

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Evolution of TCP’s Initial Window Size Runa Barik

Dinil Mon Divakaran

School of Computing and Electrical Engineering Indian Institute of Technology Mandi, Mandi, India Email:

Department of Electrical and Computer Engineering National University of Singapore, Singapore Email:

Abstract—Recognizing the upper bound of TCP initial window (IW) size—four segments—too small, researchers have been proposing to increase this. In this context, we observed that given the mice-elephant phenomenon, small flows benefit more from larger IW-size than large flows. This work proposes a simple but effective function to set IW-size for each flow, and investigates a scenario where the decentralized nature of Internet may enforce users to strategically choose right value for some parameter V in function, for improving performance of flows. We develop an evolutionary non-cooperative game-theoretic model to evaluate equilibria points and evolutionary stable strategy that are reached by users. Our game-theoretic results reveal that, there exists an optimal value for V for which small flows achieve better performance. Further our experiments on a testbed confirm that the performance attained by small flows using the proposed function is considerably improved, while not affecting the performance of large flows. Index Terms—TCP, initial window, mice, evolutionary game, response time

I. I NTRODUCTION The transmission control protocol TCP carries nearly 90% of the Internet traffic volume [7]. The stability and efficiency of standard TCP congestion control algorithms have been extensively studied by the research community. Normally, a TCP connection tries to reach the end-to-end available bandwidth without overwhelming the network, during the slow-start phase. However, as the speed of today’s networks as well as the average web content increase, TCP’s slow-start may result in inefficient use of bandwidth. There have been proposals for changing the slow-start algorithm itself, but our focus in this context is on the initial window (IW) size. IW-size influences the completion times of flows, as a higher value can lead to lesser time (and vice-versa), in number of rounds, to converge to the right window-size. For more than a decade now, the upper bound for the value of IW-size is ‘min (4*MSS, max (2*MSS, 4380 bytes))’ which corresponds to three times the maximum segment size (MSS) in Ethernet LANs [3]. Our interest in TCP’s IW-size comes in the light of the mice-elephant phenomenon—80% of flows with small sizes (small flows) in number contribute to only 20% of traffic in volume, and the remaining 20% flows that are large in sizes, called elephant flows, contribute to 80% of traffic volume. As users expect very short response times for small flows (termed as mice flows) such as HTTP queries, web searches, tweets, Facebook updates, etc., we find it motivating to study the response times of small flows in the context of TCP’s IW-size.

Many research works have come up with proposals for improving the response times of small flows by preferentially treating them, either by router-centric approaches [4], [8]– [10], [16], or by end-host-based approaches which include mostly TCP variants [12]–[14], [17], [20], [21]. Most of the router-centric approaches use priority-scheduling algorithms and buffer management (AQM) policies for giving priority to small flows both in time and space respectively. The scheduling algorithms use information of ongoing flow-sizes for queueing incoming packets to queues of different priorities; while AQM policies use different strategies for dropping incoming packets. For these types of approaches, scalability becomes a serious issue. The readers can refer to [8] for a survey on size-based solutions to improve the response times of small flows. However, the TCP variants adapt proper values to the parameters in the protocol itself, either prior to or during the life time of the flows. Here, we focused on improving the response times of the large number of small flows in the Internet in the context of TCP’s IW-size. We observe that the small value of IW-size hurts the response times1 of small flows, as such flows most often complete in the slow-start phase, within a few RTTs (round triptimes). An increase (decrease) in the number of round-trips by a value as small as one, can increase (decrease) the completion times of small flows many-fold; while this is not so for large flows (flows with large sizes). Recently, Google proposed a value of at least 10 segments for IW-size, and investigated for standardization of the same [12]. Google also submitted an Internet-draft [11], proposing IWsize of 10 segments to make it a default value in the Internet hosts. They studied the performance of web traffic with larger IW-sizes, and showed that the response times of flows are significantly decreased with an IW-size of 10, though with a little negative impact on retransmission rate. An algorithm for automating IW-size of TCP connections, based on the statistics of IW-losses of previous connections, is proposed in [19]. The algorithm updates the IW-size based on the number of losses observed for the IW segments in the previous 1000 connections, such that the IW-size is increased if the fraction of losses is below a threshold, and decreased otherwise. Observe that this algorithm will set a single IW-size for a large number of consecutive connections. Our previous work was the initial study that focused on how 1 We

often use the term ‘completion time’ to refer to ‘response time’.

a single IW-size for all flows affects various important metrics correlated to the performance of flows in a network, and in particular, on the small TCP flows [5]. We made two important observations: (i) large IW-size has a negligible effect on the response times of large flows, and (ii), a single constant value of IW-size for all flows improves performance with respect to some metrics (including the mean completion time), but it does so by affecting other metrics such as the number of time-outs and retransmission rate. Noting large IW-size of large flows being one of the causes for the degradation, we concluded that a single IW-size for all flows is not advisable. Given these observations, we focused on improving the response times of the large number of small flows in a network, and came up with a function that sets the IW-size of a flow based on its size. However, the proposed function depends on a number of dependent parameters, making it complex for analysis and deployment. Currently the congestion window adapted by the standard TCP is independent of flow-size. However, authors of [21] and [20] have proposed new versions of TCP called TCP Vienna and TCP/SPAND respectively, employing flow-size based congestion control to improve the response times of small flows. The motivation for TCP Vienna is to minimize the unfairness against the small flows; and hence, the authors adapt the TCP parameters as a function of flow-size. Similarly TCP/SPAND is an extension to standard TCP in which the protocol enters congestion avoidance phase by avoiding slowstart penalty. For the same, the initial ssthresh is set to IWsize; and the optimal value of IW-size depends on flow-size and network state informations. In this paper, we propose a simple but effective function, straightforward to implement, that determines the value of IWsize for each connection. The proposed IW function depends on the flow-size, and two other parameters: (i) a threshold distinguishing small flows from large flows, and (ii) the maximum IW-size of a connection, V. The decentralized nature of the Internet may enforce the users to strategically choose the right value for V for improving the performance of the flows. Note that the users compete for a better performance, and decisions made by a user can affect the performance of all other users. This leads to a dynamic scenario where users constantly interact and choose the right value for V based on performance they obtain. Here we are interested on the equilibrium points of the dynamics. From the game theory perspective, we find this as a strategic interaction among the flows in a large population of flows, for deciding the best response strategy for a given current population profile. Our contributions in this work are the following. We propose a new function to set the IW-size of a flow, in the next section. We proceed to perform two kinds of analyses. First, in Section III, we model the dynamic scenario of different users using different values for V , under the framework of evolutionary non-cooperative game, and study the existence and stability of the equilibrium points. Therein, we show that the game has a unique evolutionary stable strategy (ESS),

