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Abstract We introduce an unsupervised process to co-cluster groups of stocks and financial ratios, so that investors can gain more insight on how they are correlated. Our idea for the co-clustering is based on a graph concept called maximal quasi-bicliques, which can tolerate erroneous or/and missing information that are common in the stock and financial ratio data. Compared to previous works, our maximal quasi-bicliques require the errors to be evenly distributed, which enable us to capture more meaningful co-clusters. We develop a new algorithm that can efficiently enumerate maximal quasi-bicliques from an undirected graph. The concept of maximal quasi-bicliques is domain-independent; it can be extended to perform co-clustering on any set of data that are modeled by graphs.



1 Introduction The traditional approach of value investment [4] is of linear “query”-style. A number of financial ratios are preselected, and some thresholds are subjectively set for these financial ratio values. Then stocks satisfying these conditions are grouped together for further analysis. However, this process has a weakness; it is hard to know which financial ratios should be selected and what thresholds should be set to find correlated stocks. Exhaustive combinations of different financial ratios and their thresholds make this decision process a daunting task for investors. In this paper, we propose an unsupervised graph-based data mining method to co-cluster stocks and financial ratios. The stocks are clustered based on their similarities in financial ratios and concurrently, these financial ratios are implicitly clustered according to their occurrences in the stocks. Our co-clustering patterns can be interpreted by investors to understand which clusters of financial ratios and at what levels of thresholds they are correlated to clusters of



stocks. We model stocks and their financial ratio values by a bipartite graph. We use one side of the vertices in the bipartite graph to represent the stocks, the other set to represent the financial ratio values as shown in Figure 1(a). As the financial ratio values are continuous, we use a discretization technique to divide financial ratio values into intervals, and then each interval is represented by a vertex. An edge exists between a stock vertex s and a financial ratio vertex f , if the financial ratio value for the stock s falls in the interval f of this financial ratio. Maximal quasi-biclique subgraphs, our newly defined graph concept, are then used to co-cluster stocks and financial ratios from the bipartite graph. A quasi-biclique subgraph consists of two disjoint sets of vertices Si , i = 1, 2, such that every vertex in Si is allowed to disconnect up to  vertices in Sj , j = i, where the error tolerance rate  is a user defined integer. A quasi-biclique subgraph is maximal if it is not a proper subset of any other quasi-biclique subgraphs. For example, in Figure 1(a), {Stock A, B, C} and {Current Ratio < 1, Debt/Equity Ratio < 1, Return On Equity Ratio > 10%} are two disjoint vertex sets forming a quasi-biclique subgraph. Every vertex in this subgraph is required to connect to at least 2 of the vertices in the other vertex set. This subgraph is also maximal. The problem of co-clustering stocks and financial ratios can be better studied by using maximal quasi-bicliques, than using the classical maximal bicliques [3], due to the following two reasons: (1) Like most real-world data, financial ratios data are prone to errors and missing values. This has an adverse effect on the quality of the co-clusterings. Maximal quasi-bicliques attempt to reduce this negative impact by introducing the error tolerance rate . That is, coclusters determined by maximal quasi-bicliques can tolerate up to  number of errors. (2) Even if the dataset is free of erroneous or missing values, the relaxation of the connection requirement between the cluster pairs by our method can result in discovering more general cluster groups between the stocks and the financial ratios.
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Figure 1. (a) A bipartite graph representing stocks and financial ratios. (b) A skewed quasi-biclique graph where missing edges are not balanced. Bicliques tolerating missing or erroneous data have been studied recently [1, 2, 8, 10]. However, their definitions do not have a good constraint for the vertices to have a balanced error tolerance, thus they often lead to a skewed distribution of the missing edges. For example, Figure 1(b) is a quasi-biclique qualified in [1,2,10], but it can be seen that vertices v5 , · · · , v8 each has a very low connectivity compared to other vertices; these vertices may be noises that should not be part of the graph. By our definition of quasibicliques, this skewness can be avoided, as the error tolerance is required to be evenly distributed in the graph. Thus our quasi-bicliques are more appropriate for co-clustering real world datasets. We develop a new algorithm to enumerate the complete set of maximal quasi-biclique subgraphs from undirected graphs. Previous algorithms [1, 2, 8, 10] for mining quasibicliques can handle only bipartite graphs, but our approach is applicable to all undirected graphs. This flexibility enables our algorithm to tackle a wider range of real life problems, as not all problems are modeled in the form of bipartite graphs. In fact, it allows us to perform co-clustering on any sets of entities that exhibit any kind of interactions. For example, this concept can be applied to the web mining field [9] or in the bioinformatics domain [6]. The contributions of our work can be summarized as follows (1) We propose to mine the correlations between stocks and financial ratios for financial data analysis. (2) We propose using maximal quasi-bicliques for the coclustering. Our maximal quasi-bicliques can tolerate missing edges in a balanced way. (3) We develop CompleteQB, an algorithm which enumerates maximal quasi-bicliques efficiently in a depth-first manner. CompleteQB is able to enumerate maximal quasi-bicliques from both bipartite graphs and non-bipartite graphs.



