Essay  Review     Evolution  and  Apparent  Irrationality     Rory  Smead     Department  of  Philosophy  &  Religion   Northeastern  University   371  Holmes  Hall   360  Huntington  Avenue   Boston,  MA  02115     E-­‐mail  address:  [email protected]       Evolution  and  Rationality:  Decisions,  Co-­‐operation  and  Strategic  Behavior.   Samir  Okasha  and  Ken  Binmore  eds.;  Cambridge  University  Press,  Cambridge,  2012,   pp.  296,  Price  $90,  hardcover,  ISBN  978-­‐1-­‐107-­‐00499-­‐3.       On  the  surface,  evolution  and  rationality  are  very  different  notions.  The   theory  of  rational  choice  was  developed  in  economics  and  is  used  to  understand  the   decisions  of  rational  agents.  Evolutionary  theory,  on  the  other  hand,  studies  the   changes  of  biological  populations  and  pertains  to  organisms  that  have  no  mind  at  all.   A  closer  examination  of  the  two  theories  begins  to  reveal  some  interesting  and  deep   connections.  The  central  notion  of  each  theory  is  one  of  maximization.  Rational   individuals  will  make  choices  that  maximize  their  utility.  Evolution  will  select  for   behaviors  that  are  fitness  maximizing.  Consequently,  it  is  not  surprising  that  the   tools  and  methods  of  rational  choice  theory  have  been  fruitfully  applied  to   evolutionary  settings  and  vice  versa  (see  e.g.  Hoffbauer  and  Sigmund,  1998;   Sandholm,  2010).   This  methodological  parallel  raises  several  interesting  questions   surrounding  evolution  and  rationality.  Does  utility  (roughly)  correspond  to  

biological  fitness  and  if  not,  why  not?  Are  humans  rational  decision  makers?  Will   evolution  lead  to  behaviors  that  are  close  to  rational?  These  are  some  of  the  central   questions  addressed  in  Evolution  and  Rationality.  Samir  Okasha  and  Ken  Binmore   have  assembled  a  very  nice  collection  of  works  that  spans  several  disciplines  and   presents  a  range  of  different  perspectives  on  the  connections  between  evolution  and   rationality.  This  diversity  is  important  due  to  the  interdisciplinary  nature  of  the   central  questions.  However,  this  same  diversity,  perhaps  unsurprisingly,  means  that   there  is  not  a  clear  unified  message  regarding  the  connections  between  evolution   and  rationality.  On  several  key  points  there  seems  to  be  disagreement  among  the   contributed  chapters.  Moreover,  the  focus  of  several  chapters  is  not  on  rational   behavior  but  on  providing  explanations  of  apparently  irrational  behavior.  This   review  will  attempt  to  summarize  what  general  messages  there  are  in  the  book  as   well  as  offer  some  critical  reflections  on  the  points  in  contention.   I  will  focus  on  two  central  themes.  The  first  is  the  methodological  parallel   between  rational  choice  theory  and  evolutionary  theory,  which  I  consider  in  the   context  of  evolutionary  game  theory.  The  second  is  whether  evolution  should  be   expected  to  produce  outcomes  that  correspond  to  rational  behavior  and,  in   particular,  possible  evolutionary  explanations  of  apparently  irrational  behavior.  I   will  also  discuss  a  connection  between  evolution  and  rationality  that  is  much  less   prominent  in  the  book:  the  evolution  of  the  cognitive  mechanisms  that  underlie   decision-­‐making.   The  methodological  connection  between  rational  choice  theory  and  evolution   is  nicely  highlighted  by  the  relationship  between  rational  game  theory  and  

