

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Summer Training Report Training Completed at : Nsys Designs Systems Pvt. Ltd. Topic:

Open Core Protocol (OCP) and Verification of OCP Compliant Cores Training Duration: 4th June 2006 to 25th July 2006

Manish Bhardwaj 34/EC/03 th 4 year, ECE NSIT

Acknowledgement

I would like to acknowledge the contribution of Mr. Jitendra Puri and Mr. Nitin Gupta, Design Engineers at Nsys Design Pvt. Limited in mentoring us through our training at Nsys on the verification of OCP verification IP. Without whose support and mentoring we would not have been able to complete this report.

Manish Bhardwaj 4th year ECE, NSIT

The Need for OCP With the increasing density of IC process technologies provides ever greater opportunities for integration. But it also brings with it a formidable challenge: who will complete the design of these increasingly complex chips given the shrinking project schedules that the marketplace demands? One solution to this dilemma is the reuse of pieces of existing designs through intellectual property (IP) core reuse. The problem with IP core reuse in today’s methodology is that the IP cores have to be changed from chip design to chip design to make them fit with the rest of the system-ona-chip (SOC). With thousands of IP cores and tens to hundreds of on-chip interconnect systems, there is an overwhelming amount of protocol adapting/ bridging to do, even without accounting for the additional work needed to accommodate different frequency and electrical loading from one design to another. What is clearly needed is a common interface and protocol between IP cores and system-on-a-chip interconnects, and a standard way for an IP core developer to deliver a product. With the current bus interfaces available each time the bus width, frequency, or electrical loading changes, the cores must be readapted. The core interface must be system interconnect neutral in order to satisfy the goal of eliminating IP core rework. Other requirements for a core interface protocol are that it must: • capture all of the core-system signaling • be process independent, yet have timing guidelines • be scalable • be configurable It is not sufficient for the core interface to capture merely dataflow signaling, i.e., the usual signaling associated with computer buses: command, address, data. Instead, it is crucial that all signaling between the core and the system be captured like control wires (e.g., interrupts, error signals, flow-control signals) and test signals. IP cores have different communication needs. While a simple I/O device can be satisfied by an 8-bit wide data bus, an on-chip CPU might require a 64-bit wide data path. Clearly the core interface must be scalable to adapt to the requirements of a wide range of IP cores. This means that the interface protocol itself must be configurable. The core interface requirements are as diverse as the IP cores themselves. There is no one-size-fitsall. OCP provides a solution to all the above constraints and is increasingly being adapted as an industry standard to facilitate reuse of IP cores.

OCP The Open Core Protocol interface is a point-to-point, directed interface between two communicating entities, one master and one slave. The master sends command requests, and the slave responds to them. Signaling is synchronous with reference to a single interface clock, and all signals except for the clock are uni-directional, point-to-point. This simplifies interface design and timing analysis. The OCP captures dataflow, as well as control and test signaling. A minimal OCP configuration is defined as the basic OCP, with extensions added as needed to accommodate a particular core’s requirements. The Open Core Protocol™ (OCP) defines a high-performance, bus-independent interface between IP cores that reduces design time, design risk, and manufacturing costs for SOC designs. An IP core can be a simple peripheral core, a high-performance microprocessor, or an on-chip communication subsystem such as a wrapped on-chip bus. The Open Core Protocol: • Achieves the goal of IP design reuse. The OCP transforms IP cores making them independent of the architecture and design of the systems in which they are used • Optimizes die area by configuring into the OCP only those features needed by the communicating cores • Simplifies system verification and testing by providing a firm boundary around each IP core that can be observed, controlled, and validated The OCP is the only standard that defines protocols to unify all of the inter-core communication. OCP Characteristics: The OCP defines a point-to-point interface between two communicating entities such as IP cores and bus interface modules (bus wrappers). One entity acts as the master of the OCP instance, and the other as the slave. Only the master can present commands and is the controlling entity. The slave responds to commands presented to it, either by accepting data from the master, or presenting data to the master. For two entities to communicate in a peer-to-peer fashion there need to be two instances of the OCP connecting them - one where the first entity is a master, and one where the first entity is a slave.

