

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

INTERSPEECH 2011

Unary Data Structures for Language Models Jeffrey Sorensen, Cyril Allauzen Google, Inc., 76 Ninth Avenue, New York, NY 10011 {sorenj,allauzen}@google.com

Abstract

\data\ ngram 1=7 ngram 2=9 ngram 3=8

Language models are important components of speech recognition and machine translation systems. Trained on billions of words, and consisting of billions of parameters, language models often are the single largest components of these systems. There have been many proposed techniques to reduce the storage requirements for language models. A technique based upon pointer-free compact storage of ordinal trees shows compression competitive with the best proposed systems, while retaining the full finite state structure, and without using computationally expensive block compression schemes or lossy quantization techniques. Index Terms: n-gram language models, unary data structures

...

P(2|1)

ab ǫ/1.1

.1

7

a/.

ad ǫ/.69

a/

ǫ/1.1

c ǫ/.69

23

r

.1

37

a/

a/.

a/

d

7

ǫ/.69

71 0.

0 .9 < s > 6 a/

a/.

br ǫ/1.1

(1) Language models are cyclic and non-deterministic, with both properties serving to complicate attempts to compress their representations. In order to illustrate the ideas and principles put forth in the paper, we introduce a complete, but trivial, language model based upon two “sentences” and a vocabulary of just five “words”: a b r a and c a d a b r a. We have added a link from the unigram state to the start state in order to make our presentation clearer. This is not normally an allowed transition in typical applications, but without loss of generality we can assign a transition weight of ∞.

2. Succinct Tree Structures Storing trees, asymptotically optimally, in a boolean array was first proposed in [8], who termed these data structures levelorder unary degree sequences, or LOUDS. This was later generalized for application to labeled, ordinal trees by [9] and others. Succinct data structures differ from more traditional data structures, in part, because they avoid the use of indices and pointers, and [10] presents a good overview of the engineering issues. Using these data structures to store a language model was proposed in [11], although their structure does not use the decomposition we propose, nor does it provide a finite state acceptor structure.

Figure 1: A typical language model storage format

Copyright © 2011 ISCA

37

c

99

20

.6

ra

.3 3

0.0

2

da ǫ/1.1

r/

backoﬀ

r/0

b

ǫ/.69

r a a d b a b c a

.2

2

1

c/ 2

5

.4 b/

P(2|ϵ)

ϵ

ǫ/1.1

d/ .5

ǫ/.69

.9

P(1|ϵ)

.9 b/1

ǫ

ca

.2

b/ 1

a

.9

Probability

2 3

ǫ/.98

r/1

N

Next State

2

c/ 1

Figure 2: A trivial, but complete, trigram language model

context

1

.6

Input Label

42

\end\

State

2

ǫ/.69

-0.43 -0.48 -0.48 -0.30 -0.30

2 d/

\3-grams: -0.04 a b -0.07 a d -0.03 b r -0.11 r a -0.24 c a -0.18 d a -0.18 -0.07

By assuming the language being modeled is an n-th order Markov process, we make tractable the number of parameters that comprise the model. Even so, language models still contain massive numbers of parameters which are difficult to estimate, even when extraordinarily large corpora are used. The art and science of estimating parameters is an area well represented in the speech processing community, and [1] provides an excellent introduction. Language model compression and storage is an entire subgenre in itself. Many approaches to compressing language models have been proposed, both lossless and lossy [2, 3, 4, 5, 6], and most of these techniques are complementary to what we present here. A typical format that is used for static finite state acceptors in OpenFst [7] is illustrated in Figure 1. This format makes clear the set of arcs and weights associated with a particular state, but it does not make clear which state corresponds to a particular context, and it uses nearly half of its space to store the indices to the next state numbers and their offsets. 1

-0.30

\2-grams: -0.51 a -0.51 a b -0.48 -0.81 a d -0.30 -0.14 b r -0.48 -0.10 r a -0.48 -0.16 c a -0.30 -0.16 d a -0.30 -0.35 a -0.30 -0.54 c -0.30

Models of language constitute one of the largest components of contemporary speech recognition and machine translation systems. Typically, language models are based upon n-gram models which provide probability estimates for seeing words following a partial history of preceding words, or an n-gram context.

future

b/ .