evolutionary  game  theory.  Game  theory,  historically,  is  an  extension  of  the  classical   theory  of  rational  choice  to  strategic  situations.  The  primary  method  of  rational   game  theory  involves  equilibrium  analysis,  where  equilibria  are  often  defined  in   terms  of  rational  self-­‐interest.  The  central  solution  concept  in  game  theory  is  the   Nash  equilibrium:  a  set  of  strategies  such  that  each  player’s  strategy  is  maximizing   her  expected  utility  given  the  strategies  of  all  the  other  players.  The  equilibria  are   taken  to  represent  the  expectation  for  how  rational  individuals  will  behave  when   playing  a  game.   Evolutionary  game  theory  applies  the  formal  tools  of  game  theory  to   (possibly  arational)  biological  populations  with  the  aim  of  determining  how  they   will  evolve  when  they  are  facing  a  fitness  affecting  game.  Given  this  focus,  the   natural  method  of  analysis  would  presumably  involve  evolutionary  dynamics:  how   does  a  population  change  over  time  when  interacting  in  a  game?  Indeed,  models  of   evolutionary  dynamics  are  part  of  early  work  in  evolutionary  game  theory  (Taylor   and  Jonker,  1978).  However,  much  of  the  methodology  of  evolutionary  game  theory   involves  static  equilibrium  analysis  similar  to  that  of  its  rational  choice  counterpart.   Moreover,  despite  the  focus  on  populations  of  arational  individuals,  the  traditional   “rational”  solutions  to  games,  such  as  the  Nash  equilibria,  can  be  used  to  gain  insight   into  how  a  population  will  evolve.  One  reason  for  this  is  that  Nash  equilibria  form   rest  points  under  a  broad  class  of  evolutionary  dynamics  (Weibull,  1995).   However,  placing  too  much  of  an  emphasis  on  Nash  equilibria  or  other   “rational”  solutions  would  be  a  mistake  in  evolutionary  contexts.  In  Chapter  1  of   Evolution  and  Rationality,  Peter  Hammerstein  argues  that  considering  the  

evolutionary  process  explicitly  is  important  for  determining  the  relevance  of  certain   solution  concepts.  Hammerstein  specifically  considers  the  relevance  of  the  subgame   perfect  equilibrium,  a  refinement  of  the  Nash  equilibrium,  concluding  that  it  is   relevant  to  specific  biological  problems  but  that  it  should  be  used  with  caution.   Similar  points  could  be  made  for  the  connections  between  Nash  equilibria  and   evolutionary  dynamics.  Although  there  may  be  no  evolutionary  change  at  the  Nash   equilibria  of  games,  these  points  may  not  be  stable  under  evolutionary  dynamics— evolution  could  lead  nearby  states  away  from  Nash  equilibria.   One  refinement  of  the  Nash  equilibrium  that  was  intended  specifically  for   evolutionary  settings  is  the  evolutionarily  stable  strategy  or  ESS  (Maynard  Smith   and  Price,  1973;  Maynard  Smith,  1982).  The  ESS  represents  a  behavior,  which,  if   adopted  by  the  population,  no  mutant  behaving  otherwise  would  be  able  to  invade.   The  ESS,  when  it  exists,  is  strongly  stable  under  a  broad  class  of  evolutionary   dynamics  (Weibull,  1995)  and,  consequently,  is  often  the  central  solution  concept   for  evolutionary  games.  In  Chapter  4,  Simon  Huttegger  and  Kevin  Zollman  discuss   the  ESS  and  its  use  in  biology.  They  argue  that  the  methodology  of  focusing  on  ESSs   as  the  explanatorily  relevant  solutions  is  flawed  when  we  explicitly  consider   evolutionary  dynamics.  The  reason  is  that  there  are  examples  of  evolutionary   outcomes  that  arise  and  persist,  yet  do  not  correspond  to  any  ESS.  Furthermore,   these  outcomes  may  be  more  likely,  and  hence  more  significant,  than  the  outcomes   that  correspond  to  an  ESS  of  the  game.   It  is  important  to  note  that  a  dynamical  analysis  is  also  important  for   considering  rational  actors  as  well.  No  real  agents  embody  the  extreme  idealizations  

of  full  economic  rationality  as  is  often  assumed  in  equilibrium  analysis.  If  real  agents   are  rational  they  are  only  boundedly  rational.  Consequently,  modeling  the  way  that   agents  learn  over  time  may  be  just  as  important  for  the  economic  theory  of  rational   choice  as  evolutionary  dynamics  are  for  evolutionary  theory.  Indeed,  much  of  the   development  of  evolutionary  game  theory  has  taken  place  within  economics  and  has   been  aimed  at  how  boundedly  rational  agents  will  learn  to  interact  (e.g.  Fudenberg   and  Levine,  1998;  Young,  2004).  Hence,  there  is  a  sense  in  which  the  issue  of  static   vs.  dynamic  methodology  is  orthogonal  to  the  relationship  between  rationality  and   evolution.   Nevertheless,  the  general  lesson  from  Hammerstein  and  Hutteger  &  Zollman   goes  beyond  the  fact  that  the  outcomes  of  evolutionary  dynamics  do  not  always   coincide  with  particular  equilibrium  concepts.  A  dynamic  methodology  brings   evolutionary  change  to  the  forefront  of  the  analysis  whereas  traditional  equilibrium   analysis  focuses  on  static  solutions  to  games.  Consequently,  the  dynamical  approach   can  shed  light  on  topics  static  equilibrium  analysis  cannot.  As  Huttegger  and   Zollman  point  out,  equilibrium  analysis  only  tells  us  what  happens  when   populations  or  players  are  already  close  to  the  equilibrium  and  cannot  tell  us  how   players  can  reach  an  equilibrium  if  they  are  not  near  one.  The  underlying  dynamics   of  behavior  change,  whether  of  individuals  learning  over  time,  or  evolving   populations,  is  arguably  more  important  that  the  static  equilibria.   I  think  these  arguments  are  correct  and  suspect  that  many  of  the  book’s   contributors  would  agree.  However,  despite  the  recognized  importance  of   evolutionary  dynamics,  other  chapters  of  Evolution  and  Rationality  have  little  