revealing that, there exists an optimal value for V for which small flows achieve better performance than with other values. Using our proposed model, we demonstrate numerically several interesting properties of the ESS under consideration of some relevant flow-size distributions. Second, through experiments on real testbed, described in Section IV, we evaluate the performance of flows attained using the function for various values of V . We then compare the results with that attained when all flows use a constant IW-size (as proposed in other works until now). II. I NITIAL W INDOW (IW) AS A FUNCTION Intuitively, a function that determines IW-size of each flow based on its size can lead to better performance of small flows [20]. The key idea is, larger the flow-size, smaller the IW-size. A lower bound for such an IW function can be the current standard for IW-size. We consider a weighted function for determining the IW-size (in number of TCP segments) of a flow (TCP connection). For a flow of size s packets2 , define the IW function, V s≤θ (1) IW (s) = b θs × V + (1 − θs) × IWmin c s > θ, where θ is the flow-size threshold used to distinguish between large flows and the rest, IWmin is the lower bound (four segments, currently), and V ≥ IWmin is the maximum IWsize that any connection can have. The parameters θ, IWmin , and V are in number of TCP segments. Observe that, while small flows, defined by the threshold θ, will have IW-sizes as large as V ; flows with size greater than θ will have IW-sizes closer to IWmin with increasing size. We make an important assumption that, flows will be able to know their sizes before the transfer begins. While this is true for many applications, for example, an HTTP query, a file transfer etc., there are also applications for which the flow-sizes can not be known in advance, for example, a streaming video. We assume the flows whose sizes can not be known in advance are usually large flows, and hence, the IW-size of such flows can be set to IWmin . Besides, we view this function as an incentive for small flows (basically the applications generating small flows) to reveal their sizes. In future, we plan to work on explicit cases involving a mix of flows that know their sizes (in advance) and those that do not. The next question is, “What is the right value for V ?”. Users (systems) using different values of V can face different performance based on the dynamic interaction of flows from different users. In the next section, through game-theoretic analysis, we study on how the different values of V affect the performance of small flows. III. E VOLUTIONARY G AME -T HEORETIC A NALYSIS This section analyzes the evolution of the populations using various values for V (the maximum IW-size of a connection) in 2 Strictly speaking, flow-sizes and IW-size at TCP layer are in segments, but we use the more general term, packets, at times.

time. First we formulate the utility function (in Sec. III-A), then solve for the equilibrium points using replicator dynamics (in Sec. III-B). We find a unique ESS where the evolution stabilizes (in Sec. III-C), and study the effects of a weighted parameter (λ) in the utility function on ESS (in Sec. III-D). We finally analyze with some specific values for V like 4, 10, 16, 32, and 64 to study on how the nature of V affects the performance of small flows. Large flows in the Internet usually form the background traffic, consuming a large part of link capacity; we assume them to be stationary. Hence, the focus in this section is only on small flows. We can also safely assume that small flows complete in slow-start phase in case of no packet losses. Further assumptions made are the following: 1) Flows with sizes less than θ follow bounded Exponential distribution with mean set to µ segments [2]. The probability that a flow has size s is given by, p(s) = e

1 s 1 −µ µe 1 1 ,1 −µ −µ θ

−e

≤ s ≤ θ,

(2)

Let the V be set to Vˆ ; i.e., a flow starts with IW-size as ˆ V (see Eq. 1). The number of RTTs required to send E[S]s E[S] segments can be approximated to E[T]s = log2 (Vˆ s + 1). So, for the given flow-size distribution, the expected number of RTTs is given by, d=

θ X

E[T]s × p(s).

(4)

s=1

Similarly, the expected cwnd of the flow that will cause or face a loss during slow-start phase can be written as, (E[S]s +Vˆ s > Vˆ 2 (5) E[W]s = s s ≤ Vˆ . The expected congestion window l of a flow with certain flow-size from the given distribution can be depicted as,

l=

θ X

E[W]s × p(s).

(6)

s=1

Pθ where s=1 p(s) = 1. 2) For simplicity, we assume that the round trip time RT T is same for all flows sharing a single bottleneck link. This causes the losses to be synchronized in case there is packet loss. As a result, the flows reduce their congestion windows (cwnd) at around the same time. 3) The slow-start threshold is set to a large value so that the bottleneck for a flow is only the network and not the endhost. Furthermore, only packet loss can cause window halving.

