

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Processing data streams with hard real-time constraints on heterogeneous systems Uri Verner, Assaf Schuster and Mark Silberstein, Technion.

ABSTRACT Data stream processing applications such as stock exchange data analysis, VoIP streaming, and sensor data processing pose two conflicting challenges: short per-stream latency – to satisfy the milliseconds-long, hard real-time constraints of each stream, and high throughput – to enable efficient processing of as many streams as possible. High-throughput programmable accelerators such as modern GPUs hold high potential to speed up the computations. However, their use for hard real-time stream processing is complicated by slow communications with CPUs, variable throughput changing non-linearly with the input size, and weak consistency of their local memory with respect to CPU accesses. Furthermore, their coarse grain hardware scheduler renders them unsuitable for unbalanced multi-stream workloads. We present a general, efficient and practical algorithm for hard real-time stream scheduling in heterogeneous systems. The algorithm assigns incoming streams of different rates and deadlines to CPUs and accelerators. By employing novel stream schedulability criteria for accelerators, the algorithm finds the assignment which simultaneously satisfies the aggregate throughput requirements of all the streams and the deadline constraint of each stream alone. Using the AES-CBC encryption kernel, we experimented extensively on thousands of streams with realistic rate and deadline distributions. Our framework outperformed the alternative methods by allowing 50% more streams to be processed with provably deadline-compliant execution even for deadlines as short as tens milliseconds. Overall, the combined GPU-CPU execution allows for up to 4-fold throughput increase over highly-optimized multi-threaded CPU-only implementations.

1.

INTRODUCTION

Stream processing is one of the most difficult problems from the algorithmic and system design perspectives. This is because the data processing rate should not fall behind the aggregate throughput of arriving data streams, other-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ICS’11, May 31–June 4, 2011, Tucson, Arizona, USA. Copyright 2011 ACM 978-1-4503-0102-2/11/05 ...$10.00.

CPU

Accelerator SIMD SIMD SIMD SIMD

core

core SIMD SIMD SIMD SIMD SIMD SIMD SIMD SIMD

core

core

Job Work scheduler DRAM

Bus DRAM

Bus

Figure 1: A model of a heterogeneous system composed of a CPU and an accelerator

wise leading to buffer explosion or packet loss. Stateful processing, which is the focus of this work, also requires the previous processing results to be available for computations on newly arrived data. Even more challenging is the problem of hard real-time stream processing. Many life-critical and latency-sensitive applications such as medical data processing, traffic control, and stock exchange monitoring require strict performance guarantees to be satisfied along with the common requirement of sufficient overall system throughput. In such applications, each stream specifies its deadline, which restricts the maximum time arrived data may stay in the system. The deadline requirement fundamentally changes the system design space, rendering throughput-optimized stream processing techniques inappropriate for several reasons. First, tight deadlines may prevent computations from being distributed across multiple computers because of unpredictable network delay. Furthermore, schedulability criteria must be devised in order to predetermine whether a given set of streams can be processed without violating their deadline requirements and exceeding the aggregate system throughput. Runtime predictions must thus take into account every aspect of the processing pipeline. A precise and detailed performance model is therefore crucial. The runtime prediction problem, hard in the general case, is even more challenging here: to allow deadline-compliant processing, the predictions must be conservative, in conflict with the goal of higher aggregate throughput. High performance, massively parallel accelerators such as GPUs are natural candidates for speeding up multiple data

stream processing. However, because of their unique architectural characteristics their use in this context is not straightforward, and becomes complicated for hard real-time workloads. • Low per-thread performance. Accelerators are optimized for throughput. They multiplex thousands of lightweight threads on a few SIMD cores, thereby trading singlethread performance for higher throughput. Furthermore, they are connected to a CPU via a bus with limited throughput and high latency. Data-parallel processing is inapplicable to single streams because of the stateful processing requirement. Thus, per-stream accelerator performance may be much lower than that of a CPU, which essentially precludes streams with tight deadlines from being processed on an accelerator. • Weak inter-device memory model. Accelerators cannot access the main CPU memory. They have their own separate memory, where the input and output data are staged by a CPU prior to and after execution respectively. No consistency is guaranteed if that memory is accessed by a CPU while the accelerator is performing computations. Consequently, streaming the input dynamically from a CPU is not possible; rather, a bulk of data from multiple streams must be batched together for non-preemptive, finite-time processing1 . • Non-linear throughput scaling. For better hardware utilization, accelerators require many concurrently active threads. Thus, effective throughput depends non-linearly on the number of concurrently processed streams, making run-time prediction difficult. Previous works on hard real-time processing [3, 7, 20, 21, 2] dealt with homogeneous, multiprocessor, CPU-only systems and cannot be directly applied here. They schedule the input streams assuming only one stream being processed by each processor at any instant, whereas the accelerator’s advantage is in the concurrent processing of multiple streams. Contribution. We designed a framework for hard realtime stateful processing of multiple streams on heterogeneous platforms with multiple CPUs and a single accelerator. The framework employs the CPUs together with the accelerator, thus reaping the benefits of fast single-stream processing of a CPU and high-throughput multi-stream performance of an accelerator. To the best of our knowledge, this is the first time accelerators are used in hard real-time computations. The core of the framework is an algorithm for scheduling of input streams to processors that is deadline-compliant and allows sufficient aggregate throughput. The algorithm partitions the streams into two subsets, one for processing by the accelerator, and the other for all the available CPUs. A user-supplied schedulability criterion validates that each subset is schedulable. Non-linear throughput scaling in accelerators makes this partitioning problem computationally hard in general, as it requires every two subsets of streams to be tested for schedulability. The exact solution requires exhaustive search in an exponential space of subsets and does not scale beyond a few input streams. We develop a fast polynomial-time heuristic for scheduling thousands of streams. Each stream is represented us1

NVIDIA GPUs enable dedicated write-shared memory regions in the CPU memory, but it has low bandwidth and high access latency.