discussion  of  dynamical  models  and  often  proceed  with  static  equilibrium  analysis.   While,  this  presents  an  apparent  conflict  of  methodology  throughout  the  book,  I   think  the  dual  approach  is  justified  for  two  reasons.  First,  much  of  the  previous   important  work  that  has  been  done  on  evolution  and  rationality  involves  static   equilibrium  analysis.  Second,  even  if  one  holds  a  dynamical  analysis  as  privileged,   this  does  not  mean  that  we  ought  to  abandon  the  methods  of  equilibrium  analysis.   The  rational  equilibria  in  games  can  be  informative  of  the  evolutionary  possibilities   and  constraints.  Many  of  the  static  equilibrium  concepts  such  as  ESS  or  Nash   equilibrium  have  certain  properties  that  hold  under  a  wide  range  of  possible   dynamics.  Consequently,  equilibrium  analysis  can  be  of  use  if  we  are  ignorant  of  (or   if  we  wish  to  remain  agnostic  about)  the  underlying  evolutionary  dynamics.   Furthermore,  the  formal  tools  from  decision  theory  and  economics  for  identifying   and  analyzing  the  equilibria  of  a  game  are  well  developed  and  are  often  relatively   easy  to  use  compared  dynamic  methods.  This  means  that  equilibrium  analysis  may   be  a  prudent  place  to  begin  analysis  even  if  we  believe  that  a  dynamical  model  will   have  the  final  say.   Beyond  the  methodological  parallels  between  studies  of  rationality  and   evolution,  there  are  also  possible  connections  between  some  of  their  central   notions.  Does  utility  correspond  to  fitness?  If  natural  selection  can,  in  some  way,  act   on  our  preferences,  one  should  expect  the  evolution  of  fitness  tracking  preferences.   An  organism  with  utilities  that  correspond  to  fitness  will,  ceteris  paribus,  do  better   than  one  with  utilities  that  do  not.  Consequently,  our  decision-­‐making  should,  at   least  roughly,  be  maximizing  evolutionary  fitness  subject  to  whatever  constraints  

are  present.  In  Chapter  10,  Herbert  Gintis  presents  a  similar  argument  in  the  context   of  a  broader  discussion  on  how  to  unify  the  economic,  sociological,  psychological   and  biological  models  of  decision-­‐making.  Gintis  adds  the  caveat  that  individuals   may  not  be  consciously  maximizing  utility  or  anything  else,  but  their  decisions  may   nonetheless  be  captured  by  optimization  models.   The  standard  decision-­‐theoretic  definition  of  utility  is  used  throughout  the   book.  Utility  is  a  numerical  representation  of  preferences,  which  are  revealed  by  an   agent’s  choice  behavior  (see  von  Neumann  and  Morgenstern,  1944,  Binmore,  2009).   Fitness  is  understood  in  terms  of  relative  ability  to  produce  offspring.  With  this  in   mind,  the  argument  above  is  fairly  convincing:  the  most  evolutionarily  successful   organisms  will  be  those  whose  behaviors  maximize  fitness,  which  will  happen  if   fitness  and  utility  coincide.   Given  the  plausibility  of  this  view,  the  most  interesting  aspects  of  the  utility-­‐ fitness  connection  naturally  involve  cases  where  preferences  (and  so,  utilities)  do   not  seem  to  match  fitness.  These  are  cases  where  individuals  behave  in  apparently   irrational  ways—“irrational”  in  the  evolutionary  sense  that  behavior  that  does  not   approximately  maximize  fitness.  We  know  that  humans  sometimes  behave   irrationally  and  this  is  to  be  expected  even  if  fitness  and  utility  generally  do   coincide;  we  may  make  mistakes  or  find  ourselves  in  unfamiliar  circumstances   where  we  simply  do  not  know  the  best  way  to  behave.  But,  it  is  systematic  and   persistent  apparent  irrationalities  that  demand  an  explanation.   One  explanation  for  irrationality  points  to  the  constraints  and  limits  on  what   evolution  can  produce.  In  Chapter  2,  El  Mouden,  Burton-­‐Chellow,  Gardiner  and  West  