Let S := {Si |i ∈ N } denote the strategy set, where N is the number of different values of the parameter V . Denote PN by x(t) = {(x1 (t), ..., xN (t))|xi (t) ≥ 0, i=1 xi (t) = 1} the population profile or the state space, where xi (t) is the fraction of the population using strategy Si at time t. For flows using strategy Si , the corresponding number of RTTs is di . As we mentioned earlier that we normalize di to Di , we get, xi × di Di = PN . (7) j xj × dj

A. Utility Function Ideally, during slow-start phase, a flow with a large value of V requires fewer RTTs to complete transfer than with a small value. However, due to a large value of V , the flow increases the cwnd, and attains a large value before detecting a packet loss. This increase in cwnd increases the probability of causing or facing packet losses. Let d denote the number of RTTs that a flow takes before losing a segment; L denote the probability that the resultant congestion window l causes or faces packet losses. Hence, a right value for V tries to reduce both d and L. A value of V decided by a flow may affect the performance of all other flows. Hence, we normalize d, and it is denoted by D. As a flow does not know the sizes of other flows coming across the network, we calculate the above parameters for a flow of any size from the given flow-size distribution (defined in Eq. 2). In the following, first we derive the two parameters (L and D), and then define the utility function. Let q denote the packet-loss probability. Then the expected number of segments sent before losing a segment during slowstart phase E[S] for the flow with size s can be written as [6],

x i × li . Li = PN j x j × lj

(3)

(8)

Finally, The utility (pay-off) function for a flow of random size from the given flow-size distributions with V set to Si when the state of the population is x is given below as, π(Si , x) = Di + λ × Li ,

(9)

where λ, the weighted parameter between D and L for strategy Si , (∈ [0, 1]). We discuss more on λ in Section III-D. Let σ be a strategy profile, which generates a population profile x. Then the average pay-off of the population is given below, N X π(σ, x) = xj π(Sj , x). (10) j=1

s

(1 − (1 − q))(1 − q) . E[S]s = q

In the same way, the probability that the cwnd of a flow of certain size from the distribution will cause or face a loss during slow-start phase is given by,

We use π in the rest of the paper to refer to π(σ, x).

B. Evolutionary Stable Strategy and Replicator Dynamics Evolutionary Stable Strategies (ESS) are the equilibrium strategies which eliminate the existence of a small fraction of population that use an alternative strategy. This happens when the small fraction of population tries to invade others that use ESS. The ESS in our model shows which value(s) for V can co-exist, and give better performance; and hence, our main intention is to find the ESS in the game. We use the one among famous population dynamics known as the replicator dynamics. It is a mathematical formulation of the dynamics of fraction of the population using various strategies in time. More formally, the rate of change of fraction of population using a strategy (say) i is proportional to the difference between the average pay-off of the population and the pay-off of that strategy, or the other way round, depending on the nature of pay-off value. In our model, smaller the pay-off value by using a strategy, higher is the preference for using that strategy. Hence, the replicator dynamic equation is given by, x˙i (t) = xi (t)[π − π(Si , x)],

(11)

where x˙i (t) denotes the derivative of xi (t). In our study, we consider only two strategies. So, we set N to 2. S := {S1 , S2 } is the strategy set. Let x(t) = {(x1 , 1 − x1)|x1 ∈ [0, 1]} be the population profile. Eq.11 can be written as, x˙ 1 = x1 (1 − x1)×

 d2 − x1 (d1 + d2) l2 − x1 (l1 + l2) +λ× , d2 + x1 (d1 − d2) l2 + x1 (l1 − l2)

(12)

where di and li correspond to strategy Si . The fixed points (or equilibrium points) of the replicator dynamics can be obtained by satisfying x˙ i = 0. At the equilibrium, the dynamics of the fraction of population using the strategies stop evolving. Mathematically, x˙ 1 = 0 =⇒

 1 (d1 +d2) x1 (1 − x1) dd22 −x +x1 (d1 −d2) + λ ×

l2 −x1 (l1 +l2) l2 +x1 (l1 −l2)

=⇒ x1 = 0, 1 − x1 = 0, d2 − x1 (d1 + d2) d2 − x1 (d1 + d2) +λ× = 0. d2 + x1 (d1 − d2) d2 + x1 (d1 − d2)

x∗1 = 0, x∗2 = 1, q 2 (1 − λ)η + (1 + λ)η + (1 − λ) η5 + 16λη6 1 2 1 ∗ x3 = − , 2 η3 + η4 λ q 2 1 (1 − λ)η1 + (1 + λ)η2 − (1 − λ) η5 + 16λη6 ∗ , x4 = − 2 η3 + η4 λ 2

where η5 = (d1 l2 + d2 l1) , η6 = d1 d2 l1 l2 . C. Existence and Uniqueness of the ESS We can find the ESS using two steps. The first one is x˙ = 0 and the second one is to satisfy the stability conditions of the equilibrium points. More specifically, a strategy to be an ESS should satisfy the following theorem: Theorem 3.1: A strategy is an ESS if and only if the corresponding fixed point in the replicator dynamic is the asymptotically stable [18]. A fixed point of the replicator dynamics is said to be asymptotically stable if any small deviation from that state are eliminated by the dynamics as t approaches to ∞. In the following, we find the ESS for the game. 1) x∗1 = 0: Let x1 = x∗1 + . By taking derivative, we can write, x˙ 1 = ˙ where > 0 to ensure x1 > 0. Substituting x˙ 1 and x1 in Eq. 12, we get, d2 − (d1 + d2) l2 − (l1 + l2) ˙ = (1 −) +λ× . d2 + (d1 − d2) l2 + (l1 − l2) By applying linearization, the above can reduced to intermediate form as, ˙ =

d2 λl2 + . d2 + d1 l1 + l2

It can be further reduced to the following,

 =0

(13)

(1 + λ)d2 l2 d2 l2 + (d2 l1 + d1 l2) =⇒ log() + K1 () = (1 + λ)t + K2 , ˙ =

where K1 =

d2 l1 +d1 l2 , d2 l2

(14)

and K2 is a constant.

