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Sensor Data Cryptography in Wireless Sensor Networks Tuncer Can Aysal, Student Member, IEEE, and Kenneth E. Barner, Senior Member, IEEE



Abstract—We consider decentralized estimation of a noisecorrupted deterministic signal in a bandwidth-constrained sensor network communicating through an insecure medium. Each sensor collects a noise-corrupted version, performs a local quantization, and transmits a 1-bit message to an ally fusion center through a wireless medium where the sensor outputs are vulnerable to unauthorized observation from enemy/third-party fusion centers. In this paper, we introduce an encrypted wireless sensor network (eWSN) concept where stochastic enciphers operating on binary sensor outputs are introduced to disguise the sensor outputs, creating an eWSN scheme. Noting that the plaintext (original) and ciphertext (disguised) messages are constrained to a single bit due to bandwidth constraints, we consider a binary channel-like scheme to probabilistically encipher (i.e., flip) the sensor outputs. We first consider a symmetric key encryption case where the “0” and “1” enciphering probabilities are equal. The key is represented by the bit enciphering probability. Specifically, we derive the optimal estimator of the deterministic signal approached from a maximum-likelihood perspective and the Cramer-Rao lower bound for the estimation problem utilizing the key. Furthermore, we analyze the effect of the considered cryptosystem on enemy fusion centers that are unaware of the fact that the WSN is encrypted (i.e., we derive the bias, variance, and mean square error (MSE) of the enemy fusion center). We then extend the cryptosystem to admit unequal enciphering schemes for “0” and “1”, and analyze the estimation problem from both the prospectives of ally (that has access to the enciphering keys) and (third-party) enemy fusion centers. The results show that when designed properly, a significant amount of bias and MSE can be introduced to an enemy fusion center with the cost to the ally fu2, sion center being a marginal increase [factor of 1 0 where , is the “ ” enciphering probability] in the estimation variance (compared to the variance of a fusion center estimate operating in a vulnerable WSN).



1 



=0 1



(1 )
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I. INTRODUCTION



R
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ability to form an intelligent network that can measure aspects and parameters of the physical environment in unprecedented scale and precision. In this paper, we focus on a star-like sensor network where each sensor in the network collects an observation, computes a local message, and then sends it to a fusion center, while the latter combines the received sensor messages to produce a final estimate of the environment. We assume that sensor nodes do not communicate with each other. Sensor networks of this type are well suited for situation awareness applications, such as environmental monitoring (air, water, and soil); smart factory instrumentation; military surveillance; precision agriculture; intelligent transportation; and space exploration, to name a few. The problem of decentralized estimation has been studied in the context of distributed control [1], [2] and tracking [3], and most recently, wireless sensor networks (WSNs) [4]–[15]. WSNs comprise a large number of geographically distributed nodes characterized by power constraints and limited computation capability. While a number of works address sensor collaboration for distributed detection [4]–[9], the challenging problem of distributed estimation has not yet received much attention. In distributed estimation for WSNs, each sensor has a subset available for the observations that must be transmitted to a central node, or fusion center. Various WSN implementations and quantizer design issues are considered in [10], [12], and [16]–[18]. Messages hopping to overcome the limited range and messages having different importance due