OCP Specifications Point-to-Point Synchronous Interface The OCP is composed of uni-directional signals driven with respect to, and sampled by the rising edge of the OCP clock. The OCP is fully synchronous and contains no multicycle timing paths. All signals other than the clock are strictly point-to-point. Bus Independence A core utilizing the OCP can be interfaced to any bus. A test of any bus-independent interface is to connect a master to a slave without an intervening on chip bus. This test not only drives the specification towards a fully symmetric interface but helps to clarify other issues. For instance, device selection techniques vary greatly among on-chip buses. Some use address decoders. Others generate independent device select signals (analogous to a board level chip select). This complexity should be hidden from IP cores, especially since in the directly-connected case there is no decode/selection logic. OCP- analogous to a board level chip select). Commands There are two basic commands, Read and Write and five command extensions. The WriteNonPost and Broadcast commands have semantics that are similar to the Write command. A WriteNonPost explicitly instructs the slave not to post a write. For the Broadcast command, the master indicates that it is attempting to write to several or all remote target devices that are connected on the other side of the slave. As such, Broadcast is typically useful only for slaves that are in turn a master on another communication medium (such as an attached bus). The other command extensions, ReadExclusive, ReadLinked and WriteConditional, are used for synchronization between system initiators. ReadExclusive is paired with Write or WriteNonPost, and has blocking semantics. ReadLinked, used in conjunction with WriteConditional has non-blocking (lazy) semantics. These synchronization primitives correspond to those available natively in the instruction sets of different processors. Pipelining The OCP allows pipelining of transfers. To support this feature, the return of read data and the provision of write data may be delayed after the presentation of the associated request. Response The OCP separates requests from responses. A slave can accept a command request from a master on one cycle and respond in a later cycle. The division of request from response permits pipelining. The OCP provides the option of having responses for Write commands, or completing them immediately without an explicit response. Burst To provide high transfer efficiency, burst support is essential for many IP cores. The extended OCP supports annotation of transfers with burst information. Bursts can either include addressing information for each successive command (which simplifies the requirements for address sequencing/burst count processing in the slave), or include addressing information only once for the entire burst. In-band Information Cores can pass core-specific information in-band in company with the other information being exchanged. In-band extensions exist for requests and responses, as well as read and write data. A typical use of in-band extensions is to pass cacheable information or data parity. Threads and Connections To support concurrency and out-of-order processing of transfers, the extended OCP supports the notion of multiple threads. Transactions within different threads have no

ordering requirements, and so can be processed out of order. Within a single thread of data flow, all OCP transfers must remain ordered. While the notion of a thread is a local concept between a master and a slave communicating over an OCP, it is possible to globally pass thread information from initiator to target using connection identifiers. Connection information helps to identify the initiator and determine priorities or access permissions at the target. Interrupts, Errors, and other Sideband Signaling While moving data between devices is a central requirement of on-chip communication systems, other types of communications are also important. Dedicated point-to-point data communication is sometimes required. Many devices also require the ability to notify the system of errors that may be unrelated to address/data transfers. The OCP refers to all such communication as sideband (or out-of-band) signaling.

Signals and Encoding OCP interface signals are grouped into dataflow, sideband, and test signals. Dataflow Signals: The dataflow signals consist of a small set of required signals and a number of optional signals that can be configured. The dataflow signals are grouped into basic signals, simple extensions (which add such options as byte enables and in-band information), burst extensions (which add support for bursting), and thread extensions (which add multi-threading support). Basic Signals:

