Path-integral formula for local thermal equilibrium

≃ x Masaru Hongo RIKEN, iTHES research group Nuclear Physics Seminar at Stony Brook University, 2017 2/27 Based on Hayata-Hidaka-MH-Noumi PRD(2015), MH arXiv: 1611:07074 , and My Ph. D thesis

Microscopic

Neutron Star (Magnetar) Quark-Gluon Plasma (QGP)

Macroscopic

LQCD http://newsoffice.mjitugenn.edu/2012/model-bursting-star-0302

http://www.bnl.gov/rhic/news2/news.asp?a=1403&t=pr

QFT

?

Hydrodynamics

Question. d.o.f. Quark, Gluon

How to bridge the gap between micro and macro?

d.o.f

- Banerjee et al.(2012) - Jensen et al.(2012) - Haehl et al. (2015)

T (x), !v (x), µ(x)

Nakajima (1957), Mori (1958), McLennan (1960) Zubarev et al. (1979), Becattini et al. (2015) Hayata-Hidaka-MH-Noumi (2015)

Thermal QFT (Matsubara formalism)

Global equil. β0

T = const.

[ Matsubara, 1955 ]



Path int.

QFT in the flat spacetime with size β0

β0

x e Gibbs dist.:

ˆ ˆ) −β(H−µ N

ρˆG =

Z

ˆ

ˆ

= e−β(H−µN )−Ψ[β,ν]

Thermodynamic potential with Euclidean action ˆ

ˆ

!

ˆ

ˆ

Ψ[β, ν] = log Tr e−β(H−µN ) = log dϕ!±ϕ|e−β(H−µN ) |ϕ" ! β ! ! dτ d3 x LE (ϕ, ∂µ ϕ) = log Dϕ e+SE [ϕ] , SE [ϕ] = ϕ(β)=±ϕ(0)

0

Local Thermal QFT

Local equil. {β(x), "v (x)}

Path int.

Local thermal QFT can describe anomaly-induced transport µR != µL S

N

!j ∝ ω !

! !j ∝ B µR != µL Chiral Magnetic Effect

Chiral Vortical Effect

  Motivation: Quantum field theory under local thermal equilibrium?

  Approach: QFT for Local Gibbs distribution

  Application:

Derivation of Anomalous hydrodynamics

µ5 != 0 N

S

! !j ∝ B

Determined only by local temperature, local velocity… at that time

Global thermal equilibrium: =const. const. TT =

Gibbs distribution:

ρˆG = e

ˆ −β H−Ψ[β]

,

Ψ[β] ≡ log Tre

ˆ −β H

Localize

Local thermal equilibrium: Local Gibbs (LG) distribution:

ρˆLG = e ˆ =− K {β(x), "v (x)}

!

µ ˆ −K−Ψ[β (x),ν(x)]

"

d3 x β µ (x)Tˆ0µ (x) + ν(x)Jˆ0 (x)

#

Gibbs distribution

Local Gibbs distribution

What is the state with maximizing ρ) = −Trˆ ρ log ρˆ information entropy: S(ˆ

What is the state with maximizing ρ) = −Trˆ ρ log ρˆ information entropy: S(ˆ

under constraints: ˆ = E = const., !N ˆ " = N = const. !H"

under constraints: !Tˆ0µ (x)" = pµ (x), !Jˆ0 (x)" = n(x)

Answer: ˆ ˆ ρˆG = e−β H−ν N −Ψ[β,ν]

Answer: ! − dd−1 x(β µ Tˆ 0µ +ν Jˆ0 )−Ψ[β µ ,ν] ρˆLG = e

Lagrange multipliers: Λa = {β, ν = βµ}

Lagrange multipliers: λa (x) = {β µ (x), ν(x)}

Flat spacetime

Curved spacetime

t

ηµν

Ex. Bjorken coord. t Σt¯

t

gµ¯ν¯

t¯ = τ =

!

t2 − z 2

dΣµ ∝ ∂µ t¯

dΣµ ∝ (1, 0)

z

Σt¯

t = const.

t¯(x) = const.

x ˆ =− K

!