to limited sensing capabilities are not considered here. Thus, it is assumed that there is no cooperation between sensors and that they only communicate with the fusion center [10]–[15]. A constraint in many WSNs is that bandwidth is limited, necessitating the use and transmission of quantized binary versions of the original noisy observations. Further constraints in WSNs include limited range and limited sensing capabilities. Many recent efforts address the estimation of a deterministic source signal from quantized noisy observations [10]–[15]. When the probability density function (pdf) of the sensor noise is known, transmitting a single bit per sensor leads to marginal loss in estimator variance compared with the clairvoyant estimator (estimator based on unquantized measurements) [10], [11], [13], [14], [19]. Alternatively, pdf-unaware estimators based on quantized sensor data have been introduced recently to address the unknown noise pdf case [11], [14], [15]. In this paper, we consider an encrypted WSN (eWSN) scheme to protect information in a stochastic way against unauthorized fusion center/enemy fusion centers [i.e, third-party fusion centers (TPFCs)]. Note that in a WSN scheme, a TPFC can monitor the wireless transmission medium and gain access to the quantized sensor outputs. The TPFC can then simply
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perform maximum-likelihood (ML) estimator to obtain the source information. Here, we consider the integration of stochastic enciphers that operate on the quantized sensor outputs (plaintexts), and send enciphered versions of the sensor outputs (ciphertexts), rather than the plaintexts that are vulnerable to TPFCs.1 Since the transmission symbols are constrained to binary, we adopt binary channel-like enciphers. That is, the sensor outputs are flipped stochastically with given probabilities. We first consider the case when the “0” and “1” flipping probabilities are equal and derive the ML estimator of the ally fusion center (AFC) that has access to the encryption key (i.e., the flipping probability). The Cramer–Rao lowerbound (CRLB) of an unbiased estimator (also the asymptotic variance of the optimal ML estimator) operating in an eWSN is derived. The estimation problem is analyzed from the unauthorized fusion center/enemy fusion center, or TPFC, perspective, where we derive the bias, variance, and mean square error (mse) under the assumption that the TPFC is not aware of the deceiving scheme. The eWSN is then generalized to the case where the bit flipping probabilities for “0” and “1” are not equal and the estimation problem is addressed from both AFC and TPFC perspectives. We also consider some practical design guides to develop an eWSN. The results indicate that one can introduce a significant amount of bias and mse to enemy fusion center estimates with the cost to ally the fusion center being a marginal increase , where , is the “ ” [factor of flipping probability] in the variance (compared to the variance of a fusion center estimate operating in a vulnerable WSN). The variables utilized throughout this paper are listed in Table I for the reader’s convenience. The remainder of this paper is organized as follows. In Section II, the WSN scheme is formulated and extended to the eWSN concept utilizing enciphers. Also detailed in this section is the motivation behind the proposed system and possible application scenarios. Section III discusses the estimation of the source parameter from both ally and enemy fusion center perspectives considering the estimation biases, variances, and MSEs. Practical design issues are addressed in Section IV. Finally, conclusions are drawn in Section V. II. ENCRYPTED WIRELESS SENSOR NETWORK SCHEME AND MOTIVATION This section considers a decentralized estimation model for sensor networks that has recently attracted a great deal of attention and extends it to the proposed encrypted decentralized estimation model. Also considered is the motivation and possible applications for the proposed system.