Basic OCP Signals

Command Encoding

Response Encoding Signal description Clk: Clock signal for the OCP. All interface signals are synchronous to the rising edge of Clk. Clk is driven by a third entity and serves as an input to both the master and the slave. MAddr: The Transfer address, MAddr specifies the slave-dependent address of the

resource targeted by the current transfer. MAddr is a byte address that must be aligned to the OCP word size (data_wdth). If the OCP word size is larger than a single byte, the aggregate is addressed at the OCP word-aligned address and the lowest. MCmd: Transfer command. This signal indicates the type of OCP transfer the master is requesting. Each non-idle command is either a read or write type request, depending on the direction of data flow. MData: This field carries the write data from the master to the slave. MDataValid: When set to 1, this bit indicates that the data on the MData field is valid. MRespAccept : The master indicates that it accepts the current response from the slave with a value of 1 on the MRespAccept signal. SCmdAccept: A value of 1 on the SCmdAccept signal indicates that the slave accepts the master’s transfer request. SData: Carries the requested read data from the slave to the master. SDataAccept: The slave indicates that it accepts pipelined write data from the master with a value of 1 on SDataAccept. SResp: Response field from the slave to a transfer request from the master.

Simple Extensions

MAddrSpace: This field specifies the address space and is an extension of the MAddr field that is used to indicate the address region of a transfer. MByteEn: This field indicates which bytes within the OCP word are part of the current transfer. MDataInfo: Extra information sent with the write data. The master uses this field to send additional information sequenced with the write data.This field is divided in two: the loworder bits are associated with each data byte, while the high-order bits are associated with the entire write data transfer. SDataInfo: Extra information sent with the read data. The slave uses this field to send additional information sequenced with the read data. The encoding of the information is core-specific. This field is divided into two pieces: the low-order bits are associated with each data byte, while the high-order bits are associated with the entire read data transfer. MReqInfo: Extra information sent with the request. The master uses this field to send additional information sequenced with the request.

BURST Extensions

OCP Burst Extension

MburstSeq Encoding

MAtomicLength: This field indicates the minimum number of transfers within a burst that are to be kept together as an atomic unit when interleaving requests from different initiators onto a single thread at the target. MBurstLength: The number of transfers in a burst. For precise bursts, the value indicates the total number of transfers in the burst, and is constant throughout the burst. For imprecise bursts, the value indicates the best guess of the number of transfers remaining (including the current request), and may change with every request. MBurstPrecise: This field indicates whether the precise length of a burst is known at the start of the burst or not. When set to 1, MBurstLength indicates the precise length of the burst during the first request of the burst. MBurstSeq: This field indicates the sequence of addresses for requests in a burst. To configure this field into the OCP, use the burstseq parameter MDataLast: Last write data in a burst. This field indicates whether the current write data transfer is the last in a burst. MReqLast: Last request in a burst. This field indicates whether the current request is the last in this burst. SRespLast: Last response in a burst. This field indicates whether the current response is the last in this burst.

Thread Extension

MConnID: This variable-width field provides the binary encoded connection identifier associated with the current transfer request. MDataThreadID: This variable-width field provides the thread identifier associated with the current write data. The field carries the binary-encoded value of the thread identifier.

MDataThreadID is required if threads is greater than 1 and the datahandshake parameter is set to 1. MThreadBusy: The master notifies the slave that it cannot accept any responses associated with certain threads. The MThreadBusy field is a vector (one bit per thread). A value of 1 on any given bit indicates that the thread associated with that bit is busy. Bit 0 corresponds to thread 0, and so on. The width of the field is set using the threads parameter. It is legal to enable a one-bit MThreadBusy interface for a single-threaded OCP. MThreadID: This variable-width field provides the thread identifier associated with the current transfer request. If threads is greater than 1, this field is enabled. The field width is the next whole integer of log2(threads). SDataThreadBusy: Slave write data thread busy. The slave notifies the master that it cannot accept any new datahandshake phases associated with certain threads. The SDataThreadBusy field is a vector, one bit per thread. A value of 1 on any given bit indicates that the thread associated with that bit is busy. Bit 0 corresponds to thread 0, and so on. The width of the field is set using the threads parameter. It is legal to enable a one-bit SDataThreadBusy interface for a single-threaded OCP. To configure this field, use the sdatathreadbusy parameter. SThreadID: This variable-width field provides identifier associated with the current transfer response. SThreadBusy: The slave notifies the master that it cannot accept any new requests associated with certain threads. The SThreadBusy field is a vector, one bit per thread. A value of 1 on any given bit indicates that the thread associated with that bit is busy.

