.lournal oflvluthematical und.Phl,siculScience:li,Ittl.-1(). Ntt.6.De.cemhu 199(t Printed in India

3A7

On Starlike Functionswith Respectto N-Ply Conjugateand SymmetricConjugatePoints M. S. KASI Department of lvlathernatis, l,oyala College, Madras, INDIA

V. RAVICHANDRAN Deparlrnent of Mathenntils, Anna lhrivenity, Madra-s-600025, INI)IA.

Abstract The classof starlikefunclionswith respectto n-ply corrjugate and syrunetriccorrjugatepoirrlsare of functionsarealsocon^sidered. introducedandstudied.Sorrrerelatedclasses

l. Introduction Let

A denotethe class of all analytic fuuctions "f (z) defined on the unit disk

ry =lz,lzl< l) with the normalizations "f(O)=0,/'(0)= l.

Let 5' denote the classof all

in A. Let .S*(a),((a) and (:(a) denotethe usual classes of starlikc. univalentfunctions convexand closeto convexfunctionsof order a 0 < q, < I respectivelydefinedby

.5'*(a)= lf el; Re #

> u,z e(-il

K(a)= lf el; Re{l.4r-l!_.', > u.z e(J} l'(z)

Cl(c,)= Lf e"4;Re19> o, for sorneg € K. z eLl\ g'(z)

M. S. KASI and v. RAVICIIANDRAN

A function .f e I is starlikewith respectto symrnetricpointsin [/ if

,l'' tr) x"[ ], o.z e(r. (z).f(-z)) lf (4). A functiolrf e A is starlikcwith rcspect This classis introducedandstudiedby Sakagrrchi to conjugatepointsin t/ is / satisfiesthe condition

n " { . ' f '-.f (2= }tn, z eu. lf (z) (z)) A function ./ e I is surlike with respectto symmetricconjugatepointsin ( I if it sntishcs I zf'tz\ Re{4'

I -}>0' z e(!'

l.f (z)- .f(-z)J

Denotetheclasses consisting of thesefunctions Thcscclasscs UVSi and5l respectively. are introducedby El-Ashwahand Thomas(l). Thesefunctionsare close lo convex. Sokol(fi) introduced two niore pararrreter in this classand obtainedstructural fornrurla,tlrc coclliciorl estirnate,the radiusof convexityand resultsaboutthe neighbourhoods of functions. Slrannrugarrr and Ravichandran(5) also studied the classof starlikefunctionswith respectlo syrnnrctric points.

In this paperwe introducethe classof functionsstarlikewith respectto n -ply conjugate points and certain relatedclassesof functionsand obtain structuralfomrula, distortion theorcnr and convolutiontheorems.

2. IDefinitionsand Preliminaries

Inthefollowing definitio\rs, n > l,wn = I and 0
lcl

On Starlike Functions with Respect to N-Ply (.lonjug
.109

n-k (^k,). J',Q)= 1'2t r f ll k=O

Definition2.1 : A function f e A is starlikewith respectto n -ply conjugatepointsof order u if / satisfies

zrf,(r\ I > u , , zeU.

(

Re{+'=

(l)

f

lf,(z)+f,(z)J Denote the classof all suchfunctionsby,S';'''" The functiottsstarlike with respectto r - fold qymmetricpoints having real coclTicicnrsarc obviouslyin this class. Definition2.2 : A frrnction.f e,4 is convexwith respectto n -ply conjugatepointsof order cx,if ./ satisfies

r ) I )ef'e)\' L, ne{*t>u.. l

-

r

-

-

:

-

l

(2)

ze(t.

l,/,(z)+ ./ nQ)J Dertote the class of all such fuuctions by Klo The firnctions which are convex with respect to n - fold symnretric points having rcal coefficients are in this class.

Da./inition 2.3 : A function f e A is closeto convex rvith respectto n -ply cortjugatcpoittts of order u, correspondingto the function h e ('n'() if ./ satisfies

I z/''(r) I _ : _ l > ,r.

R e { -;-::-

z e(i .

(3)

lh,(z)+hr(z)J Derrotc the classof all such functionsby C:'" .