TABLE I VARIABLES USED IN THIS PAPER



for . Noise samples are assumed zero-mean, and independent across sensors. Furthermore, the density function of the sensor noise is denoted by . Suppose a fusion center is to estimate based on the noisy sensor observations . If the fusion center has knowledge of the sensor noise density function and sensors are capable of sending the observations to the fusion center without distortion, then the fusion center can simply perform the ML estimate of (2)



A. Encrypted Wireless Sensor Networks Consider a set of distributed sensors, each making observations of a deterministic source signal . The observations are corrupted by additive noise and are described by (1) 1Although we performed a thorough search if the stochastic enciphering type of technique was utilized before, we were unable to find relevant literature on this type of enciphering. To our best knowledge, this technique is also novel.



denotes the natural logarithm operator. This where scheme is only applicable in a centralized estimation scheme where observations are either centrally located, or can be directly transmitted to a central location. Neither of these requirements is realistic in a WSN, where the sensor nodes are bandwidth constrained. Due to bandwidth limitations, the observations have to be quantized.
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Fig. 1. Decentralized estimation scheme in an encrypted wireless sensor network.



To this end, we consider the quantization operation as the construction of a set of indicator variables, which are binary observations [10]–[12], [14], [15] (3) for



, where is a threshold defining , denotes the set of real numbers, and is the indicator function. To protect the estimation of from unauthorized observers/ enemy fusion centers, or TPFCs, we introduce stochastic enciphers that operate on the binary sensor outputs. The goal of the enciphering function is to alter the binary sensor outputs through a probabilistic scheme in order to send hidden information rather than the direct sensor outputs, which are vulnerable to TPFCs, especially in a wireless medium. The outputs of , are transthe enciphers, denoted as mitted through an open wireless medium. The enciphering function considered here is defined as (4a) (4b) (5a) (5b) where denotes conditional probability. The enciphering function probabilistically alters, or preserves, quantized sensor outputs. The resulting encrypted binary outputs are then transmitted through the wireless media, with the values acquired by an AFC and, possibly, a TPFC. Thus, we consider the extended decentralized and scheme shown in Fig. 1, where the diamonds denote the sensors and the enciphering operators, respectively. B. Applications, Background, and Motivation The model described before is applicable to a wide array of applications, including habitat monitoring [20], [21], burglar alarms, inventory control, medical monitoring, and emergency response [22], acoustic source localization [23], diffusive chemical source detection [24], and battlefield management [25]. The model applies directly to such applications for single
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parameter estimation (e.g., chemical concentration estimation) and is easily extended to multiparameter and dynamic system cases (e.g., battlefield acoustic source localization and tracking). The dispersive nature of sensor networks dictates that wireless communications be utilized. Widely deployed wireless communications standards were not designed to address the specific needs of sensor networks. Additionally, these standards, despite designer efforts, are vulnerable to third-party observation and decoding. For instance, GSM and 802.11 have known vulnerabilities [26]–[28]. The sensor network encryption protocol (SNEP) algorithm is specifically targeted to sensor network applications, but is not fully specified or implemented, and suffers from complexity issues (as do broad application standards) [29]. The recently adopted IEEE 802.15.4 standard specifically targets low-data-rate wireless applications, but open questions remain on the feasibility of certain optional modes and the ability to support different keying models [30]. Most promising is TinySec, which was recently introduced as the first fully implemented link-layer security architecture for WSNs [31]. Notably, TinySec addresses the extreme resource constraints inherent to WSNs and is portable to a variety of hardware and radio platforms. The proposed encryption methodology is compatible with all of the noted wireless standards, adding additional security beyond that inherent to a particular standard, and can also be used with extremely simple protocols (e.g., FSK, PSK, etc.) employed in resource-constrained environments. The resource constraints of WSNs are derived from the fact that they are generally deployed en masse. Such deployment allows for effective monitoring, but restricts each sensor to be low cost and utilizes minimum power. Low cost typically translates into minimal computational capabilities. The computational and power constraints result in quantized measurement values that are transmitted utilizing a minimum of coding/computations and bandwidth. Considered here is the most restrictive case, in which sensors transmit a single bit. Probabilistic enciphering schemes for single-bit transmissions are developed and analyzed. The methodology is computationally simple, requiring only a coin flip, and does not increase the number of bits, communication costs, or bandwidth utilization. The introduced randomness also avoids introducing deterministic patterns that could be detected to indicate the network is encrypted. III. DECENTRALIZED ESTIMATION IN ENCRYPTED WIRELESS SENSOR NETWORKS Consider the most demanding bandwidth constraint case, in which sensors are restricted to transmit one bit per observation [10]–[12], [14], [15]. Furthermore, let every sensor use (that is, the same threshold to form [12], [14], [15] (6) . In this section, we consider, from AFC where , followed and TPFC perspectives, the case where . by the analysis of the system when



276



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 2, JUNE 2008



Fig. 2. (a) CRLB (solid) as a function of . The variance of the ML estimator (cross) operating on a simulated eWSN is also plotted. The parameters are  = 0:5,  = 1, K = 1000, and  = 1, where  denotes the spread parameter of the Gaussian pdf. (b) CRLB as a function of the number of sensors with varying



2 f0; 0:05; 0:1; 0:15; 0:2; 0:25g values.



A.



Case From AFC Perspective Instrumental to the WSN scheme presented in Section II is the fact that in (5) is a Bernoulli random variable with parameter (7) (8) (9)



is the cumulative distribution function (cdf) of where . The ML estimate of and the CRLB of any unbiased estimator operating in an eWSN is given in the following proposition. Proposition 1: Consider the estimation of based on the eWSN ciphertexts . 1) The ML estimate of that utilizes the key information is (10) for