ing its deadline and rate properties as a point in the twodimensional (rate-deadline) space. The heuristic finds a rectangle in this space, so that all the streams with their respective points in the rectangle are schedulable on the accelerator, and the rest are schedulable on the CPUs. We show that this simple heuristic does, in fact, optimize many of the considerations above. We implement and evaluate our stream processing framework by using it to accelerate AES-CBC encryption of multiple streams on NVIDIA GPUs. AES is widely used in the hard real time context. As it is integral to encrypted data processing, AES must meet hard real time constraints in systems where hard deadlines are part of Service Level Agreements (SLAs). For instance, it is a part of the SSL and IPSEC used in Web and VPN gateways. Other examples include encrypted VoIP, IPTV, and media streaming services. AES framework is universally applicable to a large family of streaming workloads fully characterized by the rate and deadline parameters, and whose data processing time is determined by size (rather than content). Besides AES-CBC, additional applications in this family include SVD, digital noise filters, convolutions, FFT, and threshold-crossing detection. Unlike the previous works on AES encryption on GPUs [17, 9, 10], AES-CBC encryption is stateful and does not permit independent processing of different data blocks of the same stream. This constraint necessitates multiple streams with different rates to be scheduled concurrently on a GPU, thereby creating a highly unbalanced workload that leads to much lower throughput. We describe a method for the static balancing of multiple streams that achieves high GPU throughput even for harshly unbalanced workloads, and then develop the schedulability criterion for AES-CBC processing on a GPU, used in conjunction with the scheduling algorithm described above. We perform extensive experiments on a variety of inputs with thousands of streams, using exponential and normal distributions of rates and deadlines. The framework achieves a maximum throughput of 13 Gbit/sec even with deadlines as short as 50ms while processing 12,000 streams. We show that our algorithm achieves up to 50% higher throughput than alternatives that partition the streams according to rate or deadline alone. Overall, adding a single GPU to a quadcore machine allows 4-fold throughput improvement over highly optimized CPU-only execution.

2. 2.1

MODEL Application model

A real-time data stream s is described by a tuple O hr, di, where r denotes the stream rate, and d denotes the processing deadline. Each data item that arrives at time t must be processed to completion by time t + d. The stream rates and deadlines may differ for different streams, and are constant. We transform a data stream s : hr, di into a stream of jobs, where each job is created by collecting data items from the stream s during an interval of time I. The interval I is determined as a part of the algorithm, as discussed later. After transformation, every stream is represented as an infinite sequence of jobs J = {J 0 , J 1 , J 2 ...} arriving at times I, 2I, 3I, Job J k is described by a tuple hwk , dk i , where wk = r · I is the amount of work – or, the number of data

items – to be processed by that job, and dk = kI + d is the deadline of the job. Job J i+1 cannot be processed until the processing of J i is complete; stateful execution implies that parallel processing of different jobs of the same stream is impossible. Such data dependency between subsequent jobs of the same stream forces pipelined processing of that stream. Namely, at every given moment, one job of a stream is being processed while the data for the next one is being collected. The system receives a set S containing multiple independent streams, where each stream si : hri , di i ∈ S has its own rate and deadline. Jobs of different streams can be processed concurrently. For simplicity we assume a constant number of streams |S|. Dynamic inputs can in fact be treated by activating our methods periodically or in response to changes in the system status. Consequently, when arrival rates change steadily over time, the methods developed in this paper provide an adequate solution. However, when arrival rates change drastically and unpredictably, light-weight load balancing techniques must be invoked on-the-fly in order to utilize the accelerator; these are beyond the scope of this work.

2.2

Hardware model

We focus on heterogeneous systems composed of different types of computing units (CU): general-purpose processors (CPUs) and accelerators with multiple SIMD cores, as presented in Figure 1. A CPU initiates the execution of the accelerator by invoking a subroutine, called kernel, comprising a batch of jobs. The accelerator processes one batch at a time in a non-preemptive manner. Jobs in the batch are scheduled on the SIMD cores by the hardware scheduler. We have very limited information and no control over how these jobs are actually scheduled. We assume that the scheduler strives to maximize accelerator throughput. An accelerator has a separate memory, to which all the data must be copied by a CPU prior to kernel execution. Data transfers are carried out via an external bus. A CPU and an accelerator implement the release consistency memory model, whereby the data transferred to and from an accelerator during kernel execution may be inconsistent with that observed by the running kernel. Consistency is enforced only at the kernel boundaries. We develop an algorithm for a system with multiple CPUs and a single accelerator. Extending to multiple accelerators is a subject of the future work.

3.

SCHEDULING OF MULTIPLE STREAMS

We define the scheduling problem as follows: Given a set of input streams {si : hri , di i}, each with its own rate ri and deadline di , find the assignment of streams to PCUs, s.t. the obtained total processing throughput T ≥ i ri , and no stream misses its deadline. This problem has an optimal algorithm for a uniprocessor CPU [16]; that is, it produces a valid schedule for every feasible system. However, scheduling jobs with arbitrary deadlines on multiprocessor systems is a hard, exponential problem [20]. The existing CPU-only scheduling approaches [20, 16, 3] cannot be applied in our setup because they schedule jobs one- or a-few-at-a-time. In contrast, accelerators require batches of thousands jobs to be packed together, raising the question of how to select those to be executed together so that all of them comply with their respective deadlines.

Two main approaches are known for scheduling real-time streams on multiple CUs: dynamic global scheduling and static partitioning [21]. In global scheduling, idle processors are dynamically assigned the highest priority job available for execution. This approach is not practical in our system for two reasons: 1. The accelerator’s weak memory consistency makes it impossible to push new input data from a CPU to a running kernel. Thus, the batch of jobs being executed by an accelerator must be completed before a new batch can be started. Hence, the new batch for the accelerator should be statically created in advance on a CPU, under the constraint of timely completion of all jobs in the batch. In fact, proper batch creation is the main focus of this work. 2. The stream state is carried from one job in a stream to the next job of the same stream. Slow communication between the CPU and the accelerator makes the overhead of moving jobs of the same stream between CUs too high. Furthermore, since a steady state is assumed, migration can be avoided with proper batch creation. These considerations led us to choose the static partitioning method where multiple streams are batched together and statically assigned to a particular CU. The main challenge is to select the streams for the batch to achieve the required throughput under the deadline constraints.