present  a  convincing  case  that  humans  can  often  be  described  as  striving  to   maximize  their  inclusive  fitness,  though  they  are  imperfect  and  sub-­‐optimal   predictable  ways.    The  apparent  irrationalities  of  humans,  on  their  view,  are   expected  given  that  there  are  many  constraints  and  complexities  in  real   evolutionary  settings.  For  example,  natural  selection  prefers  the  “quick  and  cheap”   solutions  to  problems  that  rely  on  heuristics  rather  than  precise  optimization.  These   can  lead  to  good  but  not  optimal  behavior  in  ordinary  circumstances  and  may  lead   to  misapplications  when  individuals  are  faced  with  unusual  or  novel  circumstances.   Furthermore,  El  Mouden  et  al.  argue,  it  can  be  difficult  to  assess  true  fitness  effects   of  behavior  as  well  as  the  extent  that  behavioral  traits  can  be  molded  by  natural   selection.   Deeper  differences  between  utility  and  fitness  may  be  expected  when  we   consider  the  oddities  of  modern  human  culture  relative  to  our  evolutionary  past.  In   Chapter  11,  Kim  Sterelny  argues  that  cultural  transmission  of  ideas  is  a  way  for  us  to   acquire  preferences  and  values  that  are  detrimental  to  our  fitness.  Furthermore,  this   happens  by  learning  within  an  individual’s  lifetime  and  may  not  be  closely   correlated  with  genetic  relationships.  Consequently,  culturally  acquired  maladaptive   behaviors  will  not  necessarily  be  eliminated  by  selection.  When  this  occurs,  fitness   and  utility  can  become  “decoupled.”     The  explanations  of  irrational  behavior  offered  by  El  Moulden  et.  al.  and   Sterelny  take  irrationality  to  be  an  unselected  consequence;  that  it  is  due  to   constraints  or  complexities  in  the  evolution  of  decision-­‐making  mechanisms.  In   Chapter  3,  Alasdair  Houston  distinguishes  this  variety  of  explanation  for  apparently  

irrational  behavior  from  a  second  type:  that  irrationality  is  selected  for  during   evolution.  Of  course,  these  two  types  of  explanation  need  not  be  viewed  as   competing  and  both  may  be  applicable  to  instances  of  irrational  behavior.  However,   the  idea  that  irrationalities  are  somehow  evolutionarily  beneficial  is  an  intriguing   possibility.  Houston’s  discussion  focuses  on  the  case  of  intransitive  preferences.   Transitivity  of  preference  is  commonly  assumed  to  be  a  requirement  of  rationality.   Yet,  there  are  cases  of  laboratory  experiments  where  animals  and  humans  appear  to   exhibit  intransitive  preferences.  It  is  possible  that  natural  selection  leads  to   intransitivity  of  choice,  but  when  this  occurs,  Houston  argues,  the  intransitivity  are   often  only  apparent.  A  correct  view  of  the  decision  situation  would  reveal  that,   considered  from  a  broader  context,  the  choice  is  not  intransitive.  The  general  idea  is   that  irrationalities  seem  to  occur  because  theorists  take  too  narrow  a  view  of  the   decision-­‐making  problem  that  needs  to  be  solved.   On  reflection,  there  is  something  rather  obvious  about  this  explanation  of   apparent  irrationalities  (in  the  biological  sense).  Any  trait  that  is  selected  must  have   some  evolutionary  advantage,  for  this  is  part  of  what  selection  means.  However,   when  assessing  whether  or  not  a  decision  or  behavior  is  one  that  maximizes  fitness   it  is  important  to  specify  a  measure  of  fitness.  This  turns  out  to  be  more  complicated   than  it  may  seem.  Behaviors  or  decisions  can  be  viewed  from  many  different  scopes.   On  the  one  hand  we  may  view  a  decision  from  a  narrow  “local”  perspective  where   we  consider  a  particular  setting  and  take  everything  else  to  be  fixed  or  constant.  On   the  other  hand,  we  may  view  a  decision  from  a  broader  “global”  perspective  and   how  this  decision  may  relate  to  many  different  settings  across  time.  The  best  thing  