, where



denotes the inverse cdf of



, and (11) 2) The CRLB of any unbiased estimator operating on given by



is



(12) for



and where . Proof: See Appendix A. Note that when or



denotes the squared pdf of



, . Hence, the ML estimate of



is reduced to . This is the ML estimator operating on a vulnerable WSN (vWSN) (i.e., directly sensor outputs [10]–[15]. This on the or is expected since the eWSN reduces to vWSN when . The same observation holds for the CRLB of any unbiased estimator operating on , as it reduces to the CRLB of any unbiased estimator operating on when or . The properties of the CRLB in the vWSN case can be found in [10] and [11]. The following corolwhen lary brings together some important properties of (i.e., the CRLB of the eWSN). to show the depenCorollary 1: Let us introduce dency of the CRLB on . The following holds. when . 1) 2) is symmetric around the value. is monotonically decreasing (increasing) for 3) . Proof: See Appendix B. Note that the ML estimator and CRLB break down for . In this case, . Similarly, . It is also clear that for , indicating that the random variable is independent of , which carries the information about . Conversely, as approaches the boundary values (i.e., zero and unity), the uncertainty of each is decreased and, hence, values give increasing amounts of the values. information regarding the is plotted (solid) as a function of The theoretical in Fig. 2(a). Also plotted in Fig. 2(a), is the variance of the ML estimator (cross) operating on a simulated sensor network. The , , , parameters, in this example, are , where denotes the spread parameter of the noise and distribution that is taken as the common Gaussian assumption exhibits the discussed [10]–[12], [14], [15]. Note that as ) and properties (i.e., . In addition, note that is monotonically decreasing (increasing) for . Also
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of relevance is that the variance of the ML estimator closely follows the CRLB, as ML estimators asymptotically achieve the CRLB [32]. Fig. 2(b) plots the CRLB as a function of the number of sensors for varying values. Recall that the case also corresponds to the CRLB of the vWSN ( is an eWSN since all of the binary sensor outputs are flipped, but the CRLB of this case is equivalent to the CRLB of the vWSN case.). Finally, note that the inclusion of a cryptosystem with values only marginally affects the overall relatively small performance. B.



Case From TPFC Perspective
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is replaced with its Consequently, we have (15) when expression. From 1), one can see that 2) holds. The enemy fusion center estimate is unbiased when since, in this case, . However, is also unbiased when . This can be seen by noting that when , , which further indicates that . Also note that



(21) (22)



We consider the effects of utilizing an eWSN on an unauthorized observer/enemy fusion center, or, TPFC in the following. Specifically, we analyze the bias, output variance, and mean square error (MSE) of the TPFC estimate. It is assumed that the enemy fusion center has access to sensor threshold values and the parameters of the pdf characterizing the WSN environment. Note that the TPFC performance degrades further if these parameters are unknown. The TPFC is also unaware of the fact that the WSN is encrypted. Note that ML estimate of in a vWSN is [10], [11], [13], [14] (13) Since the TPFC is unaware of the fact that there are enciphering operators, its best strategy is to perform the following: (14) , which is not the case for . The believing that following proposition discusses the asymptotic mean and bias occurring as a result of the introduced cryptosystem. of Proposition 2: Consider an enemy fusion center operating on . a ciphertext set 1) The asymptotic mean of is (15) 2) The asymptotic mean bias is given by



(16) denotes the absolute value. where Proof: By the strong law of large numbers, we have



(23) Hence, is asymptotically unbiased when . Interestingly, when , the asymptotic mean of is independent enof . This is due to the fact that no matter which ciphering scheme is applied to the sensor outputs, the bernoulli is 1/2 when . The eWSN designer hence parameter of to introduce bias at the should consider the cases where enemy fusion center. The following corollary gives some important properties of the TPFC estimate bias. Corollary 2: Consider a TPFC operating on ciphertext set where the values are characterized by a symmetric pdf. Let , where is introduced to show the dependency of bias to . are 1) The boundary values of and . 2) is a monotonically decreasing function in . and . 3) Proof: See Appendix C. It is interesting to note that the strict bit flipping operation causes the highest bias at the enemy fusion center. The theofunction is plotted (solid) as a function of in retical Fig. 3(a) along with the bias of the TPFC ML estimator oper, . ating on a simulated eWSN. The parameters are The corrupting noise is taken to be Gaussian distributed with . Note that exhibits the properties given in Corollary 2, as the maximum (minimum) bias is reached when and is monotonically decreasing in . is also plotted in The bias for varying Fig. 3(b). For the common Gaussian assumption, it is shown in Appendix C that the following holds: (24)



(17) almost surely, which further implies (18) (19) (20)



Note that the bias decreases approximatively linearly for large values in Fig. 3(b). The asymptotic bias is also plotted as a and in Fig. 3(c). In agreement with the function of theoretical findings is that the TPFC estimate is unbiased when , independent of . Estimator variance is an additional important measure of performance. Accordingly, we consider the variance and the MSE
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Fig. 3. (a) Asymptotic bias of the TPFC estimate (solid) as a function of . The parameters are  = 1,  = 0, and  = 1, where  denotes the spread parameter of the Gaussian pdf. The simulated bias of the TPFC estimate is also plotted with pluses (K = 1000). (b) The asymptotic bias for varying  0:25; 0:5; 1; 2 . (c) The asymptotic bias as a function of   and .



