Parton fragmentation within spin-dependent TMD and collinear observables Daniel Pitonyak Penn State University-Berks, Reading, PA supported by TMD Topical Collaboration

22nd International Spin Physics Symposium Champaign, IL September 29, 2016

   

D. Pitonyak

Outline !  Motivation !  FFs in transverse momentum dependent (TMD) observables •  •  •  • 

Definitions Electron-positron annihilation: e+ e ! ha hb X Semi-inclusive deep-inelastic scattering (SIDIS): e N! e0 h X Proton-proton collisions (hadron in a jet): p p ! (h jet) X

!  FFs in collinear observables •  •  •  • 

Definitions (twist-3) Proton-proton collisions (AN ): p p ! h X Definitions (di-hadron) Electron-positron/SIDIS/proton-proton:

e+ e ! (ha1 ha2 ) (hb1 hb2 ) X / e N! e0 (ha hb ) X / p p ! (ha hb ) X

!  Summary and outlook

       

D. Pitonyak

Motivation

       

D. Pitonyak

Inclusive  DIS  

     X  

       

D. Pitonyak

Inclusive  DIS  

Twist-­‐2  collinear  PDFs  (x)   q  pol.   H  pol.  

U  

U  

f1

L  

                     unpolarized  

L  

     X  

T  

g1

                     helicity  

T  

       

D. Pitonyak

Inclusive  DIS  

Twist-­‐2  collinear  PDFs  (x)   q  pol.   H  pol.  

U  

U  

f1

L  

T  

                     unpolarized  

L  

     X  

T  

g1

                     helicity  

h1

                     transversity  

allows  us  to  calculate  the   tensor  charge  of  the  nucleon  

       

D. Pitonyak

Inclusive  DIS  

Twist-­‐2  collinear  PDFs  (x)   q  pol.   H  pol.  

U  

U  

f1

L  

T  

                     unpolarized  

L  

     X  

T  

g1

                     helicity  

         

h1

                     transversity  

chiral-­‐odd   CANNOT  be  accessed  in  inclusive  DIS!  

       

D. Pitonyak

Semi-­‐Inclusive  DIS  (SIDIS)  

Twist-­‐2  collinear  PDFs  (x)  

Need  to   know  FFs  

π(Ph)        X  

q  pol.   H  pol.  

U  

U  

f1

L  

T  

                     unpolarized  

L   T  

g1

                     helicity  

         

h1

                     transversity  

chiral-­‐odd   CANNOT  be  accessed  in  inclusive  DIS!  

       

D. Pitonyak

Semi-­‐Inclusive  DIS  (SIDIS)  

Twist-­‐2  collinear  PDFs  (x)   q  pol.   H  pol.  

U  

U  

f1

Need  to   know  FFs  

π(Ph)        X  



strange  quark   helicity  -­‐>  kaon  FFs  

See talk by Leader

L  

T  

                     unpolarized  

L   T  

         

g1

                     helicity  

         

h1

                     transversity  

chiral-­‐odd   CANNOT  be  accessed  in  inclusive  DIS!  

       

D. Pitonyak

Semi-­‐Inclusive  DIS  (SIDIS)  

Twist-­‐2  TMD  PDFs  (x,  kT)  

Need  to   know  FFs  

π(Ph)        X  

q  pol.   H  pol.  

U  

U  

f1

3-­‐DIMENSIONAL   structure  of  the   nucleon  

? f1T

T  

h? 1 g1L

L   T  

L  

g1T

h? 1L h1T

h? 1T

       

D. Pitonyak

AN  in  proton-­‐proton  collisions  

   

1976          

       

D. Pitonyak

AN  in  proton-­‐proton  collisions   quark-­‐gluon-­‐quark   FFs  could  resolve   40  year-­‐old  puzzle   of  what  causes  AN  

   

1976          

       

q  pol.   H  pol.  

