Integration, Architecture, and  Applications of 3D CMOS‐ Memristor Circuits  K.‐T. Tim Cheng and Dimitri Strukov

Univ. of California, Santa Barbara ISPD 2012 1

3D Hybrid ‐ CMOS/NANO add-on

nanodevices layer top nanowire level

CMOS stack

CMOS layer

bottom nanowire level

similar two-terminal nanodevices at each crosspoint

• CMOS stack + nano add-on • nanowire crossbar of two-terminal devices (memristors) 2

Resistive Switching “Memristive” Devices (latching switches, a.k.a. resistive switches, a.k.a. programmable diodes, a.k.a. memristive switches)

200

+ Wide range of material systems and  physical phenomena Current  ( uA )

100 50 nm hp 0 ‐100 <50 ns ‐200 ‐2

‐1

Pt TiO2 TiOx Pt 0 1 Voltage ( V )

+ V ‐ 2

J. Yang Iet al. Natue Nano, (2008)

3

Area‐Distributed “CMOL” Interfaces interface via (“pin”)

nanodevices (latching switches) gold nanowire levels (nanoimprint) interface pins Tip radii 2-10 nm CMOS stack (just a cartoon)

MOSFET Si wafer K. Likharev (2004, 2005); D. Strukov and K. Likharev (2006) http://www.oxfordplasma.de/ process/sibo_wtc.htm

4

AFOSR‐MURI HyNano: 3D Hybrid CMOS‐Nano Circuits

5

The HyNano Team

Michael Chabinyc Materials, UCSB

Wei Lu EECS, Michigan

Tim Cheng ECE, UCSB (Director)

Susanne Stemmer Materials, UCSB

Marivi Fernandez‐Serra Konstantin K. Likharev Physics, Stony Brook  Physics, Stony Brook 

Dmitri Strukov Luke Theogarajan Qiangfei Xia ECE, UCSB ECE, UCSB ECE, UM Amherst 6

Project Overview APPLICATIONS  3D hybrid  memories 

information  processing

3D hybrid SoC

ARCHITECTURES/CIRCUITS 3D CMOS/nano circuits  w. area‐distributed interface Optical lithography e‐beam 

nanoimprint

mixed‐signal  CrossNets compact models

DEVICES reproducible, high‐performance,  high‐endurance devices

drift diffusion  and ab‐initio  modeling 

MATERIALS a‐Si

metal oxide

organic solid electrolyte 7

Thrust Area #1:   Application/Architecture/Ckt Exploration  • Memory arrays for high‐performance computing • CMOL‐based FPGA • Neuromorphic networks for bio‐inspired information  processing  • Evolvable analog circuits • Tunable bias network for analog design • Weighted multiply and add circuits • High precision Digital‐to‐Analog converter

8

“CMOL” Interface – Integrating CMOS  with Crossbar Memory Array interface via (“pin”)

nanodevices (latching switches) gold nanowire levels (nanoimprint) interface pins

CMOS stack (just a cartoon) MOSFET Si wafer

Addressing Crossbar Memory Array • There are two types of pins – Blues and Reds • Each array of pins has its own decoding scheme Double  decoding  scheme: • An array of N2 blue pins  uniquely accessed with 2N  control signals. • Another 2N control signals for  the corresponding N2 red pins

Double  Decoding  Scheme • Four decoders: demux

memory cell array

select decoder

select decoder

mux/demux data I/O

11

Crossbar Construction – Top View

Crossbar Construction – Top View

Crossbar Construction – Side View interface via (“pin”)

nanodevices (latching switches) gold nanowire levels (nanoimprint) interface pins

CMOS stack (just a cartoon) MOSFET Si wafer

Crossbar Construction – Top View

Crossbar Construction – Bottom Level

Crossbar Construction – Top Level

Crossbar Construction

Crossbar Construction

Crossbar Construction

Connectivity  Domain

Crossbar Construction

Crossbar Construction

Unused Address Space The red pin can only interact with blue pins in its  connectivity domain Address space provided by  yellow cells is wasted!