ǫ/.69

1 d/

\1-grams: -99 -0.81 -0.41 a -0.81 b -0.81 r -1.11 c -1.11 d

1. Introduction

P {wt |wt−1 , . . . , w1 } ≈ P{ wt | wt−1 . . . wt−n+1 } |{z} | {z }

a ǫ/.69 82 a/.

1425

28 - 31 August 2011, Florence, Italy

a

b/ .

ca

d/ .5

a

a/ .69

a/

37

c

ab

7

c

d

ad

r

a/.

9

23

r

a/.

c

ad

a/

71 0.

b/1.1

99

1.1 a/.6

a/.

37

.9

r/

d

ra

.33

0.0

/.69

.6

r/0

r/1

< s>

b

.6

ab

da

r/

c

c/ 2

2 d/

d/ .6 9

ǫ

.2

.1

a/1.1

c/.69

.9 b/1

ra

b

b/ 1

a

a/

>/

da

r/1.1

8

b/1.1

d/.69

2

.9

5

9

.9

a/

.2

.4 b/

a

c/ 1

1 d/

.69

c/.6

ca

7 .1

>/

a/

0.9 6

42

.82

br

br

context 1 1 1 1 1 1000 1 1 1 10 10 10 10 1000000000 back-off .69 .98 1.1 .69 .69 1.1 .69 .69 .69 1.1 1.1 .69 .69 1.1 label a b c d r c d r a a b ngrams 11111110 110 1110 10 10 10 10 10 10 10 10 10 10 10 10 label a b c d r a c b d r a a a b d b r a a a prob ∞ 1.9 .96 1.9 2.6 2.6 1.9 .82 1.2 1.2 1.2 1. 9 .33 .37 .37 .23 .42 .55 .42 .26 .099 .17 .17 .71 Figure 3: Decomposed Language Model and its LOUDS representation

3. Decomposed Language Model

3.1. LOUDS Tree of Contexts The LOUDS tree represents a tree by performing a breadth-first, or level-order, walk creating a bit vector that encodes the graph structure. Starting from the root node, we create a bit vector describing the tree by writing ones corresponding to the number of children at a node, followed by a zero. The resulting bit vector contains a one bit and a zero bit for each node, thus the storage required is two times the number of states in the language model. In addition to the geometry of the tree, we must store the back-off weights, and the labels for the context arc transitions. These are stored, densely, in separate arrays, with values for each arc. In order to navigate the context tree, we make use of rank and select operations on the bit vector.

The language model in Figure 2 has states that have been labeled according to the context they represent. This property, while not an explicit part of standard language model notation, can easily be computed using the single-source shortest-path algorithm from [12] over the string semiring. The state labeled represents the unigram context or the probability of seeing each symbol without any context conditioning. The start state, in bold, represents the probability of seeing symbols in the initial context. Here the symbols a and c both have arcs leading to the appropriate context. As language models must also admit strings that were not observed in the training corpus, we also have an failure arc to the unigram state. This arc is labeled with a back-off penalty that is dependent upon the smoothing algorithm chosen to build this model (this model was built using Witten-Bell [13] smoothing).

rankq (b, i) Returns the count of q valued bits in bitstring b for all j < i selectq (b, c) Returns the index i of the bit in b such that c = rankq (b, i)

The language model is a cyclic graph with failure arcs, which we treat as arcs, on all states except the unigram state. The techniques of [8] cannot be applied to non-planar graphs, and typical language models are not planar (no graph with three times as many arcs as states is planar [14]). However, language models can be decomposed.

Using these two operators navigation from context to context can be done bidirectionally. Because context arc labels, for each node, are stored contiguously, it makes cache-sensitive binary searches practical. Although there are several methods, for simplicity we use 1 based indexing, where each node in the tree is referred to by specifying the offset to its corresponding 1 in the bitstring for the tree. To illustrate, let us chose the a context which is identified by the second 1 bit, or offset i = 2.