U  

Twist-­‐3  collinear  FFs  ((z)  or  (z,  z1))  

Twist-­‐2  TMD  FFs  (z,  p    ?    )  

U  

L  

? D1T

T   H1?

D1

L   T  

D. Pitonyak

G1L

? H1L

G1T

H1T ? H1T

H  pol.  

U

^ ? D1 , G? , H , H 1 1 1

E, H

kinemaJcal  

dynamical  

?(1)

ˆ <,= H FU

?(1)

ˆ <,= H FL

H1

L   HL , EL H1L  

T   (Unpolarized)  Di-­‐hadron  FFs  (DiFF)   2 (z, ⇣, R? , p?   · R? , p2? )

intrinsic  

?(1) D1T   , DT , GT ?(1) G1T

ˆ <,= , G ˆ <,= D FT FT

fragmentaOon  sector  is   rich  in  its  own  right  –   funcOons  &  parOcles  

π0,  π±,  Κ0,  Κ±,  Λ,  η,  D0,  D±  …  

       

D. Pitonyak

FFs in TMD Observables

       

D. Pitonyak

!  Definitions q ij (z, p? )

Z Z 1 X = Nc X

1 1

d 2⇡

Z

d 2 z? e i z ip? ·z? h0|qi (0)|Ph Sh ; Xi 2 (2⇡) ⇥ hPh Sh ; X| q¯j ( m + z? ) |0i

Twist-­‐2  TMD  FFs  (z,  p    ?    )   h/q[

]

h/q[

j i ✏ij h/q ? h/q 2 2 ? p? Sh? = D1 (z, z p~? ) + D1T (z, z 2 p~?2 ) , Mh

5]

=

h/q ⇤h G1L (z, z 2 p~?2 )

~h? h/q p~? · S G1T (z, z 2 p~?2 ) , + Mh

j ✏ij ? h/q ? p? = H1 (z, z 2 p~?2 ) Mh " # i ~ p p~? · Sh? ? h/q ? h/q + ? ⇤h H1L (z, z 2 p~?2 ) + H1T (z, z 2 p~?2 ) Mh Mh

h/q[i

i

5]

i Sh?

h/q H1T (z, z 2 p~?2 )

(Boer, Jakob, Mulders (1997))

q  pol.   H  pol.  

U  

U  

D1

L   T  

     

? D1T

L  

T   H1?

G1L

? H1L

G1T

H1T ? H1T

       

D. Pitonyak

!  Definitions q ij (z, p? )

Z Z 1 X = Nc X

1 1

d 2⇡

Z

d 2 z? e i z ip? ·z? h0|qi (0)|Ph Sh ; Xi 2 (2⇡) ⇥ hPh Sh ; X| q¯j ( m + z? ) |0i

Twist-­‐2  TMD  FFs  (z,  p    ?    )   h/q[

]

h/q[

j i ✏ij h/q ? h/q 2 2 ? p? Sh? = D1 (z, z p~? ) + D1T (z, z 2 p~?2 ) , Mh

5]

~h? h/q p~? · S h/q 2 2 G1T (z, z 2 p~?2 ) , = ⇤h G1L (z, z p~? ) + Mh

j ✏ij ? h/q ? p? = H1 (z, z 2 p~?2 ) Mh " # i ~ p p~? · Sh? ? h/q ? h/q + ? ⇤h H1L (z, z 2 p~?2 ) + H1T (z, z 2 p~?2 ) Mh Mh

h/q[i

i

5]

i Sh?

h/q H1T (z, z 2 p~?2 )

(Boer, Jakob, Mulders (1997))

q  pol.   H  pol.  

U   L   T  

U        

D1

? D1T

L  

T  

Collins   funcJon  

H1?