to  do  in  a  particular  context,  holding  everything  else  fixed,  may  not  be  the  best  thing   to  do  all  things  considered.  The  time-­‐scale  in  which  we  measure  fitness  is  also   important:  an  action  that  maximizes  gene  frequency  in  the  next  generation  may  not   be  maximizing  gene  frequency  two  generations  from  now.   Evolutionary  explanations  of  irrational  behavior  tend  to  assume  that  the   behavior  is  only  apparently  irrational.  That  is,  the  behavior  is  irrational  in  a  local   sense,  but  not  some  more  global  sense.  This  is  largely  a  point  of  consensus   throughout  the  book:  cases  of  irrationality  are  either  not  products  of  selection  or  are   only  apparent  irrationalities  and  generate  some  benefits  in  a  broader  context.   Despite  this,  selection  can  lead  to  systematic  and  striking  cases  of  local   irrationalities.  This  is  particularly  true  in  the  context  of  social  interactions,  where   the  distinction  between  strategic  and  non-­‐strategic  situations  is  important  for  the   potential  connections  between  evolution  and  rationality.  In  strategic  situations,   having  preferences  that  do  not  directly  track  evolutionary  fitness  can  result  in   indirect  fitness  benefits.  In  Chapter  6,  Berninghaus,  Güth  and  Kliemt  discuss     “indirect  evolution,”  where  individuals  make  decisions  according  to  their   preferences  but  the  preferences  undergo  evolution.  In  these  models,  it  is  assumed   that  individuals  have  some  set  of  preferences,  have  information  about  the   preferences  of  others,  and  then  behave  rationally  given  the  preferences  of  all   involved.  Having  preferences  that  do  not  match  evolutionary  fitness  can  influence   the  way  that  others  interact  with  you,  and  thereby,  it  is  possible  to  reap  indirect   evolutionary  benefits  from  such  preferences.    

The  fact  that  inaccurate  preferences  (in  a  local  sense)  may  generate  benefits   in  a  broader  context  is  not  a  new  idea  (Frank,  1987).  A  similar  approach  is  explored   in  Chapter  7  where  Wolpert  and  Jamison  explore  what  they  call  “persona  games.”   The  idea  is  that  individuals  may  adopt  different  personas  when  playing  different   games,  which  changes  the  way  we  behave  in  those  games.  More  specifically,  the   personas  that  individuals  may  adopt  correspond  to  different  sets  of  preferences   when  making  choices  in  a  game.    Apparently  irrational  behavior  can  be  a  result  of   rationally  adopting  (from  a  global  perspective)  certain  personas  when  facing  a   game.  Wolpert  and  Jamison  apply  this  idea  to  provide  a  possible  explanation  for   apparently  irrational  cooperation  in  the  Prisoner’s  Dilemma.   Cooperative  behavior  in  social  dilemmas,  such  as  the  Prisoner’s  Dilemma,  has   historically  received  much  attention  in  both  evolutionary  biology  and  rational   choice  theory.  This  is  also  true  in  Evolution  and  Rationality.  This  topic  serves  as  the   focal  point  in  Chapter  8  where  Jack  Vromen  discusses  reciprocity  in  cooperative   situations  and  whether  or  not  humans  are  strong  reciprocators  (having  the   predisposition  to  cooperate  and  to  punish  non-­‐cooperators  even  if  it  is  costly).   Cooperation  in  social  dilemmas  is  also  a  central  focus  in  Chapter  9  where  Natalie   Gold  discusses  the  notion  of  “team  reasoning”  in  games.  The  idea  of  team  reasoning   is  that  agents  may  approach  an  interaction  by  thinking  about  themselves  as  part  of  a   group  and  aim  to  do  what  is  best  for  the  group.  If  individuals  reason  about  a  game  in   this  way  it  is  possible  to  see  behaviors  that  are  not  rational  from  the  perspective  of   egocentric  individuals.  Gold  also  discusses  a  number  of  possible  explanations  for  