If you consider only the back-off arcs, the language model in Figure 2 can be represented by a tree of contexts. Figure 3 shows the subtree created by extracting all of the back-off arcs. Here we have relabeled the arcs (and removed the directionality) using the prefix of the state labels as determined from the shortest path above. And, we sorted the arcs lexicographically to support searching for a particular arc. This yields a tree of contexts, where each context is connected by an arc from a less specific to more specific context.

is-leaf(b, i) = b[select0 (rank1 (b, i)) + 1]

(2)

To find the context ba, starting from the index, we can check if the node is a leaf using in this case, rank1 (b, 2) = 1, and select0 (b, 1) = 8. b[9] is a 1 bit, and it happens to be the bit

1426

function NextState(context, future) node = findChild(root, future) if numChildren(node) == 0 return node from = context i=0 while (from != root) history[i] = label[rank1 (from)] from = rank1 (select0 (from) − 1) i=i+1 while true nextNode = findChild(node, history[i]) if (nextNode == null) break i=i−1 node = nextNode return node

need to be addressed to make the proposed data structures competitive with more conventional approaches based on sorted lists, hash tables, or other index based approaches. The bitstrings used to store the tree geometry in our language model can be billions of bits long. A naive implementations of rank, even using contemporary special purpose instruc tions like popcnt, would require O |b| time to compute. To make these operations practical, we use the highly tuned implementation by [15] which adds to the bitstring both a primary and secondary index that provide constant time access. These techniques are based upon the idea of breaking the bitstring into blocks of 64 bits (as is already done by the processor) and then maintaining a running count of the number of one bits per block. This second level count, itself of fixed size, is accumulated into a 64 bit first level count. This index, of course, requires an additional storage, using 0.25|b| bits. Implementation of select can be done, naively, using a binary search with rank operations. However, [15] presents a constant time algorithm that requires at most 0.375|b| bits of index data.

Figure 4: Algorithm to find next context

corresponding to the first child of context a. Thus, for nonleaves first-child(b, i) = select0 [rank1 (b, i)] + 1

(3)

last-child(b, i) = select0 [rank1 (b, i) + 1] − 1

(4)

and

4. Experimental Results We performed two seperate experiments to compare the proposed LOUDS based language model in typical decoding applications. The first experiment was a simple composition of 4K voice search utterances consisting of 17K total words with a 5-gram, 1M word vocabulary, 11M n-gram language model. In order to evaluate our proposed LOUDS data format in a decoder, we compared the composition speed of a variety of FST representations of a language model consisting of arcs and states. We compare 4 representations for the LM, the proposed LOUDS format, and the const, compact acceptor, and vector formats of OpenFst with the decoding time (composition and shortest path) normalized to the speed of the vector fst format.

which tells us that the children of a span from 9 to 12 in the label array. The value b does not appear in this span, which is not surprising because the sequence ba does not occur in our training corpus. Unlike techniques based on hashing, bidirectional navigation to arbitrary contexts is also supported, via parent(b, i) = select1 [rank0 (b, i)]

(5)

and, finally, the arc labels and weights are simply done by accessing the rank1 (b, i)th element of the back-off and label arrays. We discuss how to implement rank and select efficiently in Section 3.3. The LOUDS tree of context provides an invertible one-toone mapping between state numbers and the sequence of inputs required to reach that state. This is important for decoding and allows us to remove entirely the next state value from the language model arcs.

Model Format vector const compact acceptor LOUDS fst

3.2. Future Words

Storage ≈500 MB 292 MB 206 MB 148 MB

Time 1.0 0.97 1.02 0.87

Table 1: Storage requirement and average recognition time per utterance.

In addition to the tree of contexts, the non-epsilon arcs, which form a partition of the entire language model, cannot be represented as a tree. For our example language model, due to the limit of n previous terms, there are many states that are reachable from many different contexts. The list of future words does not need to store the identity of the next state for any of the arcs, because the tree of contexts allows these to be determined on-the-fly using the state transition algorithm in Figure 4. Thus, the only information that needs to be stored for each arc is the sorted list of outbound arc labels (for fast searching) and the probability associated with each label. We use a simple bit vector indicating the number of outbound arcs for each state with a sequence of ones, followed by a zero. The word ids and the probabilities for each of these arcs are stored in dense auxiliary arrays, which are indexed using rank1 [i + select0 (s)] for arc i of state s.