2f



0



of in the following. The variance of is given by



, denoted as



,



(25) Note that the derivation of is problematic. To avoid this difficulty, we make use of the Delta method (or Taylor series method), which provides the asymptotic variance of an estimator [33] (26) where is a twice differentiable function. The following proposition gives the asymptotic variance of . Proposition 3: Consider a TPFC operating on ciphertext set . The asymptotic variance of is given by (27) Proof: See Appendix D. The theoretical and simulated variances of the TPFC are , , , and . plotted in Fig. 4(a) for



g



is convex in . The variance of is plotted Note that as a function and in Fig. 4(b). Note that the variance of increases the enemy fusion center estimate increases as ). and as approaches the boundaries (i.e., Note that when , . The following corollary discusses the relative variance perfor. mances of the AFC and TPFC estimators when Corollary 3: Let denote the asymptotic variance of the optimal ML estimator or, equivalently, the CRLB, operating on an eWSN in an environment characterized by a symmetric pdf. Let denote the asymptotic relative variance of the AFC with respect to the asymptotic variance of the TPFC (i.e., ). The following holds. for . 1) is symmetric around the value. 2) 3) for . Proof: See Appendix F. The corollary hence indicates that the asymptotic variance of the TPFC estimate is always smaller than the asymptotic variance of the ML estimator of the AFC (i.e., the CRLB, when ). is plotted for the , , case in Fig. 5, where the function exhibits the properties discussed in the corollary.
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Fig. 4. (a) Theoretical (solid) and simulated (diamonds) variance of the TPFC for  TPFC estimate as a function of   and .



0 
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= 0,  = 00:5,  = 1, and K = 1000. (b) The asymptotic variance of the



but note that yields



(31)



Fig. 5. Relative variance performance of the AFC and TPFC estimators the  , : , case.



= 0 = 00 5 = 1



9 for



Note that is biased for the general cases. Thus, the MSE is a more appropriate criteria under which to evaluate the TPFC estimate performance. The MSE of the TPFC estimate is discussed in the following proposition. Proposition 4: The asymptotic MSE of the enemy fusion center estimate is given by



Replacing and with their expressions completes the proof. To illustrate their relative performance, consider AFC and TPFC operating on a wireless sensor network with parameters , , , , and . The AFC and TPFC estimates are plotted in Fig. 6(a). In this case, . Note the theoretical asymptotic mean of the TPFC is that the TPFC estimates are clustered around the derived theoretical mean. The AFC estimates are unbiased and clustered value. The theoretical MSE and around the desired CRLB for this case are also plotted [Fig. 6(b) and (c)] as a funcincreases and tion of and . Note that MSE increases as decreases. Fig. 7 jointly plots the MSE and CRLB for varying values. Note that the CRLB is always smaller than the , except in the neighbordegenerate case. Also of note is that the hood of the is more sensitive to than the CRLB is. C.



(28) denotes the MSE of where Proof: The MSE is given by



Case From AFC Perspective



A more generic and complex approach is realized by elimconstraint enforced before. The inating the Bernoulli parameter of the received ciphertext samples in this case is given by (32)



.



(29) (30)



is introduced to show the dependency of the where Bernoulli parameter on both and . The ML estimate of and the CRLB of any unbiased estiis given in the folmator operating in an eWSN with lowing proposition.
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Fig. 6. (a) AFC and TPFC estimates for the  = 0:25,  varying  and are given in (b) and (c), respectively.



= 0:75, K = 1000,  = 1, and = 0:15 case. The theoretical TPFC MSE and AFC CRLB for



Proposition 5: Consider the estimation of in an eWSN with based on the ciphertext observations . 1) The ML estimate of is



(33) . where 2) The CRLB of any unbiased estimator operating on is given by (34), shown at the bottom of the page, where and and



Fig. 7. CRLB (dashed) and MSE (solid) for varying 



0  values.



Proof: See Appendix E. Note that when



(35)



, , indicating that the eWSN



(34)
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Fig. 8. (a) CRLB as a function of and for 
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= 00:25,  = 0:5, and  = 1 and (b) the incidents where the condition b F + b



reduces, statistically, to a vWSN. The ML estimator in this case similarly reduces to the vWSN estimator. Also note that defines a linear relationship and for a given . Letting between , and after some algebra, the following is obtained:



is satisfied.