Eq. 13 can be reduced to 2nd degree polynomial, and can be written as, (1 + λ) (η3 + η4 λ)x21 + ((1 + λ)η2 + (1 − λ)η1)x1 − η2 = 0, 2 where η1 = (d1 l2 − d2 l1), η2 = 2d2 l2 ,

Eq. 14 shows when t → ∞, → ∞ rather than approaching to 0. Hence x∗1 = 0 is not asymptotically stable and (0, 1) is not an ESS. 2) x∗2 = 1: Let x1 = x∗2 − . By taking derivation on both side w.r.t. time, we can write x˙ 1 = −˙ where > 0 to ensure x1 < 1.

η3 = (d1 + d2)(l1 − l2), η4 = (d1 − d2)(l1 + l2).

By substituting the x˙ 1 and x1 in Eq. 12, and applying linearization, we can write,

After solving the equations, the equilibrium points of the replicator dynamic equation, corresponding to the fraction of population x1 (t) with strategy S1 are given below,

˙ =

(1 + λ)d1 l1 d1 l1 − (d2 l1 + d1 l2 − 2d1 l1) 0

=⇒ log() − K() = (1 + λ)t + K ,

(15)

100

x3∗ (λ) vs. λ

50

x3∗ (λ) 0 -50 -100 0

0.2

0.4 λ 0.6

0.8

1

Fig. 1: Infeasible equilibrium point 1

x4∗ (λ) vs. λ

0.8

x4∗ (λ)

0.6

E. Numerical Analysis

0.4 0.2 0

ESS. When λ is zero, the payoff value only depends on D (the term representing an improvement in response time; smaller the value, larger is the improvement). Hence, the population drifts in the direction of a strategy that gives smaller value for D, and its corresponding population profile. Similarly, when λ is one, the population drifts towards the population profile of a strategy that achieves smaller value to the sum of D and L (the probability that the resultant cwnd causes or faces packet losses). Here, we set S as {S1 = 4, S2 = 16}; θ = 200; µ = 40; and q = 0.01. Fig. 3 plots the fraction of flows using the strategy S1 for a given value of λ. The figure shows that with increasing value of λ, the fraction of flows using S1 increases. However, for all values of λ, between 0 and 1, the fraction of flows with strategy S2 is higher than with S1 . In other words, flows with a larger value of V can achieve better performance than with a small value.

0

0.2

0.4

λ

0.6

0.8

1

Fig. 3: x∗4 vs λ 0

where K = ll12 + dd21 −2, and K is a constant. That is, as t → ∞, does not approach 0. Hence, x∗2 = 1 is not asymptotically stable, and (1, 0) is also not an ESS. In the above, we see that both (0, 1) and (1, 0) are not ESS in the game. This shows that a larger value of V may not be a dominant strategy. 3) x∗3 , x∗4 : Due to the numerical complexities, we study the stability conditions of the equilibrium points (x∗3 and x∗4) related to specific scenarios. We set S as {S1 = 4, S2 = 16}; θ = 200; µ = 40; q = 0.01. Fig. 1 plots x∗3 for a given value of λ. This shows that for all value of λ, x∗3 is either more than 1 or less than −1. Hence, it is an infeasible equilibrium point, and not an ESS. Here, λ is set to 0.1; S = {S1 = 4, S2 } where S2 = {10, 16}; θ = 200; µ = 40; and q = 0.01. The figures 2(a), 2(b) and 2(c) plot the evolution of x(t) over time with different initial population profiles for S2 set to 10. These are (0.97, 0.03), (0.5, 0.5), and (0.1, 0.9) in respect to the above figures. These figures show that with the x(0), the x(t) converges to a specific value (0.43, 0.57). The (0, 1) and (1, 0) are the equilibrium points but not the ESS. So for any initial population profile other than (0, 1) and (1, 0), the x(t) converges to unique value. Hence, we can say, x∗4 is the ESS in the game. Similar plots are drawn with S2 set to 16, and shown in figures 2(d), 2(e), and 2(f). D. Effect of λ on ESS Observe x∗4 ; this is a function of λ—the weighted parameter between D and L in the utility function, and affects the performance of flows. Hence, the value of λ affects the position of

In this section, our numerical analyses illustrate few properties of ESS under some relevant flow-size distributions, and also investigate choosing the right value(s) for V (the maximum IW-size of a TCP flow) for which the flows in the Internet can achieve better performance. The value for V that increases the fraction of flows, using it in the population, is considered to give better performance. Currently, the TCP flows in the Internet use V set to 4 segments. We take different values of V , and compare their performance against V set to 4. Here we set N to 2; q = 0.01; S = {S1 = 4, S2 } where S2 = {10, 16, 32, 64}; λ is set to 1; and initial population profile (x1 (0), x2 (0)) is set to (0.97, 0.03). We collected a packet trace from the CAIDA ‘equinixsanjose’ backbone link3 (1 day in 2013) to know the flow-size distribution in the current Internet. Fig. 4(a) plots the complementary cumulative distribution function (ccdf) of nearly 3, 47, 204 flows in CAIDA dataset, on a log-log scale. We found the mean flow-size as ≈ 40 segments (here we assume one segment is of 1 KB). We then fitted a Lognormal distribution with the dataset, and found the location parameter and scale parameter as −1 and 3 respectively. Observe that Lognormal distribution function fits better with the real dataset. Similarly, we plot ccdf for the Exponential distribution with a mean set to the mean flow-size of the dataset. Both the distribution functions are then truncated in our model. Fig. 4(b) plots the trajectories of the x2 (t) (the fraction of population using the strategy S2 at time t) using the strategy set S, as a function of time under bounded Exponential distribution, p(s). Here we set θ = 200; and µ = 40. The figure shows that the x2 (t) for different values of S2 as (10, 16, 32, 64), converges to unique values as (0.51, 0.55, 0.52, 0.50) respectively. Observe that, S2 = 16 converges to a larger value compared to other values of S2 . A similar plot is shown in figure 4(c), under bounded Lognormal distribution for flow-sizes. It clearly shows that larger proportion of flows use V set to 16. Under both 3 The CAIDA UCSD Anonymized Internet Traces 2013 - 25 February 2013 http://www.caida.org/data/passive/passive 2013 dataset.xml