.l o u r.A I q I h. P h t .Sc i.. Vol. 3 (), N o. (t. L)ec cttnh (x' I 996

M. S. KASI and V. RAVICHANDRAI.f

310.

rvith respectto n - fold symntetricpoints having real coefficients The frnctions close-to-convex are in tltis class.

It .f (z)=z+ZLz enz'

and g(z)=z+2I:2 hrz', are analyticin f i. then tltcir

convolutiondenotedby (.f * S\Q) is defined by (f*g)(z)=z+l

arhnzn

n=2

we needthe following lernrnasto proveour nrainresults. : t2l If g(z)eA isstarlikeint/ and.f e,I . thenfor ft(z) convc\in f/ rvith LEIv,fit,L42.1 h(0) = l' we ltave ' f (z\ < h(zl implies19- < h(z\. z e( I . ' ' gQ) g'(z) A rrroregeneralresultis in [2] and the aboveresultis sufficientfor our purpose.Lct /t,. denote the classof all prestarlikefilnctionsf (z) definedby theconditiort . .f .'R.- if andonlYif -f *eS* (l

(a).

z\z-u

*(a'). F e A- tlten LEI'llv[A 2.2 : [3] For q. ( l, let f € Ro,g eS

( r*..n\ l+lucco(F({/)). .N \ "r

/

3. Main Results

THEORE|vI3.1 : If f(z)..s';.'.o.

then the frurction ./(z) is close-to-collvexof ordcr (r atrd

ttnivalent.

.l our.Al ath.Phy.Sci., Vol.3 0. N o. 6. [ )ecemher I 996

( )n Starlike Fhnctronsv,tlh Respeclto N-Ply ('orlugtttc un.l S.l',l,nrctric('onjugcttePoints

[ ' r o o j ' : l t . / ' . S ' ; ' ' ' o . t h e n( l ) h o l d s .R e p l a c ez b y i : k z . k = ( 1 . 1 . 2. .,. , n - t

3| |

i n ( l ) : r r r da d d a l l t h c

incqualiticsto get

I zr/';ra "' I} > r r . z e ( t . I t, ct*7,
Rc{

= .fr(z) and rn-t S6r-1rz)=Tttl. wlrereu'ehaveusedfhefactthat ot-k.f'n(altz)

Tlrissltorvs

1./'r(z)+7r (x. Rc "/ h'(zl /'tlz

This showsthat f is close to convexand hcncefunctionsstarlikervith respccllo coldugatc pointsof order u areunivalent.

T'HEOREII3.2: (i\ .f .,(:'"

andif z1''esi'n'" .

(ii) ff;'' c,\'''''o Proo.f".Part(i) followseasilyfrom thedefinitions.To provc(ii). let .f e Kf,'o and LI (z) = ,.f '(z) a1d N (z) ,rif.^.. t nen.

J''(z) +-7'(i) . 2

tvl'(z) _l+(l-2u)z

N'(z)

l- z

and n- is convex.Henceby Lentnta(2). it follorvsthat z.f'(2 = _AI(z) -l+(l-2q.\z r- z + . f, ( z ) f n Q ) N ( z ) This cornpletes tlte proof. It canbe provedsimililrly that the frurctionsin ('f,'o areclose to couvexattdltettccuttivalettl. .l our -lrt qt h.Phl'..\'cr.. l'o l. 3 0. N o. 6. I.)c.ctrtnhc r I 99(t

M. S. KASI and V. RAVIC:I{AI\I)RAN

312

THE7REIvI3.3: lf .f .,S':'''o, then 2u)"

l-(l(l+rn7


@41 n

l+(l- Zur" 2(l-n)*,


'

(l- r'1

"

2(l-a)

'

(l-rn1

The results are sltarp.

Proof:Let f -5':'''". Definep(z) trndg(z) by

p(z)--W '

.f,(z)+ .f ,(z)

T hen p( z ) - l + c z n+ .... w i th

f ,(z)*7 ,Gl

and g(z) =

Re p(z) > a

and g(z) = z + oz'*l +.. .