3.1

Batch execution

Accelerator execution is performed in batches of jobs. Batch execution time depends on parameters such as the number of jobs, distribution of job sizes, and the total amount of work to be processed. Our design for efficient job batching was guided by the following principles. 1. Batch as many jobs as are ready to be executed. Batches with many independent jobs have higher parallelism and provide more opportunities for throughput optimization by the hardware scheduler. 2. For every job, aggregate as much data as possible (this means aggregate as long as possible). This is because batch invocation on an accelerator incurs some overhead which is better amortized when the job is large. Moreover, transferring larger bulks of data between an accelerator and a CPU improves the transfer throughput. Aggregation time is limited by the deadlines of the jobs in the batch. More precisely, the deadline for a batch execution is the earliest deadline of any of the jobs in it. Distribution of job sizes in a batch affects the load balancing on the accelerator. The longest job puts a lower bound on the execution time of the whole batch. Suppose wi is the P amount of work in job i. Then, if i wi < maxi wi · C for a batch {hwi , di i} and an accelerator with C cores, accelerator P w utilization is at most maxii wii·C . The equation shows that P for a given batch size i wi , the load cannot be efficiently balanced if the amount of work in one job greatly exceeds that of other jobs. We use this observation and the previous principles to batch jobs in a way that minimizes their overall execution time, while all batches complete on time.

3.2

Rectangle method

A set of jobs is called schedulable on a CU if there exists a schedule where no stream misses its deadline and job dependencies are enforced (see Section 2.1). We aim to find

an assignment of streams to CUs such that the set of jobs assigned to each device is schedulable on it. We call this a schedulable assignment. Schedulability testing in our setup is equivalent to schedulability testing of synchronous periodic jobs, which is coNP-Hard even on a uniprocessor [8]. Due to the different constraints imposed by the different components, it makes sense to partition the streams into two sets: one for the homogeneous collection of CPUs and another for the accelerator. Each partition is then tested for schedulability on the target devices: if both tests return positive then the assignment is accepted as a schedulable partition. The streams assigned to the CPUs are scheduled using known algorithms for homogeneous multiprocessor systems. In turn, those assigned to the accelerator are batched, tested for schedulability using the schedulability criterion (see Section 3.3), and then scheduled using the accelerator’s hardware scheduler. Unfortunately, even with two partitions, the search space is exponential in the number of streams, which makes exhaustive search impractical. We thus develop a heuristic that reduces the number of tested partitions to polynomial in the number of streams. An accelerator poses several harsh constraints on its workload if the jobs are to be schedulable. It is thus more efficient to prune first the jobs which are not schedulable on the accelerator. Most importantly, invoking the accelerator incurs overhead, which, coupled with the latency of data transfers to and from the accelerator’s memory, determine a lower bound on job processing time. Thus, any job whose deadline is below this lower bound cannot be processed on the accelerator and should be removed from its partition. We next consider the job with the shortest deadline in the batch of jobs in the accelerator’s partition. Because the batch completes as a whole, this job effectively determines the deadline for all the jobs in the batch. We will denote by dlow the threshold for the shortest deadline of jobs assigned to the accelerator’s partition. By lowering dlow we restrict the maximum execution time of a batch, thus effectively decreasing the number of jobs that can be assigned to the accelerator. By increasing dlow we increase this number, with the penalty of having more short deadline jobs assigned to the CPUs. A simple heuristic is thus to test all partitions induced by dlow , where all jobs with the deadlines above dlow are assigned to the accelerator’s partition, and all the rest allocated to the CPUs. This heuristic exhaustively tests all the created partitions for different values of dlow . It may fail, however, to find a schedulable partition for inputs with too many short-deadline jobs, even if one exists. For such a workload, decreasing dlow would result in too tight a deadline for the accelerator, while increasing dlow would overwhelm the CPUs with too many short-deadline jobs. A possible solution is to move a few longer-deadline jobs to the CPUs’ partition, thereby decreasing the load on the accelerator and allowing it to assist the CPUs in handling shorterdeadline jobs. The longer-deadline jobs impose no extra burden on CPU scheduling, as short-deadline jobs would do. Thus, a natural extension to a single threshold heuristic is to add an upper bound dhigh to limit the deadlines for jobs assigned to the accelerator’s partition. Both heuristics, however, ignore the amount of work per job. Consequently, the accelerator may be assigned a highly unbalanced workload, which would seriously decrease its throughput (as explained in Section 3.1), thus rendering the

partition not schedulable. A reasonable approach to better load balancing is to remove work-intensive jobs (data aggregated from streams of high rate) from the accelerator’s partition. The increased load on the CPUs can be compensated by moving jobs with shorter deadlines and lower rates to the accelerator, whose overall throughput would thus increase. Two other thresholds are thus introduced: rhigh and rlow , which set an upper (lower) bound on the amount of work for jobs assigned to the accelerator’s partition. We end up with a heuristic for partitioning streams to CUs, which we call the Rectangle method. It considers partitions in which streams within a certain range of rates and deadlines are assigned to the accelerator, and the rest to the CPUs. Visually, the selected streams can be represented as a rectangle in the rate-deadline space. For example, Figure 2 shows a partition of 10,000 streams with normally distributed rates and deadlines. Each dot represents a stream. All streams inside the black rectangle are assigned to the accelerator, while the others are assigned to the CPUs. We see that a stream is assigned to the accelerator if its rate is in the range [0bps,1.8Mbps] and its deadline is in the range [27ms,81ms]. The Rectangle method tests the schedulability of all rectangles. The number of rectangles in an n × n space is 2 n(n−1) = O n4 . We reduce the number of tested par2 titions to O n2 lg n , first, by setting the lower rate bound rlow to 0 (since slower streams improve accelerator utilization), and second, by testing O (lg n) upper rate bounds rhigh for each pair of deadline bounds. Correctness is implied by the following property of schedulability: If a set of streams is schedulable on the accelerator, its sub-sets are schedulable as well. Similarly, if it is not schedulable, then no containing set is schedulable. Using binary search, it is enough to test O (lg n) upper bounds on rate in order to find a schedulable assignment, if one exists for the given pair of deadline bounds. A more advanced algorithm allows for O(n2) complexity but for simplicity we describe the slower one. Further details are omitted for lack of space. This algorithm produces deadline-compliant schedules, otherwise marking the input as unschedulable. Following existing methods for real-time scheduling, it assumes perfect runtime prediction by the performance model [21, 8, 2]. However, to compensate for imprecision, a safety margin is taken, which ensures 100% precision at the expense of slight degradation in schedulable throughput. Furthermore, out of all the schedulable partitions (rectangles), we choose the one for which the performance model predicts the largest safety (error) margin.