Proposition 6: Consider a TPFC operating on the chipertext transmitted through enciset . phering operators with is 1) The asymptotic mean of (39)



(36) where



2) The asymptotic mean bias is given by and



(37)



Hence, the eWSN designer should consider cases when and do not satisfy the aforementioned relationship since the TPFC is unbiased and the AFC and TPFC estimates have the same variance when the restriction is satisfied. Also, Proposition 5, as expected, reduces to Proposition 1 . Notice that, in the case, the when . This ML estimator and CRLB break down when case implies that (38) for , indicating that the is independent of , which values give no contains the desired information. Hence, the information about the statistics of the random variable . , The CRLB is plotted as a function of for , and in Fig. 8(a). As expected, the CRLB increases as since this case increases the uncertainty of the transmitted . The CRLB also ciphertext symbols . Note that for the , decreases as , and case, and . Also, is Fig. 8(b) shows the incidents where the condition satisfied, and, consequently, the eWSN statistically reduces to a vWSN. D.



Case From TPFC Perspective



We consider the effects of utilizing an eWSN with on the TPFC in the following. Considered first is the asymptotic . mean and bias of



(40) Proof: The proof follows by utilizing the strong law of large numbers and steps similar to the Proposition 2 proof. Note that the bias is infinite when and . tends to unity and zero, respectively, In these cases, and . The infinite bias, yielding in contrast, cannot be achieved with a single flipping probability since it is impossible to obtain . This is a and case, result of the fact that, in the transmitted deceiving symbols are all ones (zeros). case, bias can be Interestingly, unlike the introduced into the TPFC even if . Note that when , . Hence, bias can be introduced . to the TPFC by setting Conversely, the TPFC estimate is unbiased when is satisfied. After some algebra manipulations on this condition, we arrive at (41) Thus, the case,



is unbiased when the above holds since, in this . Note that for , the above is satisfied and the TPFC estimate



is unbiased. and The bias of the TPFC is plotted as a function of for , , and , and
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Fig. 9.



TPFC bias as a function of and 



2 f0; 0:1; . . . ; 1g for (a)  = 00:25,  = 0:5, and  = 1, and (b)  = .



in Fig. 9(a) and (b), respectively. Note that (41) is satisfied, in and , and for this case, for and . Moreover, the plots are in agreement with the theoretical findings, showing zero bias at the appropriate values. In addition to bias, the variance and MSE are important performance measure criterions for estimators. The variance and are discussed in the following MSE of the TPFC for propositions, the proofs of which are omitted since they follow outlines similar to the proofs of Propositions 3 and 4. Proposition 7: Consider a TPFC operating in an eWSN with utilizing the ciphertext observations . The asymptotic variance of is given by (42) Fig. 10. TPFC variance, 



, as a function of varying



f0; 0:1; . . . ; 1g for  = 00:25,  = 0:5 and  = 1. denotes the asymptotic variance of . where The following corollary discusses the asymptotic variance of . the TPFC estimate when Corollary 4: The asymptotic variance of the TPFC goes to as . That is 







and 



2



since . Since this limit is 0/0, we utilize the L’Hospital’s rule, which gives



(43) (45) where implies that and , and . or case, since Proof: We consider only the the case follows similarly. The limit, in the case, is given by



(44)



(46) where we utilized Lemma 1 from Appendix C to obtain the and . Note that derivative of indicates that the aforementioned limit goes to . The asymptotic variance of the enemy fusion center is plotted as a function of and for , , and , in Fig. 10. Note that the variance tends as and , as well as when and to .
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Fig. 11. MSE of the TPFC for varying and 



where  = 0:25,  = 0:5, and  = 1.



0



2 f0; 0:2; 0:4; 0:6; 0:8; 1g,
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Fig. 12. Comparison of AFC CRLB and the TPFC MSE for 







f0; 0:2; 0:4; 0:6; 0:8; 1g, where  = 00:25,  = 0:5, and  = 1.



and 



2



Proposition 8: Consider a TPFC operating in a eWSN with utilizing the ciphertext observations . The asymptotic MSE of is given by Fig. 13. Effect of varying on the CRLB (variance of the optimal ML estimator) and the bias and mse of the TPFC.