how  team  reasoning  may  have  evolved  but  does  not  commit  to  any  specific   explanation.   The  significance  of  the  way  that  people  reason  about  their  situation  is  related   to  another  issue  that  does  not  receive  much  attention:  the  evolution  of  the  cognitive   mechanisms  that  underlie  decision-­‐making  (see  e.g.  Hammerstein  and  Stevens,   2012).  The  common  sense  or  psychological  notions  of  rationality  involve  the   process  of  reasoning  and  not  simply  the  behavioral  result.  However,  Evolution  and   Rationality  has  relatively  little  discussion  of  the  way  we  might  expect  evolved  agents   to  think  or  reason.  This  is  because  the  classical  theories  of  rationality  are  not  aimed   at  actual  thinking  or  decision-­‐making,  but  rather  the  decision-­‐making  of  idealized   agents:  “…few  defenders  of  the  rational  economic  agent  framework  think  of  it  as  a   model  of  thinking”  (Sterelny  p.254).  The  idea  is  that  we  should  not  expect  evolved   organisms  to  be  fully  rational  economic  agents,  but  we  will  expect  them  to  behave  as   if  they  were  rational.  Similar  sentiments  are  expressed  by  many  of  the  book’s   contributors.     However,  being  rational  is  not  simply  making  the  right  decisions,  but  also   making  them  for  the  right  reasons.  Deliberation,  learning  and  the  synthesis  of   information  are  also  important  aspects  of  rationality.  One  brief  discussion  of  the   cognitive  processing  aspect  of  rationality  is  by  Herbert  Gintis  in  Chapter  10.  Gintis   highlights  studies  that  have  successfully  applied  the  methods  and  tools  of  rational   choice  theory  to  cognitive  science  as  well  as  potential  relationships  between  topics   in  cognitive  science  to  game  theory  and  evolution.  Certain  decision-­‐making  

processes  seem  to  involve  explicit  and  not  just  “as  if”  maximization.  However,  the   evolution  of  cognitive  mechanisms  is  not  discussed  in  detail.   Even  if  we  expect  evolution  to  lead  to  fitness  maximizing  behavior,  there  is   no  guarantee  that  the  agents  will  have  cognitive  mechanisms  designed  to  maximize   fitness  (or  anything  else  for  that  matter).  What  is  important  for  natural  selection  is   fitness  of  behavior  within  the  current  ecological  and  social  settings.  Certain  parts  of   a  decision  procedure  that  maximizes  fitness  can  be  “out  sourced”  to  others  or  to  the   environment  as  long  as  those  aspects  of  the  environment  remain  relatively  stable.   What  matters  is  the  long-­‐term  impact  of  behavior  on  inclusive  fitness.  As  long  as   (approximately)  the  right  behavior  is  reliably  generated,  the  cognitive  mechanism   generating  that  behavior  is  of  little  consequence.  Consequently,  there  is  no  a  priori   reason  to  expect  evolved  cognitive  mechanisms  to  be  directly  tracking  fitness.   In  fact,  there  may  be  reason  to  think  that  the  most  successful  cognitive   mechanisms  and  decision  rules  will  be  those  that  do  not  directly  track  fitness.  In   Chapter  5,  Brighton  and  Gigerenzer  argue  that  the  real  world  does  not  correspond   to  the  “small  worlds”  considered  in  standard  decision  theory  except  in  very  artificial   circumstances.  When  the  possible  states  of  the  world  (and  their  probabilities)  are   unknown,  rational  maximization  is  not  possible  and  perhaps  meaningless.  Given  the   complexity  and  radical  uncertainty  of  the  “large  worlds”  simple  heuristics  can  often   outperform  attempts  at  optimization.   The  study  of  the  evolution  of  learning  has  produced  results  that  may   complicate  the  evolution-­‐rationality  connection,  particularly  in  strategic  settings   (see  e.g.  Dubois  et.  al.,  2010;  Katsnelson  et.  al.,  2012).  The  best  way  to  learn  can  