Sideband Signals

Reset, Interrupt, Error and Core Specific Flag Signals MError: Master error. When the MError signal is set to 1, the master notifies the slave of an error condition. MFlag: Master flags. This variable-width set of signals allows the master to communicate out-of-band information to the slave. MReset_n: Synchronous master reset. The MReset_n signal is active low, SError: Slave error. With a value of 1 on the SError signal the slave indicates an error condition to the master. SFlag: Slave flags. This variable-width set of signals allows the slave to communicate out-of-band information to the master. Encoding is completely core-specific. SInterrupt: Slave interrupt. The slave may generate an interrupt with a value of 1 on the SInterrupt signa

SReset_n: Synchronous slave reset. The SReset_n signal is active low, The other type of signals is Control and Status Signals and Test Signals

OCP Signal Summary

OCP Protocol Semantics Signal Groups: Some OCP fields are grouped together because they must be active at the same time. The data flow signals are divided into three signal groups: request signals, response signals, and data handshake signals. Combinational Dependencies: It is legal for some signal or signal group outputs to be derived from inputs without an intervening latch point, that is combinationally. To avoid combinational loops, other outputs cannot be derived in this manner. For any arrow shown, in the diagram below, the signal or signal group can be derived combinationally from the signal at the point of origin of the arrow or another signal earlier in the dependency chain. No other combinational dependencies are allowed. Combinational paths are not allowed within the sideband and test signals, or between those signals and the data flow signals.

Endianness An OCP interface by itself is inherently endian-neutral. Data widths must match between master and slave, addressing is on an OCP word granularity, and byte enables are tied to byte lanes (data bits) without tying the byte lanes to specific byte addresses. The issue of endianness arises in the context of multiple OCP interfaces, where the data widths of the initiator of a request and the final target of that request do not match. Examples are a bridge or a more general interconnect used to connect OCP-based cores. When the OCP interfaces differ in data width, the interconnect must associate an endianness with each transfer. It does so by associating byte lanes and byte enables of the wider OCP with least-significant word address bits of the narrower OCP. OCP interfaces can be designated as little, big, both, or neutral with respect to endianness. This is specified using the protocol parameter endian described in “Endianness”. A core that is designated as neutral typically represents a device that has no inherent endianness. This indicates that either the association of an endianness is arbitrary (as with a memory, which traditionally has no inherent endianness) or that the device only works with fullword quantities (when byteen and mdatabyteen are set to 0). When all cores have the same endianness, an interconnect should match the endianness of the attached cores. The details of any conversion between cores of different endianness is implementation-specific. Burst Defination A burst is a set of transfers that are linked together into a transaction having a defined address sequence and number of transfers. There are three generalcategories of bursts:

Imprecise bursts Request information is given for each transfer. Length information may change during the burst. Precise bursts Request information is given for each transfer, but length information is constant throughout the burst. Single request / multiple data bursts (also known as packets): Also a precise burst, but request information is given only once for the entire burst. To express bursts on the OCP interface, at least the address sequence and length of the burst must be communicated, either directly using the MBurstSeq and MBurstLength signals. A single (non-burst) request on an OCP interface with burst support is encoded as a request with any legal burst address sequence and a burst length of 1. The ReadEx, ReadLinked, and WriteConditional commands can not be used as part of a burst. The unlocking Write or WriteNonPost command associated with a ReadEx command also can not be used as part of a burst. Burst Address Sequence The relationship of the MBurstSeq encodings and corresponding address is shown below.