(47) The following corollary discusses the asymptotic MSE of the . TPFC estimate when Corollary 5: The asymptotic MSE of the TPFC goes to as . That is (48)



as do the ML estimator and corresponding CRLB. Hence, when and , the MSE (or variance for this unbiased case) of the TPFC is equal to the CRLB. IV. DESIGN CONSIDERATIONS This section summarizes the theoretical findings for the and cases and considers practical eWSN issues. A. Practical Considerations for



where implies that and , and . or Proof: Note that from Corollary 4, we know that the first term in the expression goes to as . Consider the second term when . Note that since . This also indicates that . The overall expression when . Similarly, when hence goes to , since . Also , which completes the proof. The MSE of the enemy fusion center is plotted in Fig. 11 and , where for varying , , and . Note that the MSE exhibits the properties discussed before. The TPFC MSE and the AFC CRLB are jointly plotted in and cases. Fig. 12 for varying is not Note that the CRLB is smaller than the MSE when in the neighborhood of unity. As noted before, when and , the eWSN statistically reduces to a vWSN



Case



Criterions that an eWSN designer should consider center on the bias and mse of the TPFC, and the CRLB (asymptotic variance of the ML estimator) of the AFC. These three criterions and their behaviors are summarized in Fig. 13 and noted in the cases. (Recall that when , the eWSN following for scheme reduces to a vWSN and, thus, is not elaborated on.) Note that the following general behaviors hold. As tends to zero: 1) the TPFC bias increases; 2) the TPFC mse increases; and 3) the CRLB decreases. On the other hand, as tends to unity: 1) the TPFC bias decreases, 2) the TPFC mse decreases, and 3) the CRLB decreases. Taking into considerations these facts, the design that minimizes the CRLB and maximizes the bias and . However, this might be taken into consideration mse is by an intelligent TPFC. Hence, one can design an eWSN with small values, introducing a significant amount of bias and mse to the TPFC, with the cost to the AFC being a marginal increase, in the variance (compared to a vWSN in the order of will cause a decrease in varicase). For instance, while the bias ance performance by a factor in the range and MSE introduced to the TPFC are close to maximum for any given and .
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Fig. 14. (a) Effect of varying and on the CRLB (variance of the AFC estimator), and the bias and mse of the TPFC and (b) lines representing the cases where eWSN reduces to a vWSN and r is independent of b.



B. Practical Considerations for the



Case



The effect of varying and on the CRLB, TPFC bias and mse are summarized in Fig. 14. The lines indicate cases that the designer should avoid, as they denote the cases where 1) eWSN statistically reduces to a vWSN and 2) is independent of . It is clear from the figure that a designer concerned with AFC . In performance should consider the regions this region, the CRLB is close to minimum, although the TPFC bias and the mse are also close to their nonzero minima. On the other hand, if the bias and mse of the TPFC are the main design criterions, the designer should consider the regions and or and , as in these , cases, the TPFC bias and mse are close to their maxima . while the AFC variance increases by a factor of V. CONCLUSION AND CURRENT WORK In this paper, an encrypted wireless sensor network (eWSN) concept is introduced in which stochastic enciphers operate on binary sensor outputs to disguise the sensor outputs. Noting that the plaintext (original) and ciphertext (disguised) messages are constrained to a single bit due to bandwidth constraints, we consider a binary channel-like scheme to probabilistically encipher (i.e., flip) the sensor outputs. Considered first is a symmetric key encryption where the “0” and “1” enciphering probabilities are equal to the key represented by the bit enciphering probability. The optimal estimator of the deterministic signal, approached from an ML perspective, and the CRLB for the estimation problem utilizing the key are derived. Furthermore, we analyze the effect of the considered cryptosystem on enemy fusion centers or third-party fusion centers that are unaware of the fact that the WSN is encrypted (i.e., we derive the bias, variance, and MSE of the TPFC. We then extend the cryptosystem to admit unequal enciphering schemes for “0” and “1”, and analyze the estimation problem from both the prospectives of an ally fusion center (AFC) (that has access to the enciphering keys) and TPFCs. The statistical analysis and numerical examples presented here indicate that when designed properly,



a significant amount of bias and MSE can be introduced to TPFC with the cost of AFC being a marginal increase [factor of , where , is the “ ” enciphering probability] in the estimation variance (compared to the variance of a fusion center estimate operating in a vulnerable WSN). Current work focuses on the analysis of (possible) enemy attacks to decrypt the cryptosystem integrated into WSNs. We are specifically interested in investigating possible ways to attack the proposed system and provide a systematic analysis of possible attacks. APPENDIX A PROOF OF PROPOSITION 1 , since the proof of the Consider the case when case follows by noting that: . Rearranging (9) yields (49) Expressing



in terms of



gives (50)



Recall that the ML estimate of the transformed parameter , where is a one-to—one function, is given by . In addition, note that the ML of is (51) This completes the proof of 1). Consider next the CRLB of any unbiased estimator operating on . Since the summation formulation of the pdf of is as intractable in the ML framework, we rewrite the pdf of (52)
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yielding the following likelihood function of dence of the noise:



due to indepen-



(53) Taking the natural function
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APPENDIX B PROOF OF COROLLARY 1 To prove 1), we simply replace expression. Consider 2) next. Note that and



in the



of the above gives the log-likelihood (61) (62)