1

1

S1=4, x1 S2=10, x2

0.9 0.8

1

S1=4, x1 S2=10, x2

0.8

0.8

0.6

0.6

S1=4, x1 S2=10, x2

x(t)

x(t)

0.6 0.5 0.4

x(t)

0.7

0.4

0.4

0.2

0.2

0.3 0.2 0.1 0

0 0

5

10

15

20

25

30

0 0

5

10

15

time t

(a) x(0)=(0.97, 0.03) 1

20

25

30

0

(b) x(0)=(0.5, 0.5) 1

S1=4, x1 S2=16, x2

S1=4, x1 S2=16, x2

0.4

0.4

0.4

0.2

0.2

0.2

0 15

20

25

25

30

25

30

S1=4, x1 S2=16, x2

x(t)

0.6

x(t)

0.6

x(t)

0.6

10

20

(c) x(0)=(0.1, 0.9)

0.8

0

15

1

0.8

5

10

time t

0.8

0

5

time t

30

0 0

5

10

15

time t

20

25

30

0

5

10

time t

(d) x(0)=(0.97, 0.03)

15

20

time t

(e) x(0)=(0.5, 0.5)

(f) x(0)=(0.1, 0.9)

Fig. 2: Existence of unique ESS with S = {4, 10} in (a), (b), and (c); with S = {4, 16} in (d), (e), and (f) 0.6

1

Actual ccdf lognormal model Exponential model

0.525 0.52

0.5

0.515

0.001

0.3

0.0001

0.2

1e-05

0.1

1e-06 1KB

x2(t)

0.4

0.01

x2(t)

Prob (flow-size > s)

0.1

0.51 0.505 0.5

S2=10 S2=16 S2=32 S2=64

0 10KB 100KB

1MB

10MB 100MB

flow-size (in bytes)

(a) ccdf for CAIDA datasets

0

5

10

15

20

S2=10 S2=16 S2=32 S2=64

0.495 0.49 25

time t

5

10

15

20

25

time t

(b) x2 (t) under Bounded Exponential distribution (c) x2 (t) under Bounded Lognormal distribution

Fig. 4: Optimal value for V under real trace data

the distributions, we observe that small flows achieve better performance with V set to 16 segments. Hence, we can say that there exists an optimal value for V for which small flows achieve better performance than with other values. Fig. 5(a) plots the fraction of flows using different values of strategy S2 , x2 (against the strategy S1 = 4) for some specific values of θ where θ = (60, 100, 200, 500); µ = 40. As seen, for θ set to 60, the value of x2 for S2 = {10, 32, 64} is smaller than 0.5. Here, it implies V set to 4 gives better performance to small flows. However, x2 for S2 = 16 is more than 0.5, which shows V = 16 gives better performance than V set to 4. Observe that, with increasing value of θ, there is an increase in x2 , while the optimal value of V remain unchanged. Fig. 5(b) plots x2 against different values of µ where µ = {20, 40, 60, 80, 100, 120}; θ = 500. See the figure; with µ set to 20, V = 10 is the optimal value. However, with µ set to 40, the optimal value for V is 16. Observe, with µ set to a value between 60 and 100, V = 16 shows lesser performance than V = 10. This is due to an increase in L (the probability that the resultant cwnd causes or faces packet losses) rather than improvement in D (the term representing an improvement in

response time; smaller the value, larger is the improvement). However, with a larger V value (say, 120), V = 16 shows better performance than V = 10. This is mainly due to an improvement in D. With value of µ between 60 and 120, the optimal value for V is 32. This shows that the optimal value for V increases with increasing the mean flow-size µ of the distribution. This confirms, with larger mean flow-size in the Internet, we need a larger value for V . As the average web content transferred in the Internet per a single TCP connection increases, a larger value of V can give better performance. Using our proposed model, we observed the above properties of the ESS under some relevant flow-size distributions. In the next section, we evaluate the performance of the both small and large flows using various values for V in the IW function using experiments on a real testbed. IV. E XPERIMENTS This section evaluates the IW function using real trace data from CAIDA in a Dummynet [1] testbed. First we discuss the implementation of IW function inside Linux Kernel 3.7.4, then describe configuration of the testbed, and list the metrics

0.56

0.57

S2=10 S2=16 S2=32 S2=64

0.55 0.54

0.56

S2=10 S2=16 S2=32

0.55

0.53 0.54

x2

x2

0.52 0.51

0.53

0.5

0.52

0.49

0.51

0.48

0.5

0.47 60

100

200

500

20

θ (in segments)

40

60

80

100

120

µ (in segments)

(a) x2 vs. θ

(b) x2 vs. mean flow-size µ

Fig. 5

sys_iwtcp()

iwTCP()

sock_sendmsg()

__sock_sendmsg()

net/socket.c

User space

msghdr #modify the str.

sock−> ops−> sendmsg()

tcp_sendmsg() #set TCP IW tcp.c

Fig. 6: Implementation inside Linux Kernel 3.7.4

used for comparisons in our study, and finally discuss on the performance of both small and large flows. A. Implementation of Initial Window (IW) Function 1) Server code: The server application calculates the IWsize based on Eq. 1, and passes two important variables: (i) a boolean variable (1 if IW function is used, and 0 if system’s default IW-size is used), and (ii) the IW-size, along with the variables that are in write() system call, to the function iwTCP(). The iwTCP() then calles sys iwtcp() which in turn updates msghdr structure. We added two more data members to this structure, same as that passed to iwTCP(). Finally tcp sendmsg() sets the snd cwnd, and only one-time; this also updates the sending buffer (sk sndbuf). 2) Client code: In client side TCP, we set TCP DEFAULT INIT RCVWND to 64 KB. TCP Senders