G1L

? H1L

G1T

H1T ? H1T

       

D. Pitonyak

!  Electron-positron annihilation (Boer, Jakob, Mulders (1997); Boer (1998); DP, Metz, Schlegel (2014), …)

e+ e ! ha hb X

     

       

D. Pitonyak

!  Electron-positron annihilation (Boer, Jakob, Mulders (1997); Boer (1998); DP, Metz, Schlegel (2014), …)

e+ e ! ha hb X

d d⌦ dza dzb d2 P~a?

Figures  from  Seidl,  et  al.  (2008)    

   

       

D. Pitonyak

!  Electron-positron annihilation (Boer, Jakob, Mulders (1997); Boer (1998); DP, Metz, Schlegel (2014), …)

e+ e ! ha hb X

d d⌦ dza dzb d2 P~a?

Figures  from  Seidl,  et  al.  (2008)    

Collins  effect  

/ · · · + B(y) cos(2 cos(2 FU U

0)

"

cos(2

0 ) FU U

0)

ˆ · p~a? h ˆ · p~b? p~a? · p~b? 2h ¯ 1? =C H1? H M a Mb

#

   

/ · · · + B(y) cos( cos( FU U

a+ b)

=

X q

cos(

a+

b ) FU U ?(1)

e2q B(y) H1

a+ b)

¯ ?(1) (zb ) (za ) H 1

       

D. Pitonyak See talks by Anulli, Seidl

•  Clear nonzero Collins asymmetry for ππ pairs

Belle (2008) √S = 10.52 GeV

•  BaBar (2015) also measured ΚΚ and πΚ " access to kaon Collins FF •  Measurements at different √S gives information on TMD evolution BESIII (2016) √S = 3.65 GeV

BaBar (2014) √S = 10.6 GeV

     

       

D. Pitonyak

!  Semi-inclusive DIS (SIDIS) (Mulders, Tangerman (1996); Boer, Jakob, Mulders (2000); Bacchetta, et al. (2007), …)

e N! e0 h X

     

       

D. Pitonyak

!  Semi-inclusive DIS (SIDIS) (Mulders, Tangerman (1996); Boer, Jakob, Mulders (2000); Bacchetta, et al. (2007), …)

e N! e0 h X

      Figure  from         Boer,  et  al.  (2011)  

       

D. Pitonyak

!  Semi-inclusive DIS (SIDIS) (Mulders, Tangerman (1996); Boer, Jakob, Mulders (2000); Bacchetta, et al. (2007), …)

e N! e0 h X

d   2 dx dy d s dz d h dPh?   n h ~? | sin(   h + / · · · + |S Figure  from         Boer,  et  al.  (2011)  

sin(

FU T

h+ S )

=C

"

Collins  effect   sin( S )FU T

h+ S )

ˆ · p~? h h1 H1? Mh

i

+ ... + ...

#

o

        COMPASS (2015)

D. Pitonyak HERMES (preliminary)

JLab Hall A (2011, also 2014 for kaons)

     

See talks by Puckett, Schnell

        COMPASS (2015)

D. Pitonyak HERMES (preliminary)

JLab Hall A (2011, also 2014 for kaons)

    Simultaneously  extract Collins & transversity from SIDIS and e+eIMPORTANT: Collins function is universal (Metz (2002); Collins, Metz (2004), …)

       

D. Pitonyak

Anselmino, et al. (2013)

Kang, et al. (2016)

uses full TMD evolution

     

See talks by Kang, Echevarria, Prokudin

       

D. Pitonyak

!  Proton-proton collisions (hadron in a jet) (Yuan (2008); D’Alesio, Murgia, Pisano (2011, 2014))

p p ! (h jet) X

     

Figure  from  D’Alesio,   Murgia,  Pisano  (2011)   ~k?⇡ ⌘ P~hT

d d3 P~J dz d2 P~hT

/ sin(

s

H ~2 ⇡ ) h1 (xa , k?a )

2 2 ⌦ f1 (xb , ~k?b ) ⌦ H1? (z, ~k?⇡ ) ⌦ ˆpol

       