To test the LOUDS language model in a more realistic speech recognition application, a 4-gram language model was constructed using Katz backoff trained from a variety of sources [16]. The model consists of 14.3 million n-grams: 1 million unigrams, 7.5 million bigrams, 8 million trigrams and 0.8 million 4-grams. The acoustic model is a tied-state triphone GMM-based HMM whose input features are 13 PLP-cepstral coefficients, frame-stacked and projected onto 39 dimensions using LDA/STC, trained using ML, MMI, and boosted-MMI objective functions as described in [17]. Model Format const fst compact acceptor fst LOUDS fst

3.3. Fast Algorithms for Tree Access While we have presented the data structures used to store the language model, there are many engineering details that also

Storage 307 MB 204 MB 132 MB

Time 4.03s 4.15s 3.77s

Table 2: Storage requirement and average recognition time per utterance.

1427

At recognition time, for each utterance, a new instance of the on-demand composition of the context-dependent lexicon transducer and the language model is created and searched using a open-pass Viterbi decoder. The composition is performed using the algorithm from [18] using the label-lookeahead filter with weight pushing. The results are presented in Table 2.

a boolean for each bigram indicating which bits survived to the next level. This could be done at the expense of a slightly more complicated lookup. Searching bigrams first could turn out to be an effective strategy, instead of doing binary searches at each n-gram order, as binary searches have demonstrably bad cache behavior. We intend to explore this, and more traditional compression schemes in the future, and their effect on composition speed in decoders.

5. Asymptotic Storage Requirements If we use a simple percentage n-gram frequency threshold to build a language model from a corpus of N words, the empirically observed distribution of n-grams [19] suggests |V | ∝ log N

n ∝ log N

7. References [1] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for language modeling,” in Proc. of ACL, 1996, pp. 310–318. [2] B. Harb, C. Chelba, J. Dean, and S. Ghemawat, “Back-off language model compression,” in Proc. of Interspeech, 2009, pp. 325–355. [3] D. Guthrie and M. Hepple, “Storing the web in memory: space efficient language models with constant time retrieval,” in Proc. of EMNLP, 2010, pp. 262–272. [4] K. Church, T. Hart, and J. Gao, “Compressing trigram language models with Golomb coding,” in Proc. of EMNLP-CoNLL, pp. 199–207. [5] U. Germann, E. Joanis, and S. Larkin, “Tightly packed tries: How to fit large models into memory, and make them load fast, too,” in Proc. of SETQA-NLP, 2009, pp. 31–39. [6] A. Pauls and D. Klein, “Faster and smaller n-gram language models,” in Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human Language Technologies, 2011. [7] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst: A general and efficient weighted finite-state transducer library.” in Proc. of CIAA, 2007, pp. 11–23. [8] G. Jacobson, “Space-efficient static trees and graphs,” in Proc. of FOCS, 1989, pp. 549–554. [9] R. F. Geary and R. Raman, “Succinct ordinal trees with levelancestor queries,” in Proc. of SODA, 2004, pp. 1–10. [10] N. Rahman and R. Raman, “Engineering the louds succinct tree representation,” in Proc. of WEA, 2006, p. 145. [11] T. Watanabe, H. Tsukada, and H. Isozaki, “A succinct n-gram language model,” in Proc. of the ACL-IJCNLP 2009 Conference Short Papers, 2009, pp. 341–344. [12] M. Mohri, “Semiring frameworks and algorithms for shortestdistance problems,” Journal of Automata, Languages and Combinatorics, vol. 7, pp. 321–350, 2002. [13] I. Witten and T. Bell, “The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression,” Information Theory, IEEE Transactions on, vol. 37, no. 4, pp. 1085–1094, 1991. [14] J. Hopcroft and R. Tarjan, “Efficient planarity testing,” J. ACM, vol. 21, pp. 549–568, October 1974. [15] S. Vigna, “Broadword implementation of rank/select queries,” in Proc. of WEA, 2008, pp. 154–168. [16] B. Ballinger, C. Allauzen, A. Gruenstein, and J. Schalkwyk, “Ondemand language model interpolation for mobile speech input,” in Proc. of Interspeech, 2010, pp. 1812–1815. [17] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Cohen, M. Kamvar, and B. Strope, “Google Search by Voice: A case study,” in Advances in Speech Recognition: Mobile Environments, Call Centers and Clinics. Springer, 2010. [18] C. Allauzen, M. Riley, and J. Schalkwyk, “A generalized composition algorithm for weighted finite-state transducers,” in Proc. of Interspeech. ISCA, 2009, pp. 1203–1206. [19] L. Q. Ha, P. Hanna, J. Ming, and F. J. Smith, “Extending Zipf’s law to n-grams for large corpora,” Artif. Intell. Rev., vol. 32, pp. 101–113, December 2009.