TCP Recievers

Bottleneck link 100 Mbps

10.8.2.1/24 eth1

B

10.8.2.10/24 eth1

10.8.3.1/24 eth0

100 Mbps

10.8.3.10/24 eth0

10.8.8.1/24 eth1

10.8.8.10/24 eth0

Fig. 7: Testbed

B. Testbed setup We set up a Dummynet testbed with two Linux machines as TCP senders and receivers, and two more Linux machines as

routers; see Fig. 7. The sender and receiver run TCP CUBIC version in Linux kernel 3.7.4. Dummynet—software network emulator—is used to emulate links of different bandwidths and delays. We vary the capacity of the bottleneck-link B and base RTT (consisting of only propagation delay) for different types experiment run; the sender and receiver Linux machines connect routers using a 100 Mbps link. The buffer-size of the bottleneck-link is set to bandwidth-delay-product, with Droptail buffers at all machines. Each experiment run 10, 000 flows, sampled randomly with replacement from CAIDA dataset, along with their flow start-up time. We add no background traffic for this experiments. Fig. 8 shows the cumulative fraction of total bytes transferred by the flows, while taking the flow-sizes in increasing order of magnitude. As seen, nearly 96% of total flows could contribute to only about 8–9% of the volume. These contain flows with sizes less than or equal to 60 KB; hence, for our study here, we take all such flows as ‘small flows’. Similarly the last 2% of flows account for over 85% of total bytes; these flows, all with sizes greater than 200 KB, are considered ‘large flow’. Therefore, we set θ (refer Eq. 1) as 200 KB. In reality, θ can be set to a value between some minimum and maximum, say 60 and 200, giving the user freedom to configure it between these values. C. Metrics Considered 1) Mean completion time for small (CT s) and large (CT l) flows, conditioned on flow-size. 2) Number of TCP retransmission time-outs encountered by small flows, RT s . 3) Retransmission rates for small (RRs) and large (RRl) flows, defined as the percentage of the number of retransmitted packets to the actual number of packets transmitted, for flows in the considered size-range. 4) Mean completion time for range of flow-sizes. 5) Network Power for range of flows-sizes, defined as average goodput—application-file-size/completion-time— divided by mean completion time of flows in the considered size-range. This definition is similar to the one in RFC 2415 [15].

Mean completion time (in seconds)

cummulative fraction of total bytes

1

0.1

0.01

C=4 V=10 V=16 V=32 V=45

10

1

50 55 60 65 70 75 80 85 90 95 100

60-200

percentage of flows

This section studies the performance of flows using the IW function IW (s), and compares it with the performance attained by flows using a constant IW-size for all flows. Recall, V is the upper bound of the IW-size when flows use the IW function defined in Eq. 1. In the case where IW-size is constant for all flows, we use C to denote the constant IW-size (in number of segments). We evaluate the IW function for various values of V , and compare against constant IW for different values of C. Here we set B to 20 Mbps, and RTT to 100 ms; the connection start-up time is taken from the real dataset. Fig. 9 plots the mean completion time for range of flow-sizes. While C = 4 denotes the plot of this metric for a constant IWsize of four segments (for all flows), the remaining are plots obtained with different values of V in the IW function. As seen in the figure, the IW function gives smaller mean completion time to small flows in comparison to the constant IW. The improvement in response times for different values of V , compared to C = 4, decreases with increasing flow-sizes. Among the different values of V , V = 16 shows a significant improvement, reducing mean completion time of small flows (≤ 60) by ≈ 17% in comparison to C = 4. Fig. 10 plots the network power for range of flow-sizes. As seen in the figure, flows with sizes = 16 give ≈ 7–17% improvement in

response times.

Network Power (in Mb/sec2)

D. Performance Evaluation

2000-20000

Fig. 9: Mean completion time for ranges of flow-sizes

C=4 V=10 V=16 V=32 V=64

1

0.1

60-200

200-2000

2000-20000

Range of flow sizes (in KB)

Fig. 10: Network Power for ranges of flow-sizes

20 %

— improvement in CTs

Fig. 8: CDF of total bytes

200-2000

Range of flow sizes (in KB)

w.r.t. C=4 w.r.t. C=V

15 %

10 %

5%

0% 10

16

32

45

V (in # of segments)

Fig. 11: Percentage improvement in CT s for IW (s) w.r.t. C = V , and C = 4

Other metrics are listed in Table I. IW (s) decreases the metric in comparison with increasing value of V upto a point; and beyond that, it increases due to higher packet-losses. With V set to 16, the metrics show considerable improvement. In particular, V = 16 brings down the retransmission timeouts faced by small flows (first column) to at least (approximately) half in comparison to using a constant IW-size for any value of C, larger than 16. Also, observe the trend of retransmission rates. With increasing value of C, both small and large flows experience higher retransmission rates compared to C = 4. For the IW function, the minimum value of RRs is obtained for V = 16. The retransmission timeouts faced by small flows

as well as the mean completion time of small flows are also minimum using the IW function with V = 16. On the other hand, V >= 16 shows an increase in RT s , when compared against V = 16. As expected, due to increasing number of timeouts, number of retransmission packets increases, and hence, there will be an increase in retransmission rate. Impact of varying RTT: In this experiment, we study the performance of flows on testbed for different values of RTT. The arrival rate of the TCP flows in the experiment is set in such a way so as to obtain a packet drop-rate of ≈ 1.4% with all flows using a constant IW-size, C = 4 packets. We then maintain the same configuration for the rest of the run. Here we consider 2, 000 flows, sampled randomly with replacement from CAIDA dataset, set B to 10 Mbps. Fig. 12 plots the absolute improvement in CT s for different values of C and V against C = 4, by varying RTT. Observe that, for different values of RTT, IW function shows better improvement in response time than constant IW; besides, with a larger RTT, V = 16 gives better performance. 50

improvement (in msec)