Therefore. we have

?!:e) (l+rn1


n

2(t-lc)

(l-rn1

n

and This showsthat p(z) lies in the disk whosedianteterendpointsat l+(l-

2u)rn

l-(l-2u)rn l+rn

l-rn

Sincezf'(z) - p(z)g(z) we havethe results. The resultsare sharpfor the function/ obtainedfrorn zf ' (z) - l+ (l-2s.)zn

f (z)

l- zn

J ottrM ath.P hy. Sci., Vol.3 0, N o. 6, December I 996

is starlikc o[ ordcr rr'

On StarlikeFunctions with Respectto N-Ply (lonjug,otean.l S)mmetric (lonlugate Pttintt

Sirrcefr(z)=f(z)

and f(z\

is starlikeof order u

.r l.l

rvith rcal coeffrcieuts. *'c scc that thc

frrnctionf (z) isin sj'"'o.

Sokol[6] obtainedthe distortiontlrcorernfor thecasen = l. hrt his resultis ftrlse. Tlris is duc to l?rct tlut l./(z) *7 ttllt 2 is notan oddfunction.In factthefrrnctio n I.f Q) - .f (-z)U 2 uscdlor sirnil:rr pointsis indeedan oclclfunctiou. rvithrespect theoremin thecaseof starlikefrurctions to syrrunetric

THEORfuI 3.4 : A function J' eS'*'''ct if and only if thereexistsa fiuictiorr p(z') iuralytic in U . with p(0) = l, Re p(z) > 11satisffilg

z I "n' ( q ) * V ' " ,' "( i ) - z ttn)dq. .f(z)=Ip!)exp(:t ts n o Proof: Suppose that / =.S';'''o Let p(z) bedefined by

=-'1ry: P(z)

.fne)+f nQ)

z4!it? +J''!in rlren. p,(z)*V,
and hence

f ,ei+7,G)=.*Jli P,(q)+ I nG)-z 'Lz; 2z

,']

:

This showsthat

re)=p(,,-{iiryrrl From this, the resultfollows. The otherpart of the Theoremfollows similarly. ' For n = | and q, = 0. we havethe resultof El-AshwahandThomasil1. JourA{ath.Pfu,.Sci..Vol.3(),lr1io.6. I )e.;ctnher 1996

M. S. KASI ard V. RAVICHANDRAN

THEOREIv|3'.5:Let f .S*'n'o and g eR,, hasreal coeffrcierrls, then /*g

e,s,l'''t'

Proo^/' . Sincef . Si,'''". thefunctionG(z) defiiredby

(i(z)- J'G) +7 '(i) 2

is analyticand starlikeof order u,. Define F(z) by Zzf'(z)

f , ( z ) +f rn( ez)) ralytirc al -(1. Tlten F (z) is analytic artd Re F(z\ > a. Sinceg e- -R,,

$

'e have by lenrnm L1. L.!.

(g * ( i['')(z\ -

(g * { i)(z)

liesin the closedcollv rivalent ival llt to convexhull of F(( t\. But this is equ

z'(f *il'e) 2z

I

--

Re{

1

.,

}>u.ze(t. * l(./'*s\,G) +(f x't,Q)|

This cornpletesthe proof. Since ,( c Ro. we have the following. o n v o lution u l i n'ith conl'e.rf u r t c l i o r t s l t i t v i n g ('OROLLARY 3.1 : The class ,s:'"'o is closedunder' ccol real coefficlents. ;oel :nts rs nccessar!'.T l r i s u i l l l r c c l c i t r coefficicnt It should be noted that the assuntption(l(z) ltas real <

fronr the followittg exiuuple. Let J'Q) = z l(l- z)2 aud 0(z)= z /(l-iz).

Then /

'(z)

e ,\* ' l ' o and 0(z )

is convc)i brrt

( . / * 6 Xz ) i s n o t i n s j .r' O.

It can be shown that this class is closedunder certain integral opcrators. Also llrc class K:'"

is closedunder convolutionsrvith ftlnctions in R,, having real coefficieltls. Tlris follous

easily frour the above theorenr and the fact that "f conve.\ rvith respect to rr - trrlv corliugalc .lottr.lluth.Phy.Sci..

lbl.30. No.6, Decanher

| 996

On Starlike Functions with Resryct to N-P11,(.'onjugate and Synnetic ('onlugate Points

3|5

if and only lf zf is starlikervith respectto ,?- ply corliugalcpointsof

points of order u orderu,.