Threads and Connections All transfers within a single thread must remain ordered.Using multiple threads, it is possible to support concurrent activity, and outof- order completion of transfers. All transfers within a given thread must remain strictly ordered, but there are no ordering rules for transfers that are in different threads. Mapping of individual requests and responses to threads is handled through the MThreadID and SThreadID fields respectively. If datahandshake has been enabled when multiple threads are present, there must also be an MDataThreadID field to annotate the datahandshake phase. If datahandshake is set to 1 and sdatathreadbusy is set to 0, the order of datahandshake phases must follow the order of request phases across all threads. If sdatathreadbusy is set to 1, the request order and datahandshake order are independent across threads. The use of thread IDs allows two entities that are communicating over an OCP interface to assign transfers to particular threads. If one of the communicating entities is itself a bridge to another OCP interface, the information about which transfers are part of which thread must be maintained by the bridge, but the actual assignment of thread IDs is done on a per-OCP-interface basis. There is no way for a slave on the far side of a bridge to extract the original thread ID unless the slave design comprehends the characteristics of

the bridge. Any bridges in the path between the end-to-end partners preserve the connection ID, even as thread IDs are reassigned on each OCP interface in the path. The MConnID field transfers the connection ID during the request phase. Since this establishes the mapping onto a thread ID, the other phases do not require a connection ID but are unambiguous with only a thread ID. The SThreadBusy, SDataThreadbusy, and MThreadBusy signals are used to indicate that a particular thread is busy. The protocol parameters sthreadbusy_exact, sdatathreadbusy_exact, and mthreadbusy_exact can be used to force precise semantics for these signals and assure that a multi-threaded OCP interface never blocks. Timing Parameters There is a set of minimum timing parameters that must be specified for a core interface. Additional optional parameters supply more information to help the system designer integrate the core. Hold-time parameters allow hold time checking. Physical-design parameters provide details on the assumptions used for deriving pin-level timing. At a minimum, the timing of an OCP interface is specified in terms of two parameters: • setuptime is the latest time an input signal is allowed to change before the rising edge of the clock. • c2qtime is the latest time an output signal is guaranteed to become stable after the rising edge of the clock. Hold-time Parameters: Hold-time parameters are needed to allow the system integrator to check hold

Minimum Timing Requirement

Variable load and delay

Connection of two OCP compliant Cores

Timing Diagrams Read and Write and response The master places the request on the bus for read or writes. The bus is maintained at a level for a time till receives Slave’s accept signal hence resulting in different acceptance latency.

Simple Read and Write Request

Shows 3 writes each with different acceptance Latency

There can be cases where the master de asserts it’s busses and waits for the response or does something in the middle till the response is available. This is shown as follows

Read with separated output

Write with different latencies of acceptance and Handshake

Burst Request: As the burst shown below is precise (with no response on write), the MBurstLength signal is constant during the whole burst. MReqLast flags the last request of the burst, and SRespLast flags the last response of the burst. The slave may either count requests or monitor MReqLast for the end of burst.

Burt Write

Pipelined Request and Response

Incrementing Precise Burst Read

Incrementing Imprecise Burst Read

The OCP is compliant to instructions where there can be nulls in the request cycle or the response cycle This is illustrated by the following

Nulls in response cycle

Single Request Multiple Data out

Nulls in the request cycle

Burst Write and Combined Request and Data

Threaded Request

Threaded read with Thread Busy

Thread read with Thread Busy Exact

References 1. OCP Core protocol Specification, 2003-OCP-IP Association. 2. Enabling Reuse via an IP Core-centric Communications Protocol: Open Core Protocol, Sonics Inc. 3. Nsys In house Documentation 4. System-on-a-Chip Bus Architecture for Embedded Applications, P.J Aldworth, ARM Limited

[image: Project Report - Semantic Scholar]
Project Report - Semantic Scholar

[image: Project Report - Semantic Scholar]
Project Report - Semantic Scholar

[image: a summer training project report]
a summer training project report

[image: Sequence Discriminative Distributed Training of ... - Semantic Scholar]
Sequence Discriminative Distributed Training of ... - Semantic Scholar

[image: Rich Transcription 2002: Site Report - Semantic Scholar]
Rich Transcription 2002: Site Report - Semantic Scholar

[image: Wide Area Multilateration report - Semantic Scholar]
Wide Area Multilateration report - Semantic Scholar

[image: Wide Area Multilateration report - Semantic Scholar]
Wide Area Multilateration report - Semantic Scholar

[image: SCRiM-summer-scholar..]
SCRiM-summer-scholar..