45 40

V=10 V=16 C=10 C=16

— Absolute improvement in CTs w.r.t. C=4

35 30 25 20 15 10 5 0 20

50 100 RTT (in msec)

200

Fig. 12: Absolute improvement in CT s

V. C ONCLUSIONS AND F UTURE W ORK In this paper, we proposed a simple but effective function that determines the value of IW for a TCP flow in such a way so as to benefit large number of small flows. The IW-size of a flow is dependent on its size, and only two parameters— V and θ—defined by the user (IW min being defined by the standard). Using game-theoretic analysis under the framework of evolutionary non-cooperative game, we studied how different values for V (used by different users) affect the performance of small flows, and showed that the game has a unique ESS where the fractions of population using various values of V do not change in time. Using our proposed model, we demonstrated TABLE I: Comparison of other metrics

Parameter C=4 C=10 C=16 C=32 C=45 V =10 V =16 V =32 V =45

RT s 599 893 1659 1528 1270 805 665 754 898

RRs 0.7 0.8 1.4 1.3 1.2 0.8 0.5 0.6 0.8

RRl 3.5 4.0 5.7 9.2 11.2 4.0 3.4 5.2 7.5

CTs 0.369 0.351 0.375 0.352 0.359 0.343 0.309 0.323 0.334

CTl 14.284 14.243 13.78 12.9 11.77 14.148 12.420 13.845 12.6

several properties of the ESS under some relevant flow-size distributions. Our game-theoretic results revealed that, there exists an optimal value for V for which small flows achieve better performance than with other values. We then conducted experimental studies on a real testbed to evaluate the performance attained by flows using the IW function for various values of V . Our experimental results showed that the function performs significantly better than a constant IW-size for all flows, while at the same time not affecting the performance of large flows. We observed that among the different values of V , V = 16 shows a significant improvement of the metrics when compared against C = 4. We are currently working to set the value of V dynamically (between a given range) depending on observed packet losses. In future, we plan to work the scenario where there are flows that do not reveal the sizes. R EFERENCES [1] “Dummynet,” http://info.iet.unipi.it/∼luigi/dummynet. [2] M. Ajmone Marsan, G. Carofiglio, M. Garetto, P. Giaccone, E. Leonardi, E. Schiattarella, and A. Tarello, “Of Mice and Models,” in Quality of Service in Multiservice IP Networks, 2005, vol. 3375, pp. 15–32. [3] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial Window,” RFC 3390, Oct. 2002. [4] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg, “Differentiation between Short and Long TCP Flows: Predictability of the Response Time,” in Proc. IEEE INFOCOM, 2004, pp. 762 – 773. [5] R. Barik and D. M. Divakaran, “TCP initial window: a study,” in Proc. WWIC, 2012, pp. 290–297. [6] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in IEEE INFOCOM, vol. 3, Mar. 2000, pp. 1742 –1751. [7] D. Collange and J.-L. Costeux, “Passive estimation of quality of experience,” J. UCS, vol. 14, no. 5, pp. 625–641, 2008. [8] D. M. Divakaran, “A spike-detecting AQM to deal with elephants,” Computer Networks, vol. 56, no. 13, pp. 3087–3098, 2012. [9] D. M. Divakaran, E. Altman, and P. V.-B. Primet, “Size-Based FlowScheduling Using Spike-Detection,” in Proc. ASMTA, 2011, pp. 331–345. [10] D. M. Divakaran, G. Carofiglio, E. Altman, and P. V.-B. Primet, “A Flow Scheduler Architecture,” in IFIP Networking, 2010, pp. 122–134. [11] N. Dukkipati, Y. Cheng, M. Mathis, and J. Chu, “Increasing TCP’s Initial Window,” Internet-Draft (Experimental), Jun. 2012. [12] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, and N. Sutin, “An argument for increasing TCP’s initial congestion window,” SIGCOMM CCR, vol. 40, pp. 26–33, Jun. 2010. [13] L. Eggert, “Moving the Undeployed TCP Extensions RFC 1072, RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379, RFC 1644, and RFC 1693 to Historic Status,” RFC 6247 (Informational), Internet Engineering Task Force, May 2011. [14] S. Kodama, M. Shimamura, and K. Iida, “Initial CWND determination method for fast startup TCP algorithms.” in IWQoS, 2011, pp. 1–3. [15] K. Poduri and K. Nichols, “Simulation Studies of Increased Initial TCP Window Size,” RFC 2415, Sep. 1998. [16] I. Rai, E. Biersack, and G. Urvoy-Keller, “Size-based scheduling to improve the performance of short TCP flows,” Network, IEEE, vol. 19, no. 1, pp. 12–17, 2005. [17] M. Scharf, “Performance analysis of the Quick-Start TCP extension,” in BROADNETS, sept. 2007, pp. 942 –951. [18] P. D. Taylor and L. B. Jonker, “Evolutionary stable strategies and game dynamics,” Mathematical Biosciences, vol. 40, no. 12, pp. 145 – 156, 1978. [19] J. Touch, “Automating the Initial Window in TCP,” Internet Draft (Standards Track), Jul. 2012. [20] Y. Zhang, “Speeding up short data transfers: Theory, architecture support, and simulation results,” in Proc. NOSSDAV, 2000. [21] T. Ziegler, H. Tran, and E. Hasenleithner, “Improving perceived web performance by size based congestion control,” in NETWORKING, 2004, vol. 3042, pp. 687–698.