depend  on  how  others  are  learning,  which  means  that  it  is  important  to  consider  the   way  that  different  learning  mechanisms  may  interact.  An  example  of  this  type  of   complexity  comes  from  studies  of  the  evolution  of  imitation  learning.  One  recurrent   result  in  these  studies  is  that  we  should  expect  populations  to  be  mixed  with  respect   to  the  way  they  approach  decision  problems:  some  individuals  will  imitate,  others   will  learn  for  themselves  (e.g.  Rogers,  1988;  Boyd  and  Richerson,  2005).  There  is  no   reason  to  learn  for  oneself  if  the  behavior  of  others  is  already  a  reliable  indicator  of   the  best  thing  to  do.  But,  imitation  is  only  useful  when  there  are  not  too  many  other   imitators.  Hence,  these  models  suggest  that  we  should  expect  populations  with   different  types  of  learners,  some  of  which  may  exhibit  “as  if  rationality”  even  if  they   do  not  have  cognitive  mechanisms  one  would  consider  rational.   In  all,  Evolution  and  Rationality  is  a  stimulating  collection  of  work  that  should   be  of  interest  to  philosophers,  biologists,  psychologists  and  economists  alike.  With   the  wide  range  of  views  and  approaches  covered  in  the  book,  there  is  also  variation   in  accessibility:  while  many  chapters  are  written  for  a  general  audience,  some  may   be  too  difficult  for  undergraduates  and  others  too  technical  for  those  without  some   mathematical  training.  Despite  this,  the  book  is  an  excellent  and  much  needed   contribution  to  an  area  that  demands  interdisciplinary  attention.  I  think  the  editors   will  be  successful  in  their  stated  goal  to  “promote  a  constructive  dialogue”  between   the  diverse  approaches  in  the  study  of  evolution  and  rationality.     References   Binmore,  K.  (2009).  Rational  Decisions.  Oxford:  Oxford  University  Press.  

Boyd  R.  and  Richerson  P.  J.  (2005).  Culture  and  the  Evolutionary  Process.  Oxford:   Oxford  University  Press.   Dubois,  F.,  Morand-­‐Ferron,  J.,  and  Giraldeau,  L.  A.  (2010).  Learning  in  a  game   context:  strategy  choice  by  some  keeps  learning  from  evolving  in  others.  Proc.  R.   Soc.  B  277,  3609-­‐3616.   Frank,  R.  H.  (1987).  If  homo  economicus  could  choose  his  own  utility  function,   would  he  want  one  with  a  conscience?.  The  American  Economic  Review,  77(4),   593-­‐604.   Fudenberg,  D.  and  Levine,  D.  (1998).  The  Theory  of  Learning  in  Games.  Cambridge:   MIT  Press.   Hammerstein,  P.  and  Stevens,  J.  R.  (2012).  Evolution  and  the  Mechanisms  of  Decision   Making.  Cambridge:  MIT  Press.   Hofbauer,  J.  and  Sigmund,  K.  (1998).  Evolutionary  Games  and  Population  Dynamics.   Cambridge  University  Press.   Houston,  A.I.,  McNamara,  J.  M.,  and  Steer,  M.  D.  (2007).  Do  we  expect  natural   selection  to  produce  rational  behaviour?  Philosophical  Transactions  of  the  Royal   Society  B,  362,  1531-­‐1543.   Katsnelson,  E.,  Motro,  U.,  Feldman,  M.  W.,  and  Lotem,  A.  (2012).  Evolution  of  learned   strategy  choice  in  a  frequency-­‐dependent  game.  Proc.  R.  Soc.  B,  279,  1176-­‐1184.   Maynard  Smith,  J.  (1982).  Evolution  and  the  Theory  of  Games.  Cambridge:  Cambridge   University  Press.   Maynard  Smith,  J.  and  Price,  G.  R.  (1973).  The  logic  of  animal  conflict.  Nature,  246,   15-­‐18.  

Rogers,  A.  R.  (1988).  Does  biology  constrain  culture?  American  Anthropologist,  90,   819-­‐831.   Sandholm,  W.  H.  (2010).  Population  Games  and  Evolutionary  Dynamics.  Cambridge:   MIT  Press.   Skyrms,  B.  (1996).  Evolution  of  the  Social  Contract.  Cambridge:  Cambridge   University  Press.   Taylor,  P.  and  Jonker,  L.  (1978).  Evolutionary  stable  strategies  and  game  dynamics.   Mathematical  Biosciences,  40,  145-­‐56.   von  Neumann,  J.  and  Morgenstern,  O.  (1944).  Theory  of  Games  and  Economic   Behavior.  Princeton:  Princeton  University  Press.   Weibull,  J.  W.  (1995).  Evolutionary  Game  Theory.  Cambridge:  MIT  Press.   Young,  P.  H.  (2004).  Strategic  Learning  and  its  Limits.  Oxford:  Oxford  University   Press.  

Essay Review Evolution and Apparent Irrationality Rory ...

outcomes that arise and persist, yet do not correspond to any ESS. Furthermore, these outcomes may be more likely, and hence more significant, than the outcomes that correspond to an ESS of the game. It is important to note that a dynamical analysis is also important for considering rational actors as well. No real agents ...