D. Pitonyak

!  Proton-proton collisions (hadron in a jet) (Yuan (2008); D’Alesio, Murgia, Pisano (2011, 2014))

p p ! (h jet) X

     

Figure  from  D’Alesio,   Murgia,  Pisano  (2011)   ~k?⇡ ⌘ P~hT

d d3 P~J dz d2 P~hT

D’Alesio, Murgia, Pisano (2014)

/ sin(

s

H ~2 ⇡ ) h1 (xa , k?a )

2 2 ⌦ f1 (xb , ~k?b ) ⌦ H1? (z, ~k?⇡ ) ⌦ ˆpol

       

D. Pitonyak See talk by Drachenberg

Kang, et al., Data from STAR (preliminary)

•  Clear nonzero Collins asymmetry for charged pions •  Similar magnitude for √S = 200 GeV and √S = 500 GeV (cf. Belle and BaBar much smaller asymmetry than BESIII) •  No evolution? or Cancellation of evolution effects in the asymmetry? or Simply a kinematical effect? •  Data not yet included in a global fit (test the universality of the Collins function)      

       

D. Pitonyak

FFs in Collinear Observables

       

D. Pitonyak

!  Definitions (twist-3)

intrinsic   Z Z X 1 q ij (z) = Nc X

1 1

dynamical  

d e i z h0| qi (0) |Ph Sh ; Xi 2⇡ ⇥hPh Sh ; X| q¯j ( m) |0i

q,⇢ @,ij (z)

=

d2 p? p⇢?

Z Z 1 X = Nc X

and     kinemaOcal  

Z

q,⇢ F,ij (z, z1 )

q ij (z, p? )

1 1

d 2⇡

Z

1 1

dµ i z +i( z1 e 1 2⇡

1 z1



h0| igm⌘ F ⌘⇢ (µm)qi ( m) |Ph Sh ; Xi   ⇥ hPh   Sh ; X| q¯j (0) |0i  

       

D. Pitonyak

!  Definitions (twist-3)

Twist-­‐3  collinear  FFs  ((z)  or  (z,  z1))   H  pol.  

U

intrinsic  

E, H

kinemaJcal  

?(1)

ˆ <,= H FU

?(1)

ˆ <,=   H FL

H1

L   HL , EL H1L

T   DT , GT

dynamical  

?(1)

D1T , ?(1)

G1T

   

ˆ <,= , G ˆ <,= D FT FT

       

D. Pitonyak

!  Proton-proton collisions (AN )

(Kang, Yuan, Zhou (2010); Metz, DP (2013); Kanazawa, Koike, Metz, DP (2014); Gamberg, Kang, Metz, DP, Prokudin (2014); Koike, DP, Takagi, Yoshida (2016), Kanazawa, Koike, Metz, DP, Schlegel (2016))

pp ! hX

Metz, DP (2013)

       

D. Pitonyak

Plot from Aidala, Bass, Hasch, Mallot (2013)

STAR (2012)

PHENIX (2014)

       

D. Pitonyak

Kanazawa, Koike, Metz, DP (2014)

?(1)

-Used Sivers function from SIDIS as input for Qiu-Sterman function f1T -Used Collins and transversity extracted from SIDIS/e+e-

(x) / TF (x, x)

-Used EOM relation for H

ˆ F=U (z, z1 ) -Extracted H See talks by Koike, Gamberg

       

D. Pitonyak

       

D. Pitonyak

EOM relation + Lorentz invariance relation (LIR) "

H(z) =

Z

1

dz1

z

?(1) (z) H1

Z

1

z1

=

2 z

dz2 2 z22

Z

z

"⇣

1

dz1

2( z21

Z

1

z1

Kanazawa, Koike, Metz, DP, Schlegel (2016)

1 z2 )