(6)

with n growing substantially slower than |V | as the size of the corpus grows without bound. We consider the asymptotic storage requirements for three different alternatives. Data structures that use a format similar to OpenFst’s const format, or any data structure that indexes the n-grams via pointers or tables, require O N log N storage. This can be shown by noting that each arc contains the state id of the next state, and the number of states grows with N , and state id’s require log N storage. A potentially effective technique, storing the n-grams in hash tables, which supports fast queries but not fast arc iteration, requires storing the n-gram keys for each arc which require O log |V |n space, making the total storage O N log N log log N . The storage of arcs for our proposed model does not depend upon the n-gram depth. But, the vocabulary items stored in the auxiliary arrays need O log |V | storage, making the total storage requirements O N log log N . This is not to say that the format, as presented, would be competitive with the state-of-the-art compression schemes presented in [2, 6], both of which use variable length block encoding schemes. Certainly, nothing precludes the use of similar compression techniques with our format. However, variable length encoding comes at great additional cost in terms of access time.

6. Conclusion and Future Work The proposed LOUDS format provides considerable savings over the existing OpenFst language model formats. And, unlike previous proposed systems for compressing language models, it does so while simultaneously improving access time. The use of quantization or block compression should be easy to incorporate into our proposed data structure. More easily, in fact, considering that these data values are stored in densely packed auxiliary arrays. For a vocabulary of size V , the potential number of n-grams of order n is V n . The set of bigrams is denser than all other ngram orders. Even so, for a typical language model, the number of bigrams is much less than V 2 . And, under reasonable pruning constraints, the set of higher order n-gram arcs is a subset of the n − 1 state’s arcs. This enables us to employ a similar tree based storage technique for storing these arcs. As the unigrams probabilities have already been addressed, we need to store the list of extensions, or next words, for each unigram context. For all higher order n-grams, the list of futures for any state is a subset of the arcs of the back-off context. For example, state ca contains only one of the two arcs from the a context. In order to avoid storing the arc labels again, we refer to the back-off context and store

1428

[image: Efficient kinetic data structures for MaxCut - Research at Google]
Efficient kinetic data structures for MaxCut - Research at Google

[image: long short-term memory language models with ... - Research at Google]
long short-term memory language models with ... - Research at Google

[image: DISCRIMINATIVE FEATURES FOR LANGUAGE ... - Research at Google]
DISCRIMINATIVE FEATURES FOR LANGUAGE ... - Research at Google

[image: RESEARCH ARTICLE Predictive Models for Music - Research at Google]
RESEARCH ARTICLE Predictive Models for Music - Research at Google

[image: Natural Language Processing Research - Research at Google]
Natural Language Processing Research - Research at Google

[image: Disks for Data Centers - Research at Google]
Disks for Data Centers - Research at Google

[image: Models for Neural Spike Computation and ... - Research at Google]
Models for Neural Spike Computation and ... - Research at Google

[image: Context Dependent Phone Models for LSTM ... - Research at Google]
Context Dependent Phone Models for LSTM ... - Research at Google

[image: Structural Maxent Models - Research at Google]
Structural Maxent Models - Research at Google

[image: Probabilistic Models for Melodic Prediction - Research at Google]
Probabilistic Models for Melodic Prediction - Research at Google

