via Bitmap Indexing]
Efficient Local Histogram Searching via Bitmap Indexing

[image: LigHT: A Query-Efficient yet Low-Maintenance Indexing ...]
LigHT: A Query-Efficient yet Low-Maintenance Indexing ...

[image: Full-Text Indexing and Search for Go 10 July 2015 - GitHub]
Full-Text Indexing and Search for Go 10 July 2015 - GitHub

[image: Efficient Search for Interactive Statistical Machine ... - Semantic Scholar]
Efficient Search for Interactive Statistical Machine ... - Semantic Scholar

[image: Energy Efficient Expanding Ring Search for Route ...]
Energy Efficient Expanding Ring Search for Route ...

[image: Grid-based Local Feature Bundling for Efficient Object Search]
Grid-based Local Feature Bundling for Efficient Object Search

[image: An Efficient Pseudocodeword Search Algorithm for ...]
An Efficient Pseudocodeword Search Algorithm for ...

[image: Efficient Ranking in Sponsored Search]
Efficient Ranking in Sponsored Search

[image: A Regularized Line Search Tunneling for Efficient Neural Network ...]
A Regularized Line Search Tunneling for Efficient Neural Network ...

[image: Efficient Search for Interactive Statistical Machine ...]
Efficient Search for Interactive Statistical Machine ...

[image: Enabling And Secure Efficient Ranked Keyword Search Over ...]
Enabling And Secure Efficient Ranked Keyword Search Over ...

[image: Efficient and Effective Similarity Search over Probabilistic Data ...]
Efficient and Effective Similarity Search over Probabilistic Data ...

EFFICIENT SPEECH INDEXING AND SEARCH FOR ...

photos, videos, and voice mail, as well as weather forecasts, news, and device-specific commands and bookmarks. The purpose of speech search is to identify ...

 Download PDF

 70KB Sizes
 2 Downloads
 247 Views

 Report

Recommend Documents

[image: alt]

Efficient Indexing for Large Scale Visual Search

local feature-based image retrieval systems, â€œbag of visual termsâ€� (BOV) model is ... with the same data structure, and answer a query in a few milliseconds [2].

[image: alt]

Distributed Indexing for Semantic Search - Semantic Web

Apr 26, 2010 - 3. INDEXING RDF DATA. The index structures that need to be built for any par- ticular search ... simplicity, we will call this a horizontal index on the basis that RDF ... a way to implement a secondary sort on values by rewriting.

[image: alt]

Position Specific Posterior Lattices for Indexing Speech

Probably the most widespread text retrieval model is ... and MODELING occur next to each other or not in ... formation is available: anchor text, as well as other.

[image: alt]

Efficient DES Key Search

operation for a small penalty in running time. The issues of development ... cost of the machine and the time required to find a DES key. There are no plans to ...

[image: alt]

A Space-Efficient Indexing Algorithm for Boolean Query Processing

index are 16.4% on DBLP, 26.8% on TREC, and 39.2% on ENRON. We evaluated the query processing time with varying numbers of tokens in a query.

[image: alt]

A Space-Efficient Indexing Algorithm for Boolean Query ...

lapping and redundant. In this paper, we propose a novel approach that reduces the size of inverted lists while retaining time-efficiency. Our solution is based ... corresponding inverted lists; each lists contains an sorted array of document ... doc

[image: alt]

Lattice Indexing For Large-Scale Web-Search ...

Results are presented for three types of typi- cal web audio ... dio or video file, while ignoring the actual audio content. This paper is ... of storage space. (Chelba ...

[image: alt]

efficient model-based speech separation and denoising ...

sults fall short of those achieved by Algonquin [3], a state-of-the-art mixture-model based method, but considering that NSA runs an or- der of magnitude faster, It bears noting that the Probabilistic Sparse Non-negative matrix Fac- torization (

[image: alt]

Efficient Local Histogram Searching via Bitmap Indexing

For exam- ple, the integral histogram proposed by Porikli [Por05] is We call this voting scheme as local deposit and apply it on the active Plume is the Solar Plume simulation for thermal downflow ... Center for Atmospheric Research.

[image: alt]

LigHT: A Query-Efficient yet Low-Maintenance Indexing ...

for indexing unbounded data domains and a double-naming strategy for improving As the name implies, the space partition tree (or simply partition tree for short) In case of mild peer failures, DHTs can guarantee data availability through.

[image: alt]

Full-Text Indexing and Search for Go 10 July 2015 - GitHub

Jul 10, 2015 - All major bleve operations mapped. Assume JSON document bodies. See bleve-explorer sample app https://github.com/blevesearch/bleve- ...

[image: alt]

Efficient Search for Interactive Statistical Machine ... - Semantic Scholar

Efficient Search for Interactive Statistical Machine Translation. Franz Josef Och ... Current machine translation technology is not able run on a small computer.

[image: alt]

Energy Efficient Expanding Ring Search for Route ...

work of user devices that are connected by wireless links in infrastructure-less situation. ... disadvantages that need to be alleviated in order to get better results.

[image: alt]

Grid-based Local Feature Bundling for Efficient Object Search

ratios, in practice we fix the grid size when dividing up the images. We test 4 different grid sizes IEEE. Conf. on Computer Vision and Pattern Recognition, 2007.

[image: alt]

An Efficient Pseudocodeword Search Algorithm for ...

next step. The iterations converge rapidly to a pseudocodeword neighboring the zero codeword ever our working conjecture is that the right-hand side (RHS).

[image: alt]

Efficient Ranking in Sponsored Search

Sponsored search is today considered one of the most effective marketing vehicles available ... search market. pooling in multilevel (hierarchical) models.

[image: alt]

A Regularized Line Search Tunneling for Efficient Neural Network ...

Efficient Neural Network Learning. Dae-Won Lee, Hyung-Jun Choi, and Jaewook Lee. Department of Industrial Engineering,. Pohang University of Science and ...

[image: alt]

Efficient Search for Interactive Statistical Machine ...

Efficient Search for Interactive Statistical Machine Translation. Franz Josef The domain of this corpus is ... have been made available by the Linguistic Data.

[image: alt]

Enabling And Secure Efficient Ranked Keyword Search Over ...

... searchable encryption, order-preserving mapping, confidential data, cloud computing. âœ¦ ... management, universal data access with independent Enabling And Secure Efficient Ranked Keyword Search Over Outsourced Cloud Data.pdf.

[image: alt]

Efficient and Effective Similarity Search over Probabilistic Data ...

To define Earth Mover's Distance, a metric distance dij on object domain D must be provided Management of probabilistic data: foundations and challenges.

×
Report EFFICIENT SPEECH INDEXING AND SEARCH FOR ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