+

1 z1





dz2 ⇣ z22



1 z1

1 z1 1 z2

1 z2 ⌘2

2 z1

1 z2

1 z1

1 z2

⌘ ⇣

1 z1

1 z

⌘⌘

ˆ = (z1 , z2 ) H FU



= ˆ H ⌘2 F U (z1 , z2 )

ˆ = (z, z1 ) could be the main cause of AN quark-gluon-quark FF H FU

#

       

D. Pitonyak

!  Definitions (di-hadron)

(Unpolarized)  DiFFs   2 (z, ⇣, R? , p  ? · R? , p2? ) ^ ? D1 , G? , H , H 1 1 1

     

       

D. Pitonyak

!  Definitions (di-hadron)

Integrated  (Unpolarized)  DiFFs    

     

       

D. Pitonyak

!  Electron-positron/SIDIS (Artru, Collins (1996); Bianconi, Boffi, Jakob, Radici (1999); Boer, Jakob, Radici (2003); de Florian, Vanni (2004); Bacchetta, Courtoy, Radici (2013); Radici, Courtoy, Bacchetta, Guagnelli (2015); Pisano, Radici (2016))

        Figure  from                   Metz,  Vossen  (2016)  

Figure  from                   Pisano,  Radici  (2016)  

     

       

D. Pitonyak

!  Electron-positron/SIDIS (Artru, Collins (1996); Bianconi, Boffi, Jakob, Radici (1999); Boer, Jakob, Radici (2003); de Florian, Vanni (2004); Bacchetta, Courtoy, Radici (2013); Radici, Courtoy, Bacchetta, Guagnelli (2015); Pisano, Radici (2016))

        Figure  from                   Metz,  Vossen  (2016)  

Figure  from                   Pisano,  Radici  (2016)  

     

Extract transversity in a collinear framework* *evolution of DiFFs different than single-hadron FFs (Konishi, Ukawa, Veneziano (1979); Sukhatme, Lassila (1980); de Florian, Vanni (2004))

       

D. Pitonyak

!  Electron-positron/SIDIS (Artru, Collins (1996); Bianconi, Boffi, Jakob, Radici (1999); Boer, Jakob, Radici (2003); de Florian, Vanni (2004); Bacchetta, Courtoy, Radici (2013); Radici, Courtoy, Bacchetta, Guagnelli (2015); Pisano, Radici (2016))

Belle (2011)

HERMES (2008)

COMPASS (2014)

     

       

D. Pitonyak

Radici, et al. (2015)

See talk by Radici

     

       

D. Pitonyak

!  Proton-proton collisions (Bacchetta, Radici (2004); Radici, Ricci, Bacchetta, Mukherjee (2016))

d

UT

/ sin(

R

Sa ) h1 (xa )

p p ! (ha hb ) X

⌦ f1 (xb ) ⌦ H1^ (z, Mh2 ) ⌦ ˆpol

     

       

D. Pitonyak

!  Proton-proton collisions (Bacchetta, Radici (2004); Radici, Ricci, Bacchetta, Mukherjee (2016))

d

UT

/ sin(

R

Sa ) h1 (xa )

STAR (preliminary)

p p ! (ha hb ) X

⌦ f1 (xb ) ⌦ H1^ (z, Mh2 ) ⌦ ˆpol

     

See talks by Drachenberg, Skoby

       

D. Pitonyak

!  Proton-proton collisions (Bacchetta, Radici (2004); Radici, Ricci, Bacchetta, Mukherjee (2016))

d

UT

/ sin(

R

Sa ) h1 (xa )

p p ! (ha hb ) X

⌦ f1 (xb ) ⌦ H1^ (z, Mh2 ) ⌦ ˆpol

Radici, et al. (2016), Data from STAR (2015, blue is preliminary)

•  Another probe of transversity •  Possible issues in describing AUT vs. η and AUT vs. PT in the forward region  •  In general, no knowledge of D1   for DiFFs   •  Need global fit with SIDIS/e+e-