Key Geometric Parameters • Distance between nanowires is 2FNANO • Size of cell is 2βFCMOS • β2 = r2 + 1 where r is an odd integer > 1. • Crossbar is tilted by an angle α equal to ArcTan(1/r)  with respect to the pins. • # of reachable crosspoints per wire segment is r2 – 1

Crossbar Construction – Bottom Level

Adding a Second Crossbar Layer Connectivity domain in  the first crossbar layer

Connectivity domain in the  second crossbar layer

The mapping is done  through pin  translation wires

Blue pins are common to all  crossbar layers. Red pins are "redefined" for  each layer using the pin  translation wires.

First layer of red pins.

First layer of red and blue  pins.

Layer of (bluish) wires  connected to the blue  pins.

Single (orange) wire  connected to a red pin.  The cross‐points with the  bottom wires are shown  in green.

First complete crossbar  layer.

A single pin translation  wire (in yellow).

Every orange wire is  “translated” into another  point using the same type  of pin translation wire.

The first crossbar layer  with its pins translation  wires are then “buried” in  SiO2

We start to build the next  crossbar layer (bluish  wires)

We start to build the next  crossbar layer (bluish  wires)

We add the orange wires  (the cross‐points are  formed)

And we add the pins  translation wires and  repeat the process…

Maximum Number of Layers • Each layer has N2 cells. • There are r2 – 1 cross points per cell. • That gives us a total of N2(r2 – 1) cross points  per layer. • The double decoding scheme allows us to  address up to N4 locations • Which means that we can (potentially) have  up to N2/(r2 – 1) crossbar layers.

How Does it Stand Up as a Memory?  Memristor

PCM

STTRAM

DRAM

Flash

HDD

Density (F2)

<4

8–16

37–64

6–8

4–6

2/3

Energy per bit† (pJ)

0.1–3

2–27

0.1

2

10000

1–10x109

Read time (ns)

10-100(?)

20–70

10–30

10–50

25000

5–8x106

Write time (ns)

~10

50–500

13–95

10–50

200000

5–8x106

Retention

years

years

weeks?

<
years

years

Endurance (cycles)

>1012

107

1015

1015

106

104

40

If Successful, 3D Hybrids Can Achieve….. • Unprecedented memory density  – Footprint of a nano‐device is 4Fnano2/K, for K  vertically integrated crossbar layers – Potentially up to 1014 bits on a single 1‐cm2 chip

• Enormous memory bandwidth  – Potentially up to 1018 bits/second/cm2

• At manageable power dissipation • With abundant redundancy for yield/reliability 41

Thrust Area #1:   Application/Architecture/Ckt Exploration  • Memory arrays for high‐performance computing • CMOL‐based FPGA • Neuromorphic networks for bio‐inspired information  processing  • Evolvable analog circuits • Tunable bias network for analog design • Weighted multiply and add circuits • High precision Digital‐to‐Analog converter

42

CMOL‐Based FPGA • Programming for xpoint memristors similar to CMOL digital  memories • Uniform fabric with CMOS inverter cells  • Crossbar wires for routings A B

cell A+B

F

B A

B nanodevices

A

RON Cwire

Rpass

A+B CMOS inverter 43

Density: CMOS vs. CMOL Metrics (units)

2009

2010

2011

2012

2013

Comments

Half-pitch FCMOS (nm)

50

45

40

36

32

In accordance with ITRS

Half-pitch Fnano (nm)

20

18

16

14

12

-

CMOS memories (Gbits/cm2)

6.7

8.2

10.5

13

16

Follows ITRS (with A = 6F2CMOS)

CMOL memories (Gbits/cm2)

4

10

23

36

67

Initial progress impacted by q

CMOS FPGA (Mgates/cm2)

0.4

0.5

0.6

0.8

1.0

Rescaled from 0.18 μm rules

CMOL FPGA (Mgates/cm2)