[image: Probabilistic models for answer-ranking in ... - Research at Google]
Probabilistic models for answer-ranking in ... - Research at Google

[image: Web-Scale N-gram Models for Lexical ... - Research at Google]
Web-Scale N-gram Models for Lexical ... - Research at Google

[image: music models for music-speech separation - Research at Google]
music models for music-speech separation - Research at Google

[image: LANGUAGE MODEL CAPITALIZATION ... - Research at Google]
LANGUAGE MODEL CAPITALIZATION ... - Research at Google

[image: DISTRIBUTED DISCRIMINATIVE LANGUAGE ... - Research at Google]
DISTRIBUTED DISCRIMINATIVE LANGUAGE ... - Research at Google

[image: EXPLORING LANGUAGE MODELING ... - Research at Google]
EXPLORING LANGUAGE MODELING ... - Research at Google

[image: QUERY LANGUAGE MODELING FOR VOICE ... - Research at Google]
QUERY LANGUAGE MODELING FOR VOICE ... - Research at Google

[image: Using the Web for Language Independent ... - Research at Google]
Using the Web for Language Independent ... - Research at Google

[image: Written-Domain Language Modeling for ... - Research at Google]
Written-Domain Language Modeling for ... - Research at Google

[image: Approaches for Neural-Network Language ... - Research at Google]
Approaches for Neural-Network Language ... - Research at Google

[image: Action Language Hybrid AL - Research at Google]
Action Language Hybrid AL - Research at Google

[image: AUTOMATIC LANGUAGE IDENTIFICATION IN ... - Research at Google]
AUTOMATIC LANGUAGE IDENTIFICATION IN ... - Research at Google

[image: Bayesian Language Model Interpolation for ... - Research at Google]
Bayesian Language Model Interpolation for ... - Research at Google

[image: On-Demand Language Model Interpolation for ... - Research at Google]
On-Demand Language Model Interpolation for ... - Research at Google

Unary Data Structures for Language Models - Research at Google

sion competitive with the best proposed systems, while retain- ing the full finite state structure, and ronments, Call Centers and Clinics. Springer, 2010.

 Download PDF

 290KB Sizes
 4 Downloads
 370 Views

 Report

Recommend Documents

[image: alt]

Efficient kinetic data structures for MaxCut - Research at Google

Aug 20, 2007 - denotes a grid of cell width b/2i. Let Ï± be a confidence parameter, 0 < Ï± < 1, and let Î´ be a parameter of the algorithm introduced in Lemma 17.

[image: alt]

long short-term memory language models with ... - Research at Google

ample, such a model can apply what it knows about the common stem hope to the scope for variations and improvements on this theme. Acknowledgments ...

[image: alt]

DISCRIMINATIVE FEATURES FOR LANGUAGE ... - Research at Google

language recognition system. We train the ... lar approach to language recognition has been the MAP-SVM method [1] [2] ... turned into a linear classifier computing score dl(u) for utter- ance u in ... the error rate on a development set. The first .

[image: alt]

RESEARCH ARTICLE Predictive Models for Music - Research at Google

17 Sep 2008 - of music, that is for instance in terms of out-of-sample prediction accuracy, as it is done in Sections 3 and 5. In the first For example, a long melody is often composed by repeating with variation under the PASCAL Network

[image: alt]

Natural Language Processing Research - Research at Google

Used numerous well known systems techniques. â€¢ MapReduce for scalability. â€¢ Multiple cores and threads per computer for efficiency. â€¢ GFS to store lots of data.

[image: alt]

Disks for Data Centers - Research at Google

Feb 23, 2016 - 10) Optimized Queuing Management [IOPS] ... center, high availability in the presence of host failures also requires storing data on multiple ... disks to provide durability, they can at best be only part of the solution and should ...

[image: alt]

Models for Neural Spike Computation and ... - Research at Google

memories consistent with prior observations of accelerated time-reversed maze-running within traditional communications or computer science. Moreover the degree to which they contributed to each desired output strength of the.