[image: Report Cell-Cycle Progression without an Intact ... - Semantic Scholar]
Report Cell-Cycle Progression without an Intact ... - Semantic Scholar

[image: Report Cell-Cycle Progression without an Intact ... - Semantic Scholar]
Report Cell-Cycle Progression without an Intact ... - Semantic Scholar

[image: Report Competing Selfish Genetic Elements in the ... - Semantic Scholar]
Report Competing Selfish Genetic Elements in the ... - Semantic Scholar

[image: Efficiently Training A Better Visual Detector With ... - Semantic Scholar]
Efficiently Training A Better Visual Detector With ... - Semantic Scholar

[image: Efficiently Training A Better Visual Detector With ... - Semantic Scholar]
Efficiently Training A Better Visual Detector With ... - Semantic Scholar

[image: Frame Discrimination Training of HMMs for Large ... - Semantic Scholar]
Frame Discrimination Training of HMMs for Large ... - Semantic Scholar

[image: SCRiM-summer-scholar..]
SCRiM-summer-scholar..

[image: Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar]
Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar

[image: REPORT Genome Partitioning of Genetic Variation ... - Semantic Scholar]
REPORT Genome Partitioning of Genetic Variation ... - Semantic Scholar

[image: Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar]
Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar

[image: BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar]
BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar

[image: The Difficulty of Training Deep Architectures and ... - Semantic Scholar]
The Difficulty of Training Deep Architectures and ... - Semantic Scholar

[image: Why does Unsupervised Pre-training Help Deep ... - Semantic Scholar]
Why does Unsupervised Pre-training Help Deep ... - Semantic Scholar

[image: Efficiently Training A Better Visual Detector With ... - Semantic Scholar]
Efficiently Training A Better Visual Detector With ... - Semantic Scholar

[image: BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar]
BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar

Summer Training Report - Semantic Scholar

Training Completed at : Nsys Designs Systems Pvt. Ltd. Topic: Open Core accepting data from the master, or presenting data to the master. For two entities to.

 Download PDF

 449KB Sizes
 0 Downloads
 407 Views

 Report

Recommend Documents

[image: alt]

Project Report - Semantic Scholar

compelling advantages of FPDs are instant manufacturing turnaround, low start-up costs, low financial ... specific software and then design the hardware. Confusion ... custom chips, we refer here only to those PLAs that are provided as separate ... B

[image: alt]

Project Report - Semantic Scholar

The circuit was typically represented as a multi-level logic network, that compelling advantages of FPDs are instant manufacturing turnaround, low programmability, consisting of a programmable â€œwiredâ€� AND plane that feeds fixed OR-.

[image: alt]

a summer training project report

students of Graphic Era University of the Master's of Business Administration Each cafÃ©, depending upon its size attracts between 400 and 800 customers daily ... drive to expand the number of cafÃ©s in the smaller towns across the country ...

[image: alt]

Sequence Discriminative Distributed Training of ... - Semantic Scholar

A number of alternative sequence discriminative cri- ... decoding/lattice generation and forced alignment [12]. 2.1. energy features computed every 10ms.

[image: alt]

Rich Transcription 2002: Site Report - Semantic Scholar

email: { nguyen, rigazio, jcj} @research.panasonic.com. ABSTRACT. In this paper, we summarize ... segments automatically generated or from the PEM. Delta.

[image: alt]

Wide Area Multilateration report - Semantic Scholar

least equivalent to an MSSR/Mode S radar service. target altitude is known from another source (e.g. from Mode C or in an SMGCS environment) then the ...

[image: alt]

Wide Area Multilateration report - Semantic Scholar

Division: Distribution: Limited. Classification title: Unclassified. August 2005. Approved by author: Approved by project manager: Approved by project managing.