625

775

1,000

1,200

1,500

-

Metrics (units)

2016

2019

2022

2025

2028

Comments

Half-pitch FCMOS (nm)

30

28

26

24

22

Grows slower than in ITRS

Half-pitch Fnano (nm)

10

6

4

3.5

3

-

CMOS memories (Gbits/cm2)

18

21

25

29

35

Follows A = 6F2CMOS

CMOL memories (Gbits/cm2)

100

350

900

1,200

1,700

Spectacular progress at lower q

CMOS FPGA (Mgates/cm2)

1.1

1.3

1.5

1.7

2.1

Rescaled from 0.18 μm rules

CMOL FPGA (Mgates/cm2)

1,700

2,000

2,300

2,700

3,200

44

Thrust Area #1:   Application/Architecture/Ckt Exploration  • Memory arrays for high‐performance computing • CMOL‐based FPGA • Neuromorphic networks for bio‐inspired information  processing  • Evolvable analog circuits • Tunable bias network for analog design • Weighted multiply and add circuits • High precision Digital‐to‐Analog converter

45

Thrust Areas: # 2: High‐Performance/‐Yield Devices  # 3: 3D Hybrids Integration Integrating CMOS with devices  of different materials: • a‐Si • Metal oxide • Organic • Solid‐state electrolyte

Using: • Nanoimprint • E‐beam lithography • Optical lithography • Heterogeneous wafer‐level  integration

(a)

(b)

50 μm

E‐Beam Crossbar Arrays (Lu) 

<20nm Overlay Alignment (Xia)

100 μm

46

Integrated Crossbar Array/CMOS System PI: Lu

Crossbar array

CMOS

Integrated crossbar/CMOS chip with probe card attached

Kim et al. Nano Lett., 12, 389–395 (2012).  47

Integrated Crossbar Array/CMOS System 

48

Performance of a‐Si and Metal‐Oxide  Device Array “on”

“off”

filament

100nm

• Tight distribution from 256 devices measured  • Devices shown excellent on/off and intrinsic diode  characteristics  49

Project Overview APPLICATIONS  3D hybrid  memories 

information  processing

3D hybrid SoC

ARCHITECTURES/CIRCUITS 3D CMOS/nano circuits  w. area‐distributed interface Optical lithography e‐beam 

nanoimprint

mixed‐signal  CrossNets compact models

DEVICES reproducible, high‐performance,  high‐endurance devices

drift diffusion  and ab‐initio  modeling 

MATERIALS a‐Si

metal oxide

organic solid electrolyte 50

BACKUP SLIDES

51

Thrust Area #3: High‐Performance/‐Yield/‐Reproducibility Devices • a‐Si (Lu) • Metal oxide (Stemmer, Xia) • Organic (Chabinyc) • Solid‐state electrolyte (Lu)

52

a‐Si Memristive Devices and Arrays

PI: Lu

2.5 2.0 1.5 1.0 0.5

50

1st cycle After 2nd cycle 10-7 10-8 10-9 10-10 10-11 10-12 10

0.0 -4

-4 -2 0 2 4 Voltage

-2

0 2 4 Voltage (V)

“on”

40

-6

# of devices

Current (100nA)

3.0

6

filament

“off”

30 20 10 0

2.6 2.9 3.2 3.5 3.8 4.1 4.4 Vth (V)

Lu et al., Nano Lett. (2008, 2009)

100nm

53

Project Organization UCSB CMOS circuit MBE fabrication design for of memristive CMOL devices; integration Cheng, Strukov, Theogarajan

Stemmer

U. Michigan

Organic memristive devices

Memristive device modeling

Digital and analog 3D hybrid circuit architectures

Chabinyc

Strukov

Cheng, Strukov, Theogarajan

UMass

Stony Brook University

Metal oxide memristive a-Si & solid electrolyte Ab-initio simulation of devices; devices; 3D integration 3D integration with memristive devices with CMOS CMOS Lu