[image: Increasing TCP's Initial Window Developers]
Increasing TCP's Initial Window Developers

[image: TCP Initial Window: A Study]
TCP Initial Window: A Study

[image: Increasing TCP's Initial Window Developers]
Increasing TCP's Initial Window Developers

[image: Characterizing the Effects of TCP's Initial Window]
Characterizing the Effects of TCP's Initial Window

[image: RFC 6928 - Increasing TCP's Initial Window - Research at Google]
RFC 6928 - Increasing TCP's Initial Window - Research at Google

[image: An Argument for Increasing TCP's Initial Congestion Window]
An Argument for Increasing TCP's Initial Congestion Window

[image: The Evolution of Maximum Body Size of Terrestrial ...]
The Evolution of Maximum Body Size of Terrestrial ...

[image: Evolution, brain size, and the national IQ of peoples ... - WordPress.com]
Evolution, brain size, and the national IQ of peoples ... - WordPress.com

[image: Evolution in materio: Initial experiments with liquid crystal]
Evolution in materio: Initial experiments with liquid crystal

[image: Evolution of brain size and juvenile periods in primates]
Evolution of brain size and juvenile periods in primates

[image: ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...]
ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...

[image: Evolution, brain size, and the national IQ of peoples ...]
Evolution, brain size, and the national IQ of peoples ...

[image: Evolution, brain size, and the national IQ of peoples ...]
Evolution, brain size, and the national IQ of peoples ...

[image: The Evolution of Cultural Evolution]
The Evolution of Cultural Evolution

[image: Initial pages]
Initial pages

[image: ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...]
ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...

[image: One Window Service.pdf]
One Window Service.pdf

[image: overton window pdf]
overton window pdf

Evolution of TCP's Initial Window Size

size of 10 segments to make it a default value in the Internet hosts. They studied the performance of web traffic with larger. IW-sizes, and showed that the response times of flows are ... of flows, for deciding the best response strategy for a given.

 Download PDF

 750KB Sizes
 1 Downloads
 275 Views

 Report

Recommend Documents

[image: alt]

Increasing TCP's Initial Window Developers

Jul 30, 2010 - Less apples-to-apples: changes in server software and user base. Takes weeks to collect data. New methodology: Serve different IWs based ...

[image: alt]

TCP Initial Window: A Study

Nearly 90% of the Internet traffic volume is carried by TCP, the transmission control ... LAS (Least Attained Service) and PS+PS scheduling algorithms improve the ... improves the response time of small flows by avoiding slow-start penalty.

[image: alt]

Increasing TCP's Initial Window Developers

Experiments with larger IW in several data centers over past ... Results from two representative data centers for We would like to call for volunteers to help out!

[image: alt]

Characterizing the Effects of TCP's Initial Window

Email: . Michael Welzl ... Email: ... to a TCP sender, and timeouts significantly increase the completion time of ...

[image: alt]

RFC 6928 - Increasing TCP's Initial Window - Research at Google

improves the overall performance of many web services without resulting in a congestion 2 in [Duk10]), effectively limiting how much window a remote host may use. In order to ... initial window will help to stop this trend and provide the best.

[image: alt]

An Argument for Increasing TCP's Initial Congestion Window

mining flow completion time. Our premise is that the initial congestion window should ... per domain, partly to increase parallelism and avoid head-of- line blocking of independent HTTP requests/responses, ... spread content over multiple domains so

[image: alt]

The Evolution of Maximum Body Size of Terrestrial ...

Nov 25, 2010 - ... found in the online. Updated information and services, truncated at the terminal. Pleistocene to 270, 2012 (1995). 31. G. Retallack, J.

[image: alt]

Evolution, brain size, and the national IQ of peoples ... - WordPress.com

Sep 18, 2009 - We showed that current-day national IQs are strongly confounded ... struct validity of national IQs is supported by their correlation with means in ...

[image: alt]

Evolution in materio: Initial experiments with liquid crystal

LC is used to encode the weights in a neural network [3]. ~V. R. R. C. G. Figure 1. Equivalent circuit for LC. Figure 1 shows the equivalent electrical circuit for liq-.

[image: alt]

Evolution of brain size and juvenile periods in primates

orous primates may reflect the greater challenges associated with foraging for ripe The data were analyzed with species as independent data The two big-.

[image: alt]

ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...

is 1-random, then X and Y have no upper bound in the K-degrees (hence, no ... stitute for Mathematical Sciences, National University of Singapore, during the following result relates KZ to unrelativized prefix-free complexity when Z âˆˆ 2Ï‰ is

[image: alt]

Evolution, brain size, and the national IQ of peoples ...

Sep 18, 2009 - Address: Department of Psychology, University of ... E-mail address: (J.M. Wicherts). appear to fit empirical data.

[image: alt]

Evolution, brain size, and the national IQ of peoples ...

Sep 18, 2009 - were entirely of genetic origin, leave unexplained 91â€“95% of the black-white IQ gap. ... that we failed to appreciate the big picture of evolution painted by Lynn ... Lynn and Vanhanen's (2006) data may suggest that the Dutch.

[image: alt]

The Evolution of Cultural Evolution

for detoxifying and processing these seeds. Fatigued and ... such as seed processing techniques, tracking abilities, and In: Zentall T, Galef BG, edi- tors.

[image: alt]

Initial pages

May 30, 2014 - Narayana Murthy of Infosys. Unit II Wit and Humour. Wit and humour are indispensible though some consider these two are distinct entities. Wit is the ability to say or write things that are both clever and amusing. Sometimes it is foun

[image: alt]

ON INITIAL SEGMENT COMPLEXITY AND DEGREES OF ...

2000 Mathematics Subject Classification. 68Q30 ... stitute for Mathematical Sciences, National University of Singapore, during the Computational. Aspects of In Mathematical foundations of computer science, 2001 (MariÃ¡nskÃ© LÃ¡znË˜e),.

[image: alt]

One Window Service.pdf

Sign in. Loadingâ€¦ Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect ...

[image: alt]

overton window pdf

File: Overton window pdf. Download now. Click here if your download doesn't start automatically. Page 1. overton window pdf. overton window pdf. Open. Extract.

×
Report Evolution of TCP's Initial Window Size

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