3.3

Batch scheduling and schedulability

Job are scheduled on the accelerator in batches. Every batch goes through a four stage pipeline: data aggregation, data transfer to local memory on accelerator, kernel execution, transfer of results to main memory. These stages are illustrated in Figure 3. Processing must be complete before any job deadline is missed, i.e., before the earliest deadline of any job in the batch. One batching guideline(see subsection 3.1) is to aggregate data for the jobs as long as possible, to reduce batching overhead. Therefore, the best aggrega, where dmin = mini di for a set of streams tion time is dmin 4 {hri , di i} assigned to the accelerator. The system produces a new batch to the pipeline every dmin time with all data 4

sistency model does not guarantee that the CPU updates of GPU memory will be visible to the running GPU kernel. This restriction prevents continuous data streaming from a CPU to a running GPU kernel. Kernel execution must terminate and be invoked again in order to read new data.

4.1

Figure 2: A partition of N=10K data streams (represented by dots) with generation parameters: normally distributed rate, µR = 1 M bps, σR = 0.5 M bps; normally distributed deadline, µD = 50 ms, σD = 15 ms. Streams within the rectangle are assigned to the accelerator. Batch 0 Batch 1 Batch 2 Batch 3 … 0

I

2I

3I

→

4I

CPU Accelerator memory copy

Kernel execution

Accelerator CPU memory copy

Figure 3: pipeline

5I

6I Time

Data aggregation

→

Batches are processed in a four-stage

4.2 4.2.1

accumulated since the previous batch. A batch of jobs will be schedulable if no stage of the pipeline exceeds dmin time 4 during its processing. Given a batch of jobs, we rely on an accelerator performance model to calculate the length of each pipeline stage. Efficient methods for schedulability of the CPUs are presented in [6, 7, 2].

4.

CASE STUDY: CPU/GPU SYSTEM

A GPU is a processor with multiple processing elements adjusted for graphics acceleration. Each processing element, or streaming multiprocessor (SM), is a SIMD processor with several arithmetic units, capable of simultaneous execution of an instruction on a vector of operands. Modern GPUs are fully programmable many-core devices, supported by programming models, such as CUDA and OpenCL, and compatible with general-purpose programming. In this work, we use a system with a multi-core CPU and a CUDA-enabled GPU accelerator. The application running on the CPU (host) invokes the GPU (device) by calling GPU methods (kernels). Kernel calls are asynchronous; they return immediately. A GPU has its own local memory accessible to a CPU via explicit data transfer operations. The kernel input and output are transferred from CPU memory over a PCI-E bus prior to the kernel execution, possibly overlapped with the kernel processing another data set. The GPU memory con-

GPU execution model

When a kernel is called, multiple threads are invoked on the GPU. A hardware scheduler schedules the threads to the SMs during kernel execution. Scheduling is hierarchical. The minimum schedulable unit is a warp, a group of 32 threads in CUDA. Each warp is assigned to an SM and executed on it in SIMD fashion. When a warp executes a high-latency command, such as accessing the off-chip memory, the scheduler attempts to hide this latency by executing other warps that are scheduled to this SM and are ready to be executed. Warps are grouped into thread-blocks. Upon kernel invocation, a queue of thread blocks is created. A global GPU scheduler then distributes full thread-blocks between SMs, and each SM then internally schedules its warps. Multiple thread blocks can be concurrently assigned to the same SM, thereby providing more opportunities for latency hiding. When all threads of the thread block are complete, the global scheduler assigns an unscheduled thread block from the queue. The execution parameters – the number of thread-blocks and the number of threads in a thread-block – are specified at runtime for every kernel invocation. In our scenario, jobs are executed on the GPU in batches and equally partitioned between thread-blocks. Each job is processed by one or more CUDA threads in the same thread block.

Batch execution on a GPU GPU load balancing

A GPU attains the best performance for massively parallel SPMD programs, with all the threads having the same execution path and runtime. Multi-stream processing, however, may deviate from this pattern. The difference in the rates of different streams results in greatly varying job sizes in the same thread block and degraded performance. Figure 4 shows that kernels that processed jobs with a wide spectrum of sizes took 48% more time to process than kernels that processed equal-size jobs with the same total amount of work. Threads that execute different jobs may follow different execution paths (diverge), resulting in serialized execution. Thus, limited fine-grain parallelism per job may require assigning several jobs to the same warp, where thread divergence and load imbalance might affect performance. We found, however, very little divergence for data stream processing, due to the periodicity of data stream functions. But load imbalance between the threads of a warp is detrimental to performance since the warp execution time is dominated by the longest job. The distribution of jobs among warps and thread blocks is crucial to kernel performance. We use the following simple algorithm to increase GPU utilization. 1. Create warps with jobs of similar size; 2. Partition warps to M bins such that total job size in each bin is about the same2 , where M is the number of SMs; 2

This is a version of the PARTITION problem which is NP-

3. Assign the warps in each of the M bins to thread-blocks, such that warps with similar size are assigned to the same block.

4.2.2

Selecting kernel execution parameters

The total number of thread blocks plays an important role in GPU performance. Figure 5 shows the throughput of an AES-CBC encryption kernel as a function of the number of thread-blocks on a GPU with 30 SMs. We see that choosing the number of thread-blocks as a multiple of the number of SMs maximizes utilization of the cores, whereas other choices cause up to 42% performance loss. Our threadsper-block choice satisfies two conditions: (1) the number of threads per block is maximized to allow better SM utilization; (2) the total number of thread blocks is a multiple of the number of SMs to balance the load between them.

Figure 4: Rate variance overhead

x ,1 0.004898[x]2 +0.005148[x]+49.62

1

SM utilization

Since the thread-blocks are scheduled by the hardware, not all thread-blocks created from a single bin can be guaranteed to execute on the same SM. Our approach attempts to combine good latency hiding, by creating thread-blocks that process jobs of similar size, with balanced overall load on the SMs, by creating equally-sized bins. Our experience shows that the hardware scheduler can leverage these benefits to find an optimal schedule for the thread-blocks. Experimentally, this approach provides better throughput than creating thread-blocks with equal total job size and with maximally-similar job size. Existing dynamic job scheduling methods for GPU, e.g. [4, 5], use software load balancing mechanisms, such as job queues. The required synchronization incurs large overhead, especially for short jobs. These methods can be used in addition to ours since our method is offline.