Xia

<------- experiment --------->

Fernandez-Serra, Likharev

Mixed-signal neuromorphic 3D hybrid circuit architectures Likharev 54

<---------theory/modeling------->

Crossbar Architecture ‐ Xbar to preserve density  ‐ Passive (no transistors) but nonlinear I‐ V  ‐ Common way (from periphery) 

top (nano)wire  level

i

similar two‐terminal devices at each crosspoint 

bottom (nano)wire  level

‐vw

vr vw v Write

Read V

V

=

= V

Vr/2

V

Vw/2

A

V

V =Vr July 2011 MURI Kickoff

V

=Vr/2

CMOS for  decoding  and sensing

V

V =Vw

V

=Vw/2

55

Generic Memory Array • Asserting a word line makes the access element to place the  contents of the memory element in the bit line. A particular  bit is then selected with a MUX.

multiplex er 

Access element

decode r

Memory element

Generic Memory Array • An array of N2 memory elements can be uniquely accessed using 2N control signals (word+bit lines). Other representation  of the same array

Area‐Distributed “CMOL” Interfaces (II) Most important feature: pin array tilt by angle  = arcsin(Fnano/FCMOS) = arctan(1/r) pin 1

 pin 2A 2FCMOS 2rFnano

A pin 2B

B

2Fnano

Every nanowire (and hence every crosspoint) may be addressed from CMOS! K. Likharev (2004, 2005); D. Strukov and K. Likharev (2006)

58

A Possible Solution With this particular connectivity  domain geometry (r=3), we can  cover all the plane... But that is not  always the case.

The pin translation wires are another  layer of wires on top of the crossbar

We can add more crossbar layers by  simply inserting a layer of pin  translation wires between them.

Crossbar Analysis The crossbar is rotated by an angle α such that:

Where r is an integer (an odd integer greater than 1). Once we set r and β (the CMOS cell complexity), the angle α and Fnano are fixed as well the length of the wires in the crossbar and the number of memristive devices reachable per wire segment.

Crossbar Analysis The parameter r also sets the maximum, minimum and average paths the electric signals have to propagate to access a bit (a memristive device). This paths are given by: Maximum (worst) case: Minimum (best) case: Average (real) case:

2Fnano * (r2 - r + 1) 2Fnano * r 2Fnano * (r2 + 1)/2

3D Hybrid Integration with Multi‐Layer Crossbars crosspoint device in 1st layer

crosspoint device in 2nd layer

E 5 D

~N2 β 2

4

crosspoint devices per layer (out of N4 total)

C

via translation layer crossbar layer

3 B 2 A 1

CMOS layer N data/control lines N2 access devices/vias 1

connectivity domain in 1st layer

via translation wires

A

2

B

3

C

4

D

5

E

connectivity domain in 2nd layer

D. Strukov and R. S. Williams (2009)

62

Project Overview APPLICATIONS (Cheng, Likharev, Strukov, Theogarajan)   information  processing

3D hybrid  memories 

3D hybrid SoC

ARCHITECTURES/CIRCUITS  (Cheng, Likharev, Strukov, Theogarajan)  3D CMOS/nano circuits  w. area‐distributed interface Optical lithography e‐beam  (Strukov, Stemmer) (Lu)

mixed‐signal  CrossNets

nanoimprint (Xia, Chabinyc)

compact models  (Likharev, Strukov)

DEVICES

reproducible, high‐performance,  high‐endurance devices a‐Si (Lu)

drift diffusion  and ab‐initio  modeling 

(Fernandez‐ organic solid electrolyte  Serra, Strukov) metal oxide  (Lu) (Xia, Stemmer) (Chabinyc)

MATERIALS

63

IC Applications Continue to Demand  More Memory and Higher Bandwidth High

GPU, CPU, Chipset & FPGA Networking Application Processor

Memory

Baseband

Chip Size

BT/WiFi

PM Transceiver Peripheral I/O Controller

PA

Switch Discrete

100

200

For most applications running on high‐ end SoCs, amount of available memory  and memory bandwidth have been and  will continue to be the bottlenecks 300