2 Problem Definition An undirected graph G consists of a set of vertices denoted by V (G) and a set of edges denoted by E(G) =



{{u, v}|u, v ∈ V (G)}. Vertices u, v ∈ V (G) are adjacent to each other if there is an edge {u, v} connecting them. Throughout the rest of the paper, we assume that all graphs are undirected. The neighborhood of v in a graph G is denoted as Γ(v) = {u|{v, u} ∈ E(G) ∧ u ∈ V (G)}. Let V  ⊂ V (G), v be a vertex in V (G) \ V  . We denote the set of vertices in V  that is adjacent to v as ΓV  (v) = {u|{v, u} ∈ E(G) ∧ u ∈ V  }. Definition 1 (Loose neighborhood) Let V ⊆ V (G) be a vertex set in V (G), the loose neighborhood of V in G is defined as  Γ(v)} \ V Γ(V ) = { v∈V



The definition of loose neighborhood is different from the definition of the neighborhood of a vertex set V , which is defined as β(V ) = ∩v∈V Γ(v). A graph G is a subgraph of a graph G if V (G ) ⊆ V (G) and E(G ) ⊆ E(G). Graph G is a proper subgraph of G if V (G ) ⊂ V (G) and E(G ) ⊂ E(G). A graph G is a bipartite if its vertex set consists of two disjoint subsets of vertices Vl and Vr , such that E(G) = {{vl , vr }|vl ∈ Vl ∧ vr ∈ Vr }. A bipartite graph is complete if E(G) = {{vl , vr }|∀vl ∈ Vl ∧ ∀vr ∈ Vr }. For brevity, a complete bipartite graph (or subgraph) is also called a biclique (or biclique subgraph). A complete bipartite subgraph is maximal if it is not a proper subgraph of any other complete bipartite subgraphs. Next, we introduce our definition of maximal quasibiclique subgraphs. Definition 2 (Quasi-biclique) A bipartite graph G is a quasi-biclique if V (G) consists of two disjoint sets of vertices Vl and Vr such that ∀vl ∈ Vl , |Vr | − |ΓVr (vl )| ≤ , and ∀vr ∈ Vr , |Vl | − |ΓVl (vr )| ≤ , where error tolerance rate  is a small integer number such as 1, or 2. Definition 3 (Maximal quasi-biclique) A quasi-biclique subgraph G of an undirected bipartite graph G is maximal if and only if there does not exist a quasi-biclique subgraph G such that G is a proper subgraph of G . A maximal quasi-biclique subgraph having vertex set of small size may not be practically useful, and enumerating them may be computationally expensive since there are potentially a large number of them. Hence, maximal quasi-bicliques G with V (G ) = {Vl , Vr } satisfying |Vl |, |Vr | ≥ ms, where ms is the minimum size threshold, are of our interest. For example, the maximal quasi-biclique of Figure 1(a) that is mentioned in Section 1 satisfies  = 1 and ms = 3.