See talks by Drachenberg, Radici, Skoby

       

D. Pitonyak

!  Other topics of importance •  Extraction of unpolarized FF D1 (z) , D1 (z, z 2 p~?2 )

See  talks  by  Gonzalez,  Leader,  Nocera,  Seidl  

•  Other SIDIS azimuthal modulations involve Collins - access to Boer-Mulders, pretzelocity • 

e+ e ! ha hb X with lepton and/or hadron (Lambda) polarization and EW effects

See talk by Kaibao for VπX final state

•  Model calculations of FFs (CANNOT compute FFs

See talk by Guan on lattice) See  talks  by  Kerbizi,  Schweitzer  

•  Sum rules (or lack there-of) providing constraints on FFs •  Twist-3 TMD FFs •  AN for Lambda production

See talk by Yabe

•  Measurement of TMD DiFFs

     

#$ #   #     See  recent  review  by  Metz  and  Vossen  -­‐  arXiv:1607.02521    

       

D. Pitonyak

!  Other topics of importance •  Extraction of unpolarized FF D1 (z) , D1 (z, z 2 p~?2 )

See  talks  by  Gonzalez,  Leader,  Nocera,  Seidl  

•  Other SIDIS azimuthal modulations involve Collins - access to Boer-Mulders, pretzelocity + •  e e

! ha hb X with lepton and/or hadron (Lambda) polarization and EW effects

See talk by Kaibao for VπX final state

•  Model calculations of FFs (CANNOT compute

See talk by Guan FFs on lattice) See  talks  by  Kerbizi,  Schweitzer  

•  Sum rules (or lack there-of) providing constraints on FFs •  Twist-3 TMD FFs •  AN for Lambda production See talk by Yabe •  Measurement of TMD DiFFs

     

#$ #   #     See  recent  review  by  Metz  and  Vossen  -­‐  arXiv:1607.02521    

        Belle (preliminary)

D. Pitonyak See talk by Guan

e+ e ! ⇤" ⇡ ± X

     

       

D. Pitonyak

Belle (preliminary)

e+ e ! ⇤" ⇤" X H1(z1) x  H1(z2)    

e+ e ! ⇤" ⇡ ± X

+

  / p" p ! ⇤" X e p" ! e0 ⇤" X     h1(x) x  H1(z)    

extract  transversity  in  “true”   collinear  factorizaOon  

See talk by Mei

       

D. Pitonyak

!  Summary and outlook •  Knowledge of fragmentation functions are crucial to understand nucleon structure, and, moreover, provide their own rich source of measurements and phenomenology

•  Much progress has been made in understanding FFs in spin-dependent observables (Collins effect, AN in pp, AUT di-hadron, …), yet many open questions remain

•  More precise measurements (Belle II, COMPASS, EIC, JLab12, RHIC, SuperKEKB, …) and phenomenological extractions (NLO, NNLO, proper TMD evolution, …) will be needed in order to fully grasp the 3D structure of hadrons      

Parton fragmentation within spin-dependent TMD and ... - CERN Indico

Sep 29, 2016 - with lepton and/or hadron (Lambda) polarization and EW effects. • Model calculations of FFs (CANNOT compute FFs on lattice). • Sum rules (or ...

4MB Sizes 3 Downloads 93 Views

Recommend Documents

Parton fragmentation within spin-dependent TMD and ... - CERN Indico
Sep 29, 2016 - Penn State University-Berks, Reading, PA supported by. TMD Topical Collaboration. 22nd International Spin Physics Symposium. Champaign ...

Dolly Parton - TONEAudio MAGAZINE
Jun 27, 2014 - in front of a computer screen .... farther apart in 6-inch increments until the stereo image falls apart; then move them ...... InterContinental Melbourne The Rialto, 17-19 OCT. NATIONAL ...... Book Pro laptop proves a breeze. Af-.