I/O

400

500

600

High

64

Bistable Two‐Terminal Devices (latching switches, a.k.a. resistive switches, a.k.a. programmable diodes, a.k.a. memristive switches) Demonstrated with many materials; no clear winner yet; few reproducibility reports, e.g.: Si /α-Si / M: Ti / Pt / TiO2 / Pt:

S. H. Jo and W. Lu (2008)

Q. Xia et al. (2009); 65 J. Borghetti et al. (2010)

Device Requirements Vary for Different  Ckts/Architectures/Applications Signal

Dynamic range of resistance

DC

AC

Small

Tuning



Large

Memory, FPGA, DAC

MAC

66

CMOS‐CMOL Integration: Initial  Demonstration (a)

(c)

PI: Xia

(d)

(e)

(b)

Xia, Strukov et al. (2009)

67

Integration, Architecture, and Applications of 3D CMOS- Memristor ...

Application/Architecture/Ckt Exploration ... Tunable bias network for analog design ..... design for. CMOL integration. MBE fabrication of memristive devices;.

11MB Sizes 20 Downloads 171 Views

Recommend Documents

Design Exploration of Hybrid CMOS and Memristor ...
Singapore (corresponding author to provide phone: +65-6790-4509; fax: +65-. 6793-3318; e-mail: ... Note that memristor is promising with wide applications in new circuit ... development of related circuit simulators, all the above applications are ..

Integration of Landscape Architecture (Aesthetics) - Florida ...
Tourism is the chief contributor to the economy ... Source: UF IFAS Economic Impacts of Highway Beautification in Florida ... Communist China Dress Codes.

An overview of mobile applications architecture and the ...
point-of-sale terminals. Target devices ... than 50 companies, including leading device manufacturers ... corporate and business applications. Messaging.

Technical Architecture & Integration with Corporate Website
courses. Current Compensation. I. BCA/BSC/BCS/Diploma/(BCom-IT/CS) – Rs. 2.00 Lakhs P.A. during the first year and on Confirmation (After 1. Year), it will be ...

Technical Architecture & Integration with Corporate ... -
Note: (i) No YEAR DROP in the course of education is allowed (1 year break for entrance exam preparation is allowed). (ii) Diploma marks should be treated as ...

A Method for Integration of Web Applications ... - Semantic Scholar
Keywords: Web application integration, information ex- traction, Web service, mashup, end-user programming. 1 Introduction. With the development of the ...

Towards Flexible Integration of Any Parts from Any Web Applications ...
Mashup implies easy and fast integration of information in order to enable .... that become more and more in Web applications with the development of Web. 2.0.

ELECTRONIC COMPONENT AND CMOS TECHNOLOGY.pdf ...
Page 1 of 2. P.T.O.. IV Semester B.E. (E&C) Degree Examination, January 2013. (2K6 Scheme). EC- 401 : ELECTRONIC COMPONENT AND CMOS ...

3D TSV Integration Challenges on the Path Toward Manufacturing ...
3D TSV Integration Challenges on the Path Toward Manufacturing Readiness.pdf. 3D TSV Integration Challenges on the Path Toward Manufacturing ...

A 3 Megapixel, Low-Noise Flexible Architecture CMOS ...
Most active pixel CMOS image sensors use a source follower in the pixel circuit as shown in Fig. 27.3.1. However, the standard. 3T pixel architecture typically ...

The missing memristor found
May 1, 2008 - 4. 8. –1.0. –0.5. 0.0. 0.5. 1.0. Voltage. 0.6. 0.4. 0.2. 0.0. Charge. 100. 0. Flux ..... A nonvolatile 2-Mbit CBRAM memory core featuring advanced.

Survey of Noise Sources in Bulk CMOS
The noise behavior of bulk CMOS devices is dominated primarily by two noise sources: thermal noise and flicker (1/f) noise. Other sources that are sometimes ...