U (x) = min 0.8 0.6

Benchmark

0.4

Formula 0.2 0 0

32

64

96

128

Number of concurrent jobs

Figure 6: Non-linear SM utilization

4.3

GPU empirical performance model

The GPU performance model, or more precisely, its schedulability function (Section 3.3), is used by our partitioning algorithm to estimate the kernel time for processing a batch of jobs. In the model we assume that the jobs in a given batch are distributed among the SMs so that each SM is assigned the same number of jobs, regardless of job size. Such distribution is equivalent to a random one which ignores load balancing considerations. Hence the runtime estimate for this distribution gives us an upper bound on the expected runtime for a distribution which is optimized for load balancing. The problem is thus reduced to estimating the runtime of the jobs on a single SM, and taking the longest one among the SMs as the estimate of the runtime of the whole batch on a GPU. We now consider execution of jobs on an SM. For convenience, we express the performance of an SM as utilization: the fraction of the maximum throughput achievable by a single SM. The maximum throughput for a given GPU stream processing kernel can be easily obtained by measuring the throughput of that kernel on tens of thousands of identical jobs. We call a utilization function the relation describing the SM utilization as a function of the number of jobs invoked on that SM. The utilization function can be calculated by means of a lookup table generated by benchmarking a GPU kernel for different numbers of jobs. Figure 6 demonstrates the utilization function for the AES-CBC kernel with 4 threads per data stream (we also show a best-fitting quadratic curve for that function). The saw-like form of this function is due to the execution of multiple jobs in a single warp. Thus, in Figure 6, [x] is the rounding of the number of jobs (x) to the closest multiple of the number of jobs per warp that is higher than or equal to x.

5.

EVALUATION

In this section we evaluate our framework using state-ofthe-art hardware on thousands of streams.

5.1 Figure 5: Choosing the number of thread-blocks. Workload: AES-CBC encryption of 3840 data streams with equal rates.

Complete. We use a popular greedy algorithm which provides 4/3 − approximation to the optimal solution.

Experimental platform

Our platform was an Intel Core2 Quad 2.33Ghz CPU and a NVIDIA GeForce GTX 285 GPU card. The GPU has thirty 8-way SIMD cores and is connected to the main board by a 3GB/s PCI-E bus. The workload is based on the AES-CBC data stream, stateful encryption application. The AES 128 bit symmetric block cipher is a standard algorithm for encryption, considered safe, and widely used for secure connections and classified information transfers (e.g., SSL). Several modes of op-

eration exist for block ciphers. CBC is the most common – it enforces sequential encryption of data blocks by passing the encryption result of one block as the input for the encryption of the following block. The CPU implementation is Crypto++ 5.6.0 open-source cryptographic library with machine-dependent assembly-level optimizations and support for SSE2 instructions. For the GPU we developed a CUDA-based multiple stream execution of AES. The implementation uses a parallel version of AES, in which every block is processed by four threads concurrently. Streaming data is simulated by an Input Generator that periodically generates random input for each data stream according to its preset rate. During the simulation we dedicate one CPU to the input generator and another to control the GPU execution. Data is processed on two CPU cores and the GPU as an accelerator. We compare the Rectangle method with two baseline techniques: MinRate, which attempts to optimize the scheduling of streams with respect to their rates, and MaxDeadline, which does the same with respect to the deadlines. In MinRate streams are sorted by rate in non-increasing order {si : hri , di i}. The first k streams (those with the highest rates) are assigned to the CPU and all others to the GPU, Pk+1 Pk where k satisfies i=1 ri , and τCP U i=1 ri ≤ τCP U ≤ is CPU throughput. In MaxDeadline streams are sorted by deadline in non-decreasing order, so that the CPU is assigned the streams with the shortest deadlines up to its capacity τCP U , and the GPU processes the rest.

5.2

Setting parameters

System throughput was measured as the highest total processing rate with all the data processed on time. We use the following notations: N Number of streams Rtot Total stream rate (Gbps) µR , µD Average stream rate (Mbps), deadline (ms) σR , σD Standard deviation of rate (Mbps), deadline (ms) ∆R , ∆D Rate and deadline distribution functions In the experiments we used Exponential (Exp) and Normal (Norm) distribution functions for rate and deadline. Such workloads are common in data streaming applications. To avoid generating extremely high or low values, we limited generated figures to [0.1µ, 30µ] for the exponential distribution, and to [0.002µ, 100µ] for the normal distribution, where µ denotes the average distribution value. Figure 2 displays an example of a randomly generated workload with the following parameters: N = 10K, ∆R = N orm, µR = 1 M bps, σR = 0.5 M bps, ∆D = N orm, µD = 50 ms, σD = 15 ms.

5.3

Results

We tested the efficiency of the Rectangle method on workloads with different distributions of stream rates and deadlines in three experiments. Each workload consisted of N = 12, 000 streams. Figure 7 shows results of experiments where the average deadline is long (µD = 500 ms), the standard deviation of the rate is high, and the distribution is exponential. In this experiment, the throughput of the Rectangle method was 30% higher than that of MaxDeadline and similar to that of MinRate. MaxDeadline suffered from insufficient load balancing on the GPU, caused by simultaneous processing of streams with a wide range of rates. MinRate

CONST EXP

COPY AVG MAX 3.3% 4.8% 3.0% 4.7%

KERNEL AVG MAX 3.7% 7.0% 5.8% 11.3%

Table 1: Performance model estimation error

was effective because all deadlines were long, resulting in GPU processing of big batches. Figure 8 presents the performance of processing input with shorter average deadlines (µD = 50 ms). The workloads in this experiment are more time constrained, causing lower throughput in all three scheduling methods. MaxDeadline failed to produce a valid schedule for any value of the total rate larger than 2 Gbps, because CPU was assigned more short-deadline streams it could handle. For both MaxDeadline and MinRate, GPU throughput was limited by rtot ≤ 5 Gbps. For MaxDeadline, the reason is inefficient load balancing due to high-rate streams, whereas for MinRate, the limiting factor is the batch scheduling overhead created by short-deadline streams. In comparison, the Rectangle method provides up to 7 Gbps throughput by finding the correct balance between rate and deadline. Figure 9 presents results of experiments using normal distribution for rates and deadlines. Here we allow generation of values within a higher range, as described in section 5.2, but values are closer to µ on average, due to lower standard deviation in normal distribution. The shorter deadlines greatly reduce the throughput of MinRate, which makes no effort to avoid assigning short-deadline streams to the GPU. In contrast, MaxDeadline assigns these streams to the CPU, and benefits from a lower variance of stream rate than in the previous experiments. However, for low values of total rate, MaxDeadline puts more short-deadline streams than it can handle. The number of processed data streams defines the amount of parallelism in the workload. We tested the efficiency of our method for 4K streams, where the GPU is underutilized because there are not enough jobs that can execute in parallel. Figure 10 shows that the Rectangle method outperformed the baseline methods by finding a balance between the rates and deadlines. Assignment of high-rate streams to the CPU increases the number of parallel jobs on the accelerator. Controlling the deadline increases batch size and reduces batch scheduling overhead. In the last experiment we created workloads with exponentially distributed rates and deadlines while increasing the number of streams. Figure 11 shows that the high overhead of batch scheduling – a result of processing short-deadline streams on the accelerator – reduced the throughput of MinRate to below the measured range.