Definition Ours γ-biclique [1] Bu et al. [2] -biclique [8] α-quasi-biclique [10]



Symmetrical Yes Yes Yes No Yes



Balanced Yes No No No No



Algorithm Complete Greedy Greedy Greedy Complete



Table 1. Comparison of different definitions of quasi-bicliques and their algorithm approach



3 Comparison to Literature Work A maximal biclique [3] can be considered as a maximal quasi-biclique with a zero error tolerance rate. Due to this strict connection requirement, maximal bicliques are less effective than maximal quasi-bicliques for co-clustering stocks and financial ratios, as discussed in Section 1. On the error tolerance of quasi-bicliques, we can use two notions, symmetrical and balanced, to characterize them. The error tolerance is symmetrical in a biclique if vertices in the both sides of the graph can tolerate missing edges. It is balanced, if every vertex in the quasi-biclique can tolerate up to the same threshold of missing edges. The rationale of defining a quasi-biclique whose error tolerance is symmetrical and balanced is to ensure that each vertex is closely related to all vertices in the counterpart vertex set. Without this constraint, the error tolerance distribution will be skewed as roughly explained in Section 1. Table 1 summarizes the differences among the various definitions of quasibicliques, and different types of algorithms (fourth column in the table) to mine these quasi-bicliques.



4 Mining Maximal Quasi-Bicliques In this section, we present CompleteQB, an algorithm for mining maximal quasi-bicliques from a graph. We first describe the naive version of CompleteQB. Given a graph G, where V (G) = {Vl , Vr }, CompleteQB systematically enumerates the subsets of Vr using a set enumeration tree. For each enumerated subset of Vr , its counterpart is obtained and they form a quasi-biclique; its counterpart is a subset of Vl . The choice of using Vr to traverse its search space is arbitrary and Vl can also be used. To efficiently traverse the search space, naive CompleteQB exploits the anti-monotone property of quasi-bicliques. Proposition 1 [anti-monotone property of quasi-bicliques] Assume that G is a quasi-biclique with V (G) = {Vl , Vr }. Let Vl ⊆ Vl and Vr ⊆ Vr . Then Vl and Vr form a quasibiclique G . Proof We have ∀vl ∈ Vl , |Vr | − |ΓVr (vl )| ≤ , and ∀vr ∈ Vr , |Vl | − |ΓVl (vr )| ≤ . Since we know Vl ⊆ Vl



Algorithm 1 Algorithm CompleteQB Input: V (G) = {Vl , Vr } is a vertex set; ms is the minimum size threshold;  is the error tolerance rate; Description: 1: for all vertex vr ∈ Vr do 2: for all |Vl \ΓVl (vr )| do 3: Generate Vl∗ = {ΓVl (vr ) ∪ {u1 , . . . , u |u1 , . . . , u ∈ Vl \ ΓVl (vr )}}; 4: call sub-space(Vl∗ , Vr ); 5: output all maximal quasi-bicliques; 6: 7: Function sub-space(CandVl, CandExt) 8: CandVr = {ur ||CandVl | − |ΓCandVl (ur )| ≤ , ur ∈



Γ(CandVl )};



9: compute all possible quasi-bicliques using CandVr and



10: 11: 12: 13: 14: 15:



CandVl and store them, where for each quasi-biclique (Vl , Vr ), genVl ∈ Vr , |Vl | ≥ ms and |Vr | ≥ ms; CandExt = CandExt \ CandVr ; for all vertex vr ∈ CandExt do CandExt = CandExt − {vr }; (v )| l r for all |CandVl \ΓCandV do  ∗ Generate Vl = {ΓCandVl (vr ) ∪ {u1 , . . . , u |u1 , . . . , u ∈ CandVl \ ΓCandVl (vr )}}; call sub-space(Vl∗ , CandExt);



