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Bezout’s and Bernshtein’s Theorems (Mixed Volume) 3 For each polynomial equation fi : Newton polytope = convex hull of a support set, P i = Conv(Ai )



Example fi = ci1 x1 + ci2 x1 x2 + ci3 ai1 = (1, 0), ai2 = (1, 1), and ai3 = (0, 0) Ai = {ai1 , ai2 , ai3 } ai2 = (1, 1)
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