5.4

Performance model

The estimation error of our GPU performance model is shown in Table 1. Jobs of different sizes were randomly generated according to exponential and constant distributions. For each batch we calculated the estimated kernel time and data copying time, and measured its running time on the GPU. Then, we calculated the average and maximum precision errors. Figure 12 shows that with a 20% safety margin no deadlines are missed.

N = 4K, ∆R = N orm, ∆D = N orm, µD = 50 ms, σD = 15 ms

N = 12K, ∆R = Exp, ∆D = Exp, µD = 500 ms

100% % Data on time

% Data on time

100% 80% 60% 40% 20%

80% 60% 40% Out of memory 20% 0%

Out of memory

2.0

0% 2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

3.0

MaxDeadline

5.0

6.0

7.0

8.0

9.0

10.0

11.0

Total streams rate (Gbps) Rectangle

Total stream rate (Gbps) Rectangle

4.0

11.0

MaxDeadline

MinRate

MinRate

Figure 7: MaxDeadline fails on exponential rate distribution due to inefficient GPU utilization

Figure 10: Low level of parallelism (4000 streams). The average rate of each stream is higher than in previous experiments. The highest throughput is achieved by the Rectangle method, which balances rate (increases the number of parallel jobs on the accelerator) and deadline (reduces batch scheduling overhead).

N = 12K, ∆R = Exp, ∆D = Exp, µD = 50 ms % Data on time

100% 80%

∆ = Exp, µR = 300Kbps, σR = 180Kbps, ∆D = Exp, µD = 100 ms, σD = 30 ms

60% 40% Out of memory 20%

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Total stream rate (Gbps) Rectangle

MaxDeadline

MinRate

% Data on time

100%

0%

80% 60% 40% Out of memory 20% 0% 22000 6.6

Figure 8: MaxDeadline overloads the CPU with lowdeadline streams. MinRate suffers from high batch scheduling overhead because low-deadline streams are processed on the GPU.

24000 7.2

26000 7.8

28000 8.4

30000 9.0

Number of streams Total rate (Gbps) Rectangle

MaxDeadline

MinRate

Figure 11: Increasing the number of streams. The Rectangle method finds a schedulable solution for 17% more streams than MaxDeadline. MinRate chokes on the overhead of batch scheduling. N = 12K, ∆R = N orm, ∆D = N orm, µD = 50 ms, σD = 15 ms

80%

100%

% Data on time

% Data on time

100%

60% 40% Out of memory 20% 0% 2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

Total stream rate (Gbps)

80% 60% 40% 20% 0% 2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

Total streams rate (Gbps) Rectangle

MaxDeadline

MinRate

Figure 9: Both baseline methods overload the CPU on low rates. MinRate fails for all rates.

Calculated

+10%

+20%

Figure 12: Safety margin for kernel time estimation. No misses with 20% margin. Same input as in Figure 9.

Single GPU AES-CBC performance

Time analysis - GPU (internal) 100%

14

60%

GPU: Copy input

40%

GPU: Kernel

20%

GPU: Copy output

Throughput (Gbps)

80%

0% EXP

CONST

13.5

12.8

12

10.8

10 8 6 4 1.1

2 0 GPU kernel static data

GPU kernel dynamic data

GPU kernel + memory copy

CPU

Figure 13: GPU breakdown of pipeline stages for exponential and normal rate distributions Figure 14: Optimal results for single GPU

Time breakdown

We analyzed the CPU and GPU states during processing. The results show that CPU scheduling overhead is less than 3% on all tested workloads. On average, this overhead is 1.4% for streams with constant rate distribution and 2.8% for streams with exponential rate distribution. The CPUs reach full occupancy with constant rates; idling is

5.6

How far are we from optimum?

Figure 14 presents AES-CBC performance results on a single GPU for workloads consisting of batches with equal-size jobs. Since scheduling is trivial in this case, the results can be considered optimal for the given total aggregated rate. The columns show the throughput results for the following execution modes: (1) a GPU kernel executes a single, large, batch of jobs; (2) a kernel executes a stream of relatively large batches; (3) a GPU executes a stream of relatively large batches, including memory copies from/to the CPU memory; (4) a CPU executes a stream of jobs. According to these results, the performance of dynamic data processing on the GPU is 5% lower than for static processing. This is a result of additional accesses to the offchip memory required for streaming data. Dynamic data is stored in memory as a chain of data blocks, and threads must perform memory accesses to follow the pointers between these blocks. This overhead does not exist for static data, as jobs are simply stored sequentially (further implementation details are omitted for lack of space). Interestingly, there is an order of magnitude GPU to CPU maximum throughput ratio for this algorithm. The throughput of a system with a GPU and two CPUs for real-life workloads is compared to a system with three CPUs in Figure 15. In the experiments, both rates and deadlines of 12K streams were generated using the constant, normal and exponential distributions, with 50ms average

14

Throughput (Gbps)

5.5

Combined CPU+GPU performance for real life distribution 13.0

CPU contribution

12 10

9.0 7.0

8 6

3.3

4 2 0 GPU+2CPUs Const GPU+2CPUs Norm GPU+2CPUs Exp 50ms 50ms 50ms

3CPUs

Figure 15: Throughput of GPU+2CPUs is 4 times higher than that of 3CPUs

deadline. The chart shows that our system achieves up to 4fold speedup over a CPU-only system even for streams with 50ms deadlines.

6.