and Vr ⊆ Vr , so ∀vl ∈ Vl , |Vr | − |ΓVr (vl )| ≤ , and ∀vr ∈ Vr , |Vl | − |ΓVl (vr )| ≤ . Hence Vl and Vr form a quasi-biclique G .  It follows that if G is not a quasi-biclique, then the supersets of G are not quasi-bicliques. The naive CompleteQB traverses the search space in a depth-first manner and uses the anti-monotonicity to prune the search space efficiently. The algorithm consists of several steps: Step 1. For each vertex vr in Vr , the algorithm generates the subsets of Vl that can form quasi-bicliques with {vr }. Let each subsets of Vl be CandVl . Let vr , which is used to generate CandVl , be denoted as genVl . Step 2. Each CandVl is used to generate subsets of Vr , denoted as CandVr . Vertices in CandVl and CandVr are candidates to form quasibicliques and all quasi-bicliques containing genVl and in the context of the two vertex sets are enumerated. If G with V (G ) = {Vl , Vr } is an enumerated quasi-biclique, then Vl ⊆ CandVl , Vr ⊆ CandVr and genVl ∈ Vr . Step 3. Each vertex vr in Vr \ CandVr (also known as CandExt) is used to generate Vl∗ ⊂ CandVl , where vr and Vl∗ can form a quasi-biclique. The algorithm then jumps to step 2, and Vl∗ is assigned as CandVl . Step 2 and 3 are recursively repeated until Vr \ CandVr is empty. When the algorithm obtains a set of CandVl and CandVr , we can view the algorithm has traversed to a sub space of the whole search space, and at each sub space, quasi-bicliques are enumerated. The uniqueness of this algorithm is sub spaces which no quasibicliques can be enumerated are not traversed. Thus, these fruitless sub spaces are pruned according to Proposition 1.



The pseudocode of CompleteQB is shown in Algorithm 1. The Optimized CompleteQB Algorithm Our optimized CompleteQB algorithm attempts to prune the search space aggressively and use heuristics to speed up the mining. The following techniques are used to accomplish these. Heuristic 1 [ordering of vertices] The vertices are arranged in ascending order of their neighborhood sizes. Heuristic 1 is deployed commonly in depth-first mining algorithms. More details can be seen in [7]. Proposition 2 [early pruning of sub space] If |CandVl | = ms or |CandExt| + |CandVr | < ms, then its child sub spaces are pruned because no maximal quasi-bicliques of size ≥ ms can be found in its child sub spaces. Proposition 2 is applied on Algorithm 1 line 4, 11 and 15 to prune the child sub spaces. Proposition 3 [skipping of futile sub space] If |CandVr | < ms, any quasi-bicliques enumerated will not pass the minimum size threshold ms. Therefore this sub space is skipped to its child sub spaces. Based on Proposition 3, check is done on line 9 of Algorithm 1 before any computation of quasi-bicliques. Proposition 4 [avoidance of traversed sub space] There is a total order ≺ on Vr . During the traversal of the search space, let vr ∈ Vr be used to generate Vl∗ , which leads to a sub space where its CandVr contains vr . We denote this sub space S. At S, if ∃ur ∈ CandVr where ur ≺ vr and ur is not in CandVr of S parent sub space, this entails that S is explored previously and is pruned. Proposition 4 is applied on Algorithm 1 line 4 and 15. Heuristic 2 [enumeration of local maximal quasibicliques] In the context of CandVl and CandVr , only maximal quasi-bicliques whose size ≥ ms are enumerated. A quasi-biclique G with V (G ) = {Vl , Vr } is a local maximal when Vl ⊆ CandVl , Vr ⊆ CandVr and there does not exist a G with V (G ) = {Vl , Vr }, and Vl ⊆ Vl ⊆ CandVl , Vr ⊆ Vr ⊆ CandVr . Storing and Checking of Maximal Quasi-Bicliques The generated quasi-biclique subgraphs are stored in a prefix tree. During the mining process, when a quasi-biclique G is generated, we check if there exists any quasi-biclique G which is a subset of G in the tree. If there is, G is removed from the tree and G is added. Likewise, if there is a G which is a superset of G , G is not added to the tree. The final prefix tree stores the maximal quasi-bicliques of a graph.



Mining Maximal Quasi-Bicliques from Non-Bipartite Graphs In the case of non-bipartite graph, G with V (G) = V , every vertex in V can be in either one of the vertex sets of a maximal quasi-biclique. Therefore, in Algorithm 1, Vl and Vr is replaced by V . This change results in an exact duplicate set of maximal quasi-bicliques being enumerated. A post-processing step is implemented to remove the duplicate sets. For a non-bipartite graph G, there is a possibility of generating erroneous maximal quasi-biclique where both of its vertex sets contain the same vertex. To rectify this problem, in Algorithm 1 line 3 and 14, vr is excluded from Vl∗ when Vl∗ is generated.