(54) Differentiating the above with respect to twice yields the , which is given by second derivative of



(63) . Hence, value. Let us denote



implying that symmetric around the



is



(64) (55) where



To prove 3, we need to prove that . Differentiating w.r.t. the bottom of the page, where



(56)



for gives (65), shown at , and (66)



and (57) Note that the subscript is introduced to indicate that the derivatives are with respect to . Taking the statistical expectation of (55) gives



Since for all , we only need to show that for . for since Consider first. and (recall that ). Consider next. The derivative of w.r.t. is given by (67) Hence, we rewrite



(58) where we utilized the fact that . Note that terms cancel out. Furthermore, rearranging the above gives



(68) (69) Now



(72)



gives (60)



which indicates that recalling that CRLB is given by the inverse of completes the proof for 2).



is rewritten as (70) (71)



(59) Differentiating (49) w.r.t.



as



. Now



Since



and for , . This subsequently shows that , indicating for . By symmetry, we can is monotonically increasing for conclude that , which concludes the proof.



(65)
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APPENDIX C PROOF OF COROLLARY 2 Substituting



in the



Differentiation of



gives



expression gives (73)



Note that (73) hence reduces to



for symmetric pdf



(80)



. Thus, (74) (75)



is also proven utilizing similar steps. Consider 2) is decreasing, we need to show that next. To prove that in . The differentiaw.r.t. requires differentiation of an inverse cdf tion of which is given in the following lemma. Lemma 1: Let denote an inverse cumulative distriwith respect to bution function. The differentiation of yields (76) denotes the probability density function. where . Now let Proof: Note that indicating that . The differentiation of the latter w.r.t. yields



where we utilized Lemma 1 to obtain and is the sign operator. Note that . Now consider the case when , which . This indicates that implies that . Also, the following holds, as shown in (81)–(85) at the bottom of the page, indicating that . when . It is shown, utilizing similar Thus, , , which concludes the steps, that when proof. The proof of 3) follows 1) and 2). for Gaussian Case: Note (86)–(87), Proof of shown at the bottom of the page. It is straightforward to see that (88) where denotes the inverse error function. Incorporating (88) in (87), after some manipulations, gives



(77) Rearranging the above yields (78) but note that that



and



(89)



, indicating The MacLaurin series expansion of



is given by



(79) which concludes the proof.



(90)



(81) (82) (83) (84) (85)



(86) (87)
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indicating that information into (89) gives



. Substituting this
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case



Consider the next. Rearranging (32) gives



(101) (91)



which is written as (102)



Now, note that for (92) indicating that this information into (91) gives



Noting that proof.



Taking



of both sides and rearranging gives



. Replacing



(103)



(93)



The ML estimate of follows by utilizing the fact that the ML estimate is invariant, noting that . From Appendix A, we know that



completes the



(104) w.r.t.



Differentiating



and squaring gives



APPENDIX D ASYMPTOTIC VARIANCE OF Let and method and Lemma 1 gives



(105)



. Utilizing the Delta Replacing the above into (104), negating and taking the inverse completes the proof. (94) APPENDIX F PROOF OF COROLLARY 3



First consider (95)



(96)



into the It is straightforward to see 1) by replacing CLRB and the variance of the TPFC expressions. The proof for . Consider 2) follows by noting that and gives 3) next. Replacing (106)



(97) Now, we only need to calculate



. That is (107) (98)



(99) (100)



Note that since . We then need to show that . Note pdfs symmetric around zero-mean (i.e., that for ) and monotonically decreasing for , the following holds:



Substituting (97) and (100) into (94) completes the proof. APPENDIX E PROOF OF PROPOSITION 5 holds, , indicating that eWSN reduces to a vWSN, and the ML and CRLB for this case follows.



if for , where need to show that



(108)



denotes the support of . We hence



Note that when



(109) where we utilized the fact that since



. Note that is symmetric around
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for the in the aforementioned discussion. We now need to show that (110) is symmetric around Since reduces to proving



, the above further



(111) Now consider



, which is manipulated as



(112)



(113) Adding and subtracting 1/2 to the above yields



(114) Note that the and terms cancel , out each other. Furthermore, utilize the fact that gives (115) Now, note that



, which completes the proof. REFERENCES
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