RELATED WORK

The problem of hard real-time stream processing can be mapped to the domain of real-time periodic task scheduling. A series of studies dealt with different aspects of task scheduling and load balancing in GPU-CPU systems. Joselli et al. [11, 12] proposed automatic task scheduling for CPU and GPU, based on sampling of their load. These methods are not suitable for hard real-time tasks, as there is no guarantee of task completion times. In specialized applications, such as FFT [18] or the matrix multiplication library [19], application-specific mechanisms for task scheduling and load balancing were developed. Dynamic load balancing methods for single and multi GPU systems using task queues and work-stealing techniques were developed[5, 4, 27, 1]. In [1], a set of workers on the accelerator execute tasks taken from local EDF (earliest deadline first) queues. These approaches cannot be used in our case as it is very hard to guarantee hard real-time schedulability in such a dynamic environment. An important work of Kerr et al. [13] describes Ocelot, an infrastructure for modeling the GPU. Modeling can be used in our work to create a precise performance model without benchmarking. Kuo and Hai [14] presented an EDF-based algorithm to schedule real-time tasks in a heterogeneous system. Their work is based on a system with a CPU and an on-chip DSP. This algorithm is not compatible with our system model because of the high latency of CPU to GPU communication. The problem of optimal scheduling of hard real-time tasks on a multiprocessor is computationally-hard [20]. Our work borrows some partitioning ideas from [21]. The term stream processing is often used in the context

of GPUs, and refers to a programming paradigm for parallel computations. As such it is irrelevant to our work. To prevent confusion, we use the term data stream processing. [12]

7.

CONCLUSIONS AND FUTURE WORK

We have shown the first hard-deadline data stream processing framework on a heterogeneous system with CPU cores and a GPU accelerator. We have developed the Rectangle method, an efficient polynomial-time scheduling approach that uses simple geometric principles to find schedulable stream assignments. Rectangle method throughput was shown to be stable for different workloads and is higher than that of the compared baseline methods in all of the experiments. It is especially preferable for workloads with shorter deadlines and more streams. Our future work will study ways to overcome some limitations of the proposed method. A formal treatment of the Rectangle method is required to prove its completeness (correctness is true by construction). Generalization of the Rectangle for multiple accelerators would make it applicable to a wider range of systems. Decreasing the complexity of the method would allow more irregular input to be handled.

[13]

[14]

[15]

[16]

[17]

8.

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Euro-Par 2009 Parallel Processing, pages 863–874, 2009. [2] S. K. Baruah. The non-preemptive scheduling of periodic tasks upon multiprocessors. Real-Time Syst., 32:9–20, 2006. [3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996. [4] D. Cederman and P. Tsigas. On sorting and load balancing on GPUs. SIGARCH Comput. Archit. News, 36:11–18, 2009. [5] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. Dynamic load balancing on single- and multi-GPU systems. In IEEE Intl. Symp. on Parallel and Distributed Processing (IPDPS), pages 1 –12, 2010. [6] S. Davari and S. K. Dhall. An on line algorithm for real-time tasks allocation. In IEEE Real-Time Systems Symp., pages 194–200, 1986. [7] U. C. Devi. An improved schedulability test for uniprocessor periodic task systems. Euromicro Conf. on Real-Time Systems, 0:23, 2003. [8] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task systems is coNP-hard. In SODA, pages 1029–1034, 2010. [9] O. Harrison and J. Waldron. AES encryption implementation and analysis on commodity graphics processing units. In CHES, pages 209–226, 2007. [10] D. A. O. Joppe W. Bos and D. Stefan. Fast implementations of aes on various platforms. Cryptology ePrint Archive, Report 2009/501, 2009. http://eprint.iacr.org/. [11] M. Joselli, M. Zamith, E. Clua, A. Montenegro, A. Conci, R. Leal-Toledo, L. Valente, B. Feijo, M. d’ Ornellas, and C. Pozzer. Automatic dynamic

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

task distribution between CPU and GPU for real-time systems. 11th IEEE Intl. Conf. on Comp. Science and Engineering (CSE 08)., 0:48–55, 2008. M. Joselli, M. Zamith, E. Clua, A. Montenegro, R. Leal-Toledo, A. Conci, P. Pagliosa, L. Valente, and B. Feij´ o. An adaptative game loop architecture with automatic distribution of tasks between CPU and GPU. Comput. Entertain., 7, 2009. A. Kerr, G. Diamos, and S. Yalamanchili. Modeling GPU-CPU workloads and systems. In GPGPU, pages 31–42, 2010. C.-F. Kuo and Y.-C. Hai. Real-time task scheduling on heterogeneous two-processor systems. In C.-H. Hsu, L. Yang, J. Park, and S.-S. Yeo, editors, Algorithms and Architectures for Parallel Processing. 2010. S. Lee, S. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler framework for automatic translation and optimization. In PPOPP, pages 101–110, 2009. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM, 20:46–61, 1973. S. Manavski. CUDA compatible GPU as an efficient hardware accelerator for AES cryptography. In Signal Processing and Communications, 2007., 2007. Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka. An efficient, model-based CPU-GPU heterogeneous FFT library. In IPDPS, pages 1–10, 2008. S. Ohshima, K. Kise, T. Katagiri, and T. Yuba. Parallel processing of matrix multiplication in a CPU and GPU heterogeneous environment. In Proc. of the 7th intl. conf. on High performance computing for comp. science, VECPAR’06, pages 305–318, 2007. S. Ramamurthy. Scheduling periodic hard real-time tasks with arbitrary deadlines on multiprocessors. In Proc. of the 23rd IEEE Real-Time Systems Symp., RTSS ’02. IEEE Computer Society, 2002. S. Rarnarnurthy and M. Moir. Static-priority periodic scheduling on multiprocessors. Proc. of the IEEE Real-Time Systems Symp., 0:69, 2000. L. D. Rose, B. Homer, and D. Johnson. Detecting application load imbalance on high end massively parallel systems. In Euro-Par, pages 150–159, 2007. S. Schneider, H. Andrade, B. Gedik, K.-L. Wu, and D. S. Nikolopoulos. Evaluation of streaming aggregation on parallel hardware architectures. In DEBS, pages 248–257, 2010. M. Sj¨ alander, A. Terechko, and M. Duranton. A look-ahead task management unit for embedded multi-core architectures. In DSD, pages 149–157, 2008. N. R. Tallent and J. M. Mellor-Crummey. Identifying performance bottlenecks in work-stealing computations. IEEE Computer, 42(11):44–50, 2009. W. Tang, Z. Lan, N. Desai, and D. Buettner. Fault-aware, utility-based job scheduling on Blue Gene/P systems. In CLUSTER, pages 1–10, 2009. S. Tzeng, A. Patney, and J. D. Owens. Task management for irregular-parallel workloads on the GPU. In High Performance Graphics, pages 29–37, 2010.