[image: alt]

Context Dependent Phone Models for LSTM ... - Research at Google

dent whole-phone models can perform as well as context dependent states, given a ... which converges to estimate class posteriors when using a cross- entropy loss. ... from start to end, it is common to divide phonemes into a number of states ...

[image: alt]

Structural Maxent Models - Research at Google

Proceedings of the 32nd International Conference on Machine. Learning, Lille, France, 2015. ... call our Maxent models structural since they exploit the structure of H as a union of way as for the StructMaxent algorithm. We compared the.

[image: alt]

Probabilistic Models for Melodic Prediction - Research at Google

Jun 4, 2009 - The choice of a particular representation for chords has a strong impact on statis- tical modeling of representations in a more general way. 2 Melodic First, what we call a Naive representation is to consider every chord

[image: alt]

Probabilistic models for answer-ranking in ... - Research at Google

For the past several years, open-domain question-answering (QA) has been actively studied to ... However, few have considered the potential benefits of combining The parameters Î² and Î» are estimated from training data by maximizing the

[image: alt]

Web-Scale N-gram Models for Lexical ... - Research at Google

correction, an approach sometimes referred to as the Mays,. Damerau, and tion, and apply our systems to preposition selection, spelling correction, and ...

[image: alt]

music models for music-speech separation - Research at Google

applied, section 3 describes the training and evaluation setup, and section 4 describes the way in which parameters were tested and presents the results. Finally, section 5 ments, Call Centers and Clinics. 2010, A. Neustein, Ed. Springer.

[image: alt]

LANGUAGE MODEL CAPITALIZATION ... - Research at Google

tions, the lack of capitalization of the user's input can add an extra cognitive load on the ... adding to their visual saliency. We will call this model the Capitalization LM. The ... rive that â€œiphoneâ€� is rendered as â€œiPhoneâ€� in the Ca

[image: alt]

DISTRIBUTED DISCRIMINATIVE LANGUAGE ... - Research at Google

formance after reranking N-best lists of a standard Google voice-search data hypotheses in domain adaptation and generalization,â€� in Proc. ICASSP, 2006.

[image: alt]

EXPLORING LANGUAGE MODELING ... - Research at Google

ended up getting less city-specific data in their models. The city-specific system also includes a semantic stage for inverse text normalization. This stage maps the query variants like â€œcomp usaâ€� and â€�comp u s a,â€� to the most common web- tex

[image: alt]

QUERY LANGUAGE MODELING FOR VOICE ... - Research at Google

ABSTRACT ... data (10k queries) when using Katz smoothing is shown in Table 1. well be the case that the increase in PPL for the BIG model is in fact.

[image: alt]

Using the Web for Language Independent ... - Research at Google

Aug 6, 2009 - Subjects were asked to randomly se- ... subjects, resulting in a test set of 11.6k tokens, and tion Processing and Management, 27(5):517.

[image: alt]

Written-Domain Language Modeling for ... - Research at Google

Language modeling for automatic speech recognition (ASR) systems has been traditionally in the verbal domain. In this paper, we present finite-state modeling ...

[image: alt]

Approaches for Neural-Network Language ... - Research at Google

Oct 10, 2017 - guage model of an ASR system is likely to benefit from training on spoken ... The solution we propose in this paper to address this mis- match is ...

[image: alt]

Action Language Hybrid AL - Research at Google

the idea of using a mathematical model of the agent's domain, created using a description in the action language AL [2] to find explanations for unexpected.

[image: alt]

AUTOMATIC LANGUAGE IDENTIFICATION IN ... - Research at Google

this case, analysing the contents of the audio or video can be useful for better categorization. ... large-scale data set with 25000 music videos and 25 languages.

[image: alt]

Bayesian Language Model Interpolation for ... - Research at Google

used for a variety of recognition tasks on the Google Android platform. The goal Equation (10) shows that the Bayesian interpolated LM repre- sents p(w); this ...

[image: alt]

On-Demand Language Model Interpolation for ... - Research at Google

Sep 30, 2010 - Google offers several speech features on the Android mobile operating system: Table 2: The 10 most popular voice input text fields and their.

×
Report Unary Data Structures for Language Models - Research at Google

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