114KB Sizes 0 Downloads 150 Views

Recommend Documents

Irrationality and Cognition - Semantic Scholar
Feb 28, 2006 - “When you do have a good argument for a conclusion, you should accept the conclusion”, and “Be ... For example, my own system OSCAR (Pollock 1995) is built to cognize in certain ways, ..... get a ticket, etc. Hierarchical ...

Irrationality and Cognition - Semantic Scholar
Feb 28, 2006 - Page 1 ... For example, my own system OSCAR (Pollock 1995) is built to cognize in certain ... Why would anyone build a cognitive agent in.

Review Essay: Land, Labour and Agrarian Transition in ...
van de Walle misconstrue landlessness, misinterpret the associated data and ... 'from a highly controlled collective-farming system to the type of free-market ..... which, as an agrarian political economist, I define as differentiation in access to.

pdf-67\rory-sutherland-the-wiki-man-by-rory ...
Page 1 of 6. RORY SUTHERLAND: THE WIKI MAN BY. RORY SUTHERLAND. DOWNLOAD EBOOK : RORY SUTHERLAND: THE WIKI MAN BY RORY. SUTHERLAND PDF. Page 1 of 6 ...

Elena Cattaneo and Lawrence W. Stanton Rory ...
Feb 23, 2010 - http://physiolgenomics.physiology.org/cgi/content/full/41/3/269#BIBL .... centered on each RE1 using the Galaxy web server (7) and then.

community ecology by rory putman
Dec 31, 1994 - you can open your gadget to read this book Community Ecology By Rory Putman in soft file system. So simple as well as rapid! Reviewing the ...

Goats, birds, and emergent diseases: apparent and ...
INTRODUCTION. A wide array of anthropogenic pressures including .... unpublished data), and this large-scale sampling allowed us to confirm that the ... Transects were separated by sufficient distance (!500 m) to avoid ..... other continental species

Essay Questions
are Copyright © 1984-2008 by College Entrance Examination Board, Princeton, NJ. All rights reserved. For face-to-face teaching purposes, classroom teachers are permitted to reproduce the questions. Web or Mass distribution prohibited. Essay Question

Evolution: Convergent and Parallel Evolution
by various authors to create strict definitions for terms that describe the ... duplication), differences steadily accumulate in the sepa- rate lineages (here, the ...

Supplementary Appendix to: Perpetual Learning and Apparent Long ...
Apr 13, 2017 - Perpetual Learning and Apparent Long Memory. Guillaume Chevillon. ESSEC Business School & CREST. Sophocles Mavroeidis. University of ...

REVIEW ESSAY An Unsuccessful Defense of the Beit ...
(at least) this document is effective be-di-`avad and that ..... *The conventional transliteration of 'kiddushin' has been adopted to facilitate electronic searches—ed. ... 13Consider the lengthy exchange between Rabbis Isaac Herzog and Rabbi ...

Review Essay Land Reform, Rural Social Relations ...
Peterborough, Canada K9J 7B8. e-mail: [email protected] ..... may still have some surprises in store for the future. REFERENCES. Akram-Lodhi, A.H. ...

Elena Cattaneo and Lawrence W. Stanton Rory ...
Feb 23, 2010 - ebi.ac.uk/Tools/clustalw2/). Address for reprint requests .... We next confirmed that recruitment of REST to HAR1 indeed serves to regulate its ...

Book Review Essay: Douglas McGregor— The Human ...
Douglas McGregor, Revisited: Managing the Human Side of .... in charge of a band of fascists, your subordinates ... It is noteworthy in its optimistic account of the.

Supplementary Appendix to: Perpetual Learning and Apparent Long ...
Apr 13, 2017 - Perpetual Learning and Apparent Long Memory. Guillaume Chevillon. ESSEC Business School & CREST .... T large enough, f (2π. T n) > 0. Also for n ≤ T, n−δTδ+1 → ∞ as n → ∞. Therefore, there exist (n0 ..... where ⌊x⌋ i

Rationality, Irrationality and Escalating Behavior in ...
Jan 18, 2012 - characterized by a power-law decaying probability distribution of step lengths, holds over nearly three orders of magnitude. We develop a quantitative .... (C) Cumulative distribution function of the change in bid value. ..... Lucking-

Perpetual Learning and Apparent Long Memory
Apr 14, 2017 - of the literature has focused on persistence at business cycle frequencies, .... defined as the solution to the minimization problem: ... The above learning algorithms can be all expressed as linear functions of past values of ..... On