[image: Cues, constraints, and competition in sentence processing]
Cues, constraints, and competition in sentence processing

[image: Stochastic Data Streams]
Stochastic Data Streams

[image: Optimizing regression models for data streams with ...]
Optimizing regression models for data streams with ...

[image: Optimizing regression models for data streams with ...]
Optimizing regression models for data streams with ...

[image: Realtime HTML5 Multiplayer Games with Node.js - GitHub]
Realtime HTML5 Multiplayer Games with Node.js - GitHub

[image: Processing Big Data with Hive - GitHub]
Processing Big Data with Hive - GitHub

[image: Waveform processing apparatus with versatile data bus]
Waveform processing apparatus with versatile data bus

[image: Processing Big Data with Azure Data Lake - GitHub]
Processing Big Data with Azure Data Lake - GitHub

[image: Processing Big Data with Azure Data Lake - GitHub]
Processing Big Data with Azure Data Lake - GitHub

[image: Clustering in Data Streams]
Clustering in Data Streams

[image: Processing thematic constraints in pseudo-words ...]
Processing thematic constraints in pseudo-words ...

[image: pdf-175\realtime-data-mining-self-learning ...]
pdf-175\realtime-data-mining-self-learning ...

[image: Boosting with pairwise constraints]
Boosting with pairwise constraints

[image: pdf-175\realtime-data-mining-self-learning-techniques-for ...]
pdf-175\realtime-data-mining-self-learning-techniques-for ...

[image: Inducing Herding with Capacity Constraints]
Inducing Herding with Capacity Constraints

[image: Contractual Pricing with Incentive Constraints]
Contractual Pricing with Incentive Constraints

[image: pdf-0973\routine-data-processing-in-earthquake-seismology-with ...]
pdf-0973\routine-data-processing-in-earthquake-seismology-with ...

Processing data streams with hard real-time constraints ...

data analysis, VoIP streaming, and sensor data processing AES framework is universally applicable to a large family in such a dynamic environment.

 Download PDF

 524KB Sizes
 1 Downloads
 225 Views

 Report

Recommend Documents

[image: alt]

Cues, constraints, and competition in sentence processing

sentence processing, significant controversies remain over the nature of the underlying Psychology: Learning, Memory, and Cognition, 16, 555-568. Fisher ...

[image: alt]

Stochastic Data Streams

Stochastic Data Stream Algorithms. â—‹ What needs to be ... Storage space, communication should be sublinear Massive Data Algorithms, Indyk. MIT. 2007.

[image: alt]

Optimizing regression models for data streams with ...

Keywords data streams Â· missing data Â· linear models Â· online regression Â· regularized 3 Theoretical analysis of prediction errors with missing data. We start ...

[image: alt]

Optimizing regression models for data streams with ...

teria for building regression models robust to missing values, and a corresponding ... The goal is to build a predictive model, that may be continuously updated.

[image: alt]

Realtime HTML5 Multiplayer Games with Node.js - GitHub

â—‹When writing your game no mental model shift ... Switching between different mental models be it java or python or a C++ Senior Applications Developer.

[image: alt]

Processing Big Data with Hive - GitHub

Processing Big Data with Hive ... Defines schema metadata to be projected onto data in a folder when ... STORED AS TEXTFILE LOCATION '/data/table2';.

[image: alt]

Waveform processing apparatus with versatile data bus

Dec 2, 2010 - A plurality of transmitting nodes transmit the data signals to the bus. A hard disk and a waveform memory are connected on a com mon bus ...

[image: alt]

Processing Big Data with Azure Data Lake - GitHub

Processing Big Data with Azure Data Lake. Lab 3 â€“ Using C# in U-SQL. Overview. U-SQL is designed to blend the declarative nature of SQL with the procedural ...

[image: alt]

Processing Big Data with Azure Data Lake - GitHub

Processing Big Data with Azure Data Lake. Lab 4 â€“ Monitoring U-SQL Execution. Overview. U-SQL jobs are executed in parallel. You can use the job graph, and ...

[image: alt]

Clustering in Data Streams

Small(er)-Space Algorithm (cont'd). â€¢ Application in data stream model. âˆ’ Input m (a multiple of 2k) points at a time. âˆ’ Reduce the first m points to 2k medians. âˆ’ Maintain at most m level-i medians. âˆ’ On seeing m, generate 2k level-(i+1) m

[image: alt]

Processing thematic constraints in pseudo-words ...

Thematic Constraints in Deverbal word formation: psycholinguistic evidence from ... The function of these universal constraints which apply to every type of derivation ... suffix -simos needs to bind the external Theme argument of the base verb, ...

[image: alt]

pdf-175\realtime-data-mining-self-learning ...

... apps below to open or edit this item. pdf-175\realtime-data-mining-self-learning-techniques ... numerical-harmonic-analysis-by-alexander-paprotny.pdf.

[image: alt]

Boosting with pairwise constraints

Jul 16, 2009 - Department of Automation, Tsinghua University, Beijing 100084, China. Abstract straints that lead to the same surrogate function. Since we ...

[image: alt]

pdf-175\realtime-data-mining-self-learning-techniques-for ...

... loading more pages. Retrying... pdf-175\realtime-data-mining-self-learning-techniques ... numerical-harmonic-analysis-by-alexander-paprotny.pdf.

[image: alt]

Inducing Herding with Capacity Constraints

This paper shows that a firm may benefit from restricting capacity so as to trig- ger herding behaviour from consumers, in situations where such behavior is ...

[image: alt]

Contractual Pricing with Incentive Constraints

integral part of a team's organization when individual behavior is subject to incen- tive compatibility. (Without incentive compatibility, there is no need for secrets.).

[image: alt]

pdf-0973\routine-data-processing-in-earthquake-seismology-with ...

... apps below to open or edit this item. pdf-0973\routine-data-processing-in-earthquake-seismo ... are-by-jens-havskov-lars-ottemoller-from-hardcove.pdf.

×
Report Processing data streams with hard real-time constraints ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