THEORE,t 3.6: The class( f'o is closedunder convolutions with frrnctionsin /(,, havingreal coefficients.

THEORE4 3.7 : lf f .s:'n,o, then

F @ = : i .f@+7(a) ds is alsoin ,\j'''o . Proof : The function (f n(z)*7 ,till l2 is starlikeof order alpha and has real coeffrcietrts. Also

t|

R'i*

'tt,7fl

l

>u,. 43-l=*"{'u'c,!<2-nl

l F n G \+ F , G l l

By lenu

r

t f n ? ) + f, ( z \ J

2.1. rveltavethe resu

The classesof ftlnctions cousistingof starlike, convex rvith respectto n - fold sytttntetric conjugatepointsciurbe introducedandthe similartheoremsfor thesenewclassesarc iltdccdtntc. Sincethe definitiousand the theoremsabout the nervclassesare similar to thoscof this paper. '

tve onrit the details.

Acknowledgments

The researchof V.R. is supported by the Council of Scientitrc and Industrial Research,New l)clhi.

IIc is

also thanlitirl to T.N. Sharunugarntbr his guidarrceduring the preparation ol the paper.

tSt11, J ou r. L t u l h. P h.y.Sc i., I/o1.3 (), N o. (t. L) ec e tn lt.!v 1

316.

M. S. KASI ard V. RAVICHAI.IDRAN

References l. 2. 3. 4. 5. 6.

El-Ashwah, R.M. and D.K. Tlroluas, Some subclassr:sof close to convc\ litttclirttts, J. RamanujanMath..Soc.,2( I ), 85-l00 ( 1987). Porurusamy,S., SomeApplicationsof tirst order differential subordinations,(ilnsrtih ltlutlrcntalic'ki, 25(45),287-296( l e90). St. Ruscheweyh,Covolutions in Geonretricl'turctionstheory, Sen. lvlatlt .Sap.,83, I''rcssercdc Montreal,Montreal,( I 982). Sakaguchi, K., On CertainUnivalentmapping,J. Math. Soc.ofJayttr, ll(l), 12-15(1959). C.hlthe radiusof univalencyof certainclasscsol'analytio Sharunugam, T.N. and V. Ravichandran, fuirctions,J.lv{ath.& PhysicalScf.,28(1994),(to appear). Sokol, J., Functions starlike with respect to corrjugatepoints, T,eszylyNaukos'c ltrlitcchniki 12,5344 ( l99l ). Rzeszowskiej,

.l our.A4at h.P hy.Sci., lbl. 3 U,N o. 6, Decenh er I 996

On Starlike Functions with Respect to N-Ply Conjugate ...

convex and close to convex functions of order a 0 < q, < I respectively ... inition 2.3 : A function f e A is close to convex rvith respect to n -ply cortjugatc poittts of.

311KB Sizes 1 Downloads 137 Views

Recommend Documents

On Starlike Functions with Respect to N-Ply Conjugate ...
?'tr:Y). (l+rn7 ". The results are sltarp. Proof:Let f -5':'''". Define p(z)--W. ' .f ,(z) + .f .... St. Ruscheweyh, Covolutions in Geonretric l'turctions theory, Sen. lvlatlt .Sap.

FUNCTIONS STARLIKE WITH RESPECT TO N-PLY ...
J. Math & Math. Sci, 12(2)(1989), 333–340. Department of Computer Applications, Sri Venkateswara College of. Engineering, Sriperumbudur 602 105.

on starlike functions with negati\ze coefficients
r + zf "(z)f f'(") or zf '(z)lf e) lying in a given region in the right half plane; the region is often convex and symmetric with respect to the real axis [2]' Recently Ma and ...

Respect to the Environment Respect For Human - Infopack ...
0090 541 451 6234 (Whatsapp and Viber software is available for fast contact). [email protected] – [email protected]. https://www.facebook.com/profile.php?id=565804930. Page 2 of 2. Respect to the Environment Respect For Human -

Conceptualizing leadership with respect to its historical ...
Alternatively, transformational leadership theory argued that ''good'' leadership is achieved through more ... Theorists such as Clegg and Hardy (1996b) offer some interesting insights into how such an ...... Manz, C. C., & Sims, H. P. (1991).