[image: alt]

SCRiM-summer-scholar..

of climate scientists, economists, philosophers, statisticians, engineers, and policy ... The program runs for 9 weeks, starting 2 June 2014. ... Computer Science.

[image: alt]

Report Cell-Cycle Progression without an Intact ... - Semantic Scholar

Dec 4, 2007 - Summary. For mammalian and acts additively with stresses found under normal ... In summary, our results demonstrate that the normal.

[image: alt]

Report Cell-Cycle Progression without an Intact ... - Semantic Scholar

Nov 29, 2007 - also Movie S1) revealed that such cells became exten- sively flattened during tion, action of antitubulin drugs, and new drug development.

[image: alt]

Report Competing Selfish Genetic Elements in the ... - Semantic Scholar

Dec 18, 2006 - University of California Berkeley in Moorea. BP 244 ... 3 School of Integrative Biology Supplemental Data available with this article online).

[image: alt]

Efficiently Training A Better Visual Detector With ... - Semantic Scholar

[4] proposed Float-. Boost for a better detection accuracy by introducing a back- ward feature elimination step into the AdaBoost training procedure. Wu et al. [5] used forward feature selection for fast training by ignoring the re-weighting scheme i

[image: alt]

Efficiently Training A Better Visual Detector With ... - Semantic Scholar

Experiments in the domain of highly skewed data distri- butions, e.g. NICTA is funded by the Australian Government as represented by the. Department of ... the Australian Research Council through the ICT Centre of Excellence program.

[image: alt]

Frame Discrimination Training of HMMs for Large ... - Semantic Scholar

is either increasing or decreasing, and does not alternate between the two. ... B that are increasing, the inequality of Equation 10 can be proved from the facts that and the normalised log energy; and the first and second differentials of thes

[image: alt]

SCRiM-summer-scholar..

of climate scientists, economists, philosophers, statisticians, engineers, and policy analysts to answer the question, â€œWhat are ... Computer Science. â€¢ Economics.

[image: alt]

Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar

Mar 24, 2006 - The website was implemented using PHP, CSS, and XHTML, which is a ... to be embedded in HTML, and it is possible to switch between PHP ...

[image: alt]

REPORT Genome Partitioning of Genetic Variation ... - Semantic Scholar

Oct 1, 2007 - tability, because SEs of estimates are larger for longer chro- mosomes.10 The estimate of the proportion of variance due to nongenetic family effects Dempfle A, Wudy SA, Saar K, Hagemann S, Friedel S, Scherag. A, Berthold LD, Alze

[image: alt]

Final Year Project Report â€œOnline Measurement of ... - Semantic Scholar

Mar 24, 2006 - theory of quantum entanglement. This report summarises the development of a website that provides a fast and simple way of calculating ...

[image: alt]

BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar

Linda Camras and two anonymous reviewer for their valuable suggestions that ... 2011 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business A software program on a Tablet PC The origins of intelligence.

[image: alt]

The Difficulty of Training Deep Architectures and ... - Semantic Scholar

As suggested in (Bengio et al., 2007), we adapt all the layers adapted si- multaneously during the unsupervised pre-training phase. Ordinary auto-encoders can ...

[image: alt]

Why does Unsupervised Pre-training Help Deep ... - Semantic Scholar

such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results of attraction of the dynamics of learning, and that early on small perturbations allow to Almost optimal lower bounds for small depth circuits.

[image: alt]

Efficiently Training A Better Visual Detector With ... - Semantic Scholar

balanced data information. Hence it is better than standard. AdaBoost's exponential loss for training an object detector. 2. Algorithms. In this section, we present alternative techniques to Ad-. aBoost for object detection. We start with a short exp

[image: alt]

BRIEF REPORT Disequilibrium in the mind ... - Semantic Scholar

''basic'' emotions such as anger and fear, as well as states such as anxiety and also recorded using a screen capture program. (Camtasia StudioTM).

×
Report Summer Training Report - Semantic Scholar

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