5 Experimental Results We compare the performance between the naive and optimized CompleteQB. Existing algorithms [1, 2, 8, 10] are not used because they are incapable of finding our defined maximal quasi-bicliques. Our experiments were performed on Windows XP environment, using Intel Xeon CPU 3.4GHz with 2GB RAM. CompleteQB was coded in C++. We managed to access to 12 financial ratios belonging to 470 stocks from S&P 500, for the year 2001. This dataset was obtained from Compustat1 . We use the equidepth binning method [5] to partition the range of each financial ratio into 20 intervals. We then represent the dataset as a bipartite graph which contains 710 vertices (470 stocks and 240 financial ratio value intervals). In this dataset, 3.71% of the financial ratio values are unavailable. Figure 2(a) shows the number of maximal quasibicliques generated by CompleteQB from the dataset, and Figure 2(b) and (c) show the time taken by the naive and optimized CompleteQB to generate them. From Figure 2, we can see that the optimized CompleteQB outperforms naive CompleteQB. This substantiates that the techniques employed by the optimized CompleteQB are effective. In some cases, the naive version could not complete the mining task within 24 hours. We study two factors that affect the running time of the optimized CompleteQB, namely the minimum size threshold ms and the error tolerance rate . Effect of minimum size threshold (ms) See Figure 2(a) versus (b) and (c). Observe that the running time of the optimized CompleteQB scales up in a polynomial way when ms decreases; meanwhile, the number of maximal quasi-bicliques also scales up almost the same polynomial way. This indicates that the running time of the optimized CompleteQB is roughly linear to the number of subgraphs in the output. Effect of error tolerance rate () We noted that the number of maximal quasi-bicliques increases when the error tolerance rate rises. Therefore the running time of the 1 http://www.compustat.com/



Data set: Stocks financial ratios (Err=1) 1000



Error = 1 Error = 2



15000



Data set: Stocks financial ratios (Err=2) 100000



Optimized Naive



Optimized Naive



10000



10000



5000



Time(sec)



100



Time(sec)



Number of Maximal Quasi-Bicliques



Data set: Stocks financial ratios 20000



10



1000 100 10



1 1



0



0.1 3



4



5 6 7 8 9 Minimum Size Threshold



10



(a) # of maximal quasi-bicliques



11



0.1 3



4



5 6 7 Minimum Size Threshold



8



9



(b) Running Time (Err=1)



5



6



7 8 9 Minimum Size Threshold



10



11



(c) Running Time (Err=2)



Figure 2. Running time and the number of maximal quasi-bicliques enumerated from the dataset.



Price changes



suitable for solving real-life problems, because maximal quasi-bicliques can tolerate certain degrees of erroneous and missing data, which are common in real life applications. Our definition of maximal quasi-bicliques for error tolerance is also symmetrical and balanced, thereby capturing more balanced co-clusters. An efficient algorithm CompleteQB was developed to enumerate large maximal quasi-bicliques from undirected graphs. We evaluated the efficiency of CompleteQB and also reported an interesting finding from a stocks financial ratios dataset. Year



Figure 3. Price performances of the stocks in a co-cluster. optimized CompleteQB increases at an even higher rate when we increase  but decrease ms. Thus, it is impractical to find all small maximal quasi-bicliques that allow large number of errors. In general, we can see that the optimized CompleteQB runs approximately linear to the number of subgraphs enumerated. Example of an interesting co-cluster We present a co-cluster discovered by our algorithm, which contains stocks {AVP, CLX, MKC, PG} and financial ratios {ROA (7.99, 8.27), Dividend Yield (1.45, 2.48), PE (19.69, 21.7), Price/Sales (0.16, 2.4)}. Interestingly, we found that all the price performances of the stocks increased for the year 2002, unlike the S&P 500 Index, as shown in Figure 3. From this co-cluster, investors gained two types of information; firstly, investors can buy this cluster of stocks to diversify their portfolios, secondly, this cluster of financial ratios can be considered as an useful pattern to find good performing stocks.



6 Conclusion We proposed to use maximal quasi-bicliques to cocluster stocks and financial ratios. Compared to the concept of maximal bicliques, maximal quasi-bicliques are more
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