A Review of Decision Support Formats with Respect to ... - CiteSeerX
Dept. of Computer Science and Computer Engineering, La Trobe University. Abstract ... On a micro level, computer implemented guidelines. (CIG) have the ...

A Review of Decision Support Formats with Respect to ... - CiteSeerX
best decision. This is difficult. The amount of medical information in the world is increasing. Human brain capacity is not. Computers have the potential to help ...

Direct Visual Servoing with respect to Rigid Objects - IEEE Xplore
Nov 2, 2007 - that the approach is motion- and shape-independent, and also that the derived control law ensures local asymptotic stability. Furthermore, the ...

Conjugate Information Disclosure in an Auction with ...
Jul 15, 2016 - follower's global constraint is implied at the solution, the leader's global ... this restriction and still preserve the paper's analytical techniques, ...

Haemophilus type b conjugate vaccines
Nov 25, 2017 - 4.8 of the SmPC, with an unknown frequency. The package leaflet should be updated accordingly. The CMDh agrees with the scientific conclusions made by the PRAC. Grounds for the variation to the terms of the Marketing Authorisation(s).

Fun with Functions Accounts
Microsoft Excel: Fun with Functions. J. Dee Itri, Excel Maze. ○ Cell referencing. ○ Row numbers and column letters (E7, G4, BZ12). ○ =5+5 vs =A1+A2. ○ Ranges (A:A, 1:4, A5:B14). ○ The great and powerful “$” sign. ○ Relative (B5). ○

Triangles with Special Isotomic Conjugate Pairs
May 24, 2004 - Introduction. Two points in the plane of a given triangle ABC are called isotomic conjugates if the cevians through them divide the opposite sides in ratios that are reciprocals to each other. See [3], also [1]. We study the condition

L1 Total Variation Primal-Dual Active Set Method with Conjugate ...
with Conjugate Gradients for Image Denoising. Marrick Neri. ABSTRACT. The L1TV-PDA method developed by Neri [9] to solve a regularization of the L1 TV ...

An Introduction to the Conjugate Gradient Method ...
Aug 4, 1994 - Tutorial” [2], one of the best-written mathematical books I have read. .... Figure 4 illustrates the gradient vectors for Equation 3 with the constants given in ...... increases as quickly as possible outside the boxes in the illustra

Haemophilus type b conjugate vaccines
Nov 25, 2017 - The CMDh reaches the position that the marketing authorisation(s) of products in the scope of this single PSUR assessment should be varied.

Statistics of wave functions in disordered systems with applications to ...
Our results are in good agreement with random matrix theory or its extensions for simple statistics such as the probability distribution of energy levels or spatial ...

WORKSHOP ON SPECIAL FUNCTIONS Special ...
Special functions appear naturally in many problems of applied mathematics and engineering sciences. Motivated by the applications ... other areas of natural sciences. In this talk our aim is to ... Centre, Chennai, India. 5. Sanjeev Singh is with De

Estimating Production Functions with Robustness ...
The literature on estimating production functions on panel data using control functions has focused mainly ... ∗We thank James Levinsohn for providing us with the Chilean manufacturing industry survey data. We also ...... analytical in the paramete

Counting with generating functions in MAXIMA - GitHub
In this paper we describe implementations of two counting methods which are based on generating func- ... Pólya theory [2] is an important counting method when some objects that are ...... [9] http://www.tcs.hut.fi/Software/bliss/index.html. 19.

A Review of Decision Support Formats with Respect ...
A Review of Decision Support Formats with Respect to Therapeutic. Guidelines Limited ... stakeholders in the Australian healthcare scene gain agreement on a generic decision support language, considering the .... is designed according to established

Law No. (02) for the year 2008 with respect to Food within the Emirate ...
(02) for the year 2008 with respect to Food within the Emirate of Abu Dhabi. Definitions. Article (1). The state of the United Arab Emirates. The State. The Emirate ...