Dolly Parton - TONEAudio MAGAZINE
Jun 27, 2014 - studio gems—2012's Silver Age and the recent ...... shaped digital input for Android phones and tablets. .... to ensure your 'phones are giving a.

cern-dubna.pdf
начало строительства лаборатории. Page 4 of 36. cern-dubna.pdf. cern-dubna.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying cern-dubna.pdf.

cern map pdf
Page 1 of 1. File: Cern map pdf. Download now. Click here if your download doesn't start automatically. Page 1 of 1. cern map pdf. cern map pdf. Open. Extract.

indico Media Kit.pdf
powerful machine learning tools through an extensible and easy-to-use data augmentation. platform. We're lowering the barriers to the development, integration, ...

indico Style Guide.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. indico Style ...

indico Media Kit.pdf
Page 1. Whoops! There was a problem loading more pages. Retrying... indico Media Kit.pdf. indico Media Kit.pdf. Open. Extract. Open with. Sign In. Main menu.

Government fragmentation and public spending ...
table 1. For the sake of simplicity, in this example I assume that pre and post-ban elections are identical except for the ban of Batasuna. Figure A in table 1 shows the ... Table 1: Example: Total, Mechanical and Behavioral Effects ...... of absolut

Proximity and Production Fragmentation
described as “local” production chains, since they include geographically proximate coun- tries. For example, auto parts trade is concen- trated within North ...

PC CERN Geneva Trip letter.pdf
E: [email protected]. W: www.burygrammar.com. The Bury Grammar Schools Trustee Limited (company number 06612259) as trustee of Bury Grammar Schools Charity (registered charity number 526622). Registered Office: Farraday House, Bridge Road, Bur

European Integration and the Fragmentation of Party Systems in ...
European Integration and the Fragmentation of Party Systems in Western Europe by Eric Hines. University of Iowa [email protected]. Paper presented at the annual meeting of the American Political Science Association,. Washington, D.C. ...

The myth of the Digital Earth between fragmentation and ... - arXiv
Keywords: Digital Earth, Al Gore, media futures, wholeness, fragmentation, ... anthropological theories of myth-‐making as social construction of meaning. ..... 10 what Graham (2010) calls the construction of a “virtual Earth,” mirroring and ..

European Integration and the Fragmentation of Party ...
Fragmentation of Party Systems in the EU by Eric Hines ... extremist parties. Anything that constrains political competition can be dangerous to a democratic polity. One argument for the existence of a “democratic deficit” in the EU is that ... r

fragmentation and pollination crisis in the selfs ... - CiteSeerX
Nov 19, 2006 - Technion—Israel Institute of Technology, Haifa 32000, Israel. bDepartment of Evolution, Systematics and Ecology,. The Hebrew University of ...

IP fragmentation and the implication in DNSSEC
naling protocol for Internet telephony, mandates a ... Internet reassembled. Fig. 2 Simplified model for UDP fragmentation test ... 50Mbps to an ISP network.

Characterizing fragmentation in temperate South ...
processing we used the software ERDAS Imagine, Version. 8.2 (Leica .... compare landscapes of identical size, but it has also the disadvantage of ...... Monitoring environmental quality at the landscape scale. Bioscience 47 .... habitat networks.

TMD Wireles JAB powerpoint.pptx (2).pdf
Telekom Malaysia. iv.Jaring. v.Time. Page 4 of 13. TMD Wireles JAB powerpoint.pptx (2).pdf. TMD Wireles JAB powerpoint.pptx (2).pdf. Open. Extract. Open with.

Evaluating forest fragmentation and its tree community ...
Forestry and Ecology Division, National Remote. Sensing ... remote sensing to map patterns of forest frag- mentation ...... Debinski, D. M., & Holt, R. D. (2000).

fragmentation and pollination crisis in the selfs incompatible iris ...
plant species to extinction even if their immediate habitats are not affected. .... characterized by a large flower growing individually on each flowering stem.