3

"

d x β

µ

(x)Tˆ0µ (x)

ˆ0

+ ν(x)J (x)

#

x ˆ =− K

!

"

dΣt¯ν β

µ

(x)Tˆνµ (x)

ˆν

+ ν(x)J (x)

① Formulation becomes manifestly covariant { ② Background metric plays a role as external field coupled to T

µν

#

LG distribution w/ λ = {β µ , ν}

t dΣµ ∝ ∂µ t¯

Σt¯ t¯(x) = const.

x Masseiu-Planck functional !" # $% Ψ[t¯; λ] ≡ log Tr exp dΣt¯ν β µ (x)Tˆνµ (x) + ν(x)Jˆν (x) % ! " # $ ¯ ¯ 3 √ = log Tr exp − d x ¯ −g β µ¯ (¯ x)Tˆ0µ¯ (¯ x) + ν(¯ x)Jˆ0 (¯ x)

[ Banerjee et al.(2012), Jensen et al.(2012) , Haehl et al. (2015), MH(2016)]

Variation formula in “hydrostatic gauge” 2 1 δ δ µν LG µ LG ˆ ˆ ¯ !T (x)"t¯ = √ Ψ[t; λ], !J (x)"t¯ = √ Ψ[t¯; λ] −g δgµν (x) −g δAµ (x)

t¯ dΣµ ∝ ∂µ t¯

LG distribution w/ λ = {β µ , ν}

t tµ ≡ ∂t¯xµ

Σt¯ t¯(x) = const.

x Masseiu-Planck functional !" # $% Ψ[t¯; λ] ≡ log Tr exp dΣt¯ν β µ (x)Tˆνµ (x) + ν(x)Jˆν (x) % ! " # $ ¯ ¯ 3 √ = log Tr exp − d x ¯ −g β µ¯ (¯ x)Tˆ0µ¯ (¯ x) + ν(¯ x)Jˆ0 (¯ x)

Picture before gauge fixing Future time direction

Picture in hydrostatic gauge

¯ β µ (t¯2 , x)

β µ¯ (x) = β0 δ¯0µ¯



tµ t¯(x) = t¯2

¯ β (t¯1 , x) µ

Gauge fixing

t¯2

tµ = e σ u µ (eσ ≡ β/β0 )

x ¯j

tµ t¯(x) = t¯1

t x j xi

x ¯i = const.

t¯1

x ¯i

We can choose the time direction vector tµ (x) ≡ ∂t¯xµ Hydrostatic gauge fixing Let us choose tµ (x) = β µ (x)/β0 , A¯0 (x) = ν(x)

[ Banerjee et al.(2012), Jensen et al.(2012) , Haehl et al. (2015), MH(2016)]

Variation formula in “hydrostatic gauge” 2 1 δ δ µν LG µ LG ˆ ˆ ¯ !T (x)"t¯ = √ Ψ[t; λ], !J (x)"t¯ = √ Ψ[t¯; λ] −g δgµν (x) −g δAµ (x)

Proof. Consider time derivative of Ψ[λ] ∂t¯Ψ[t¯; λ] =

!

d

d−1



"



"

x ¯ −g

∇µ βν $Tˆµν %LG t¯

ˆµ

#

+ (∇µ ν + Fνµ β )$J %t¯ ν

# 1 ν ν ˆµ (∇µ βν + ∇ν βµ )$Tˆµν %LG = dd−1 x ¯ −g t¯ + (β ∇ν Aµ + Aν ∇µ β )$J %t¯ 2 # " ! √ 1 ˆµ £β gµν #Tˆµν $LG = dd−1 x ¯ −g t¯ + £β Aµ #J $t¯ 2 !

On the other hand, since tµ = β µ , we can express the LHS as ∂t¯Ψ[t¯; λ] =

!

"

dd−1 x ¯ £β gµν

δΨ δΨ + £ β Aµ δgµν δAµ

#

Matching them gives the above variation formula!

g µ¯ν¯ L=− ∂µ¯ φ∂ν¯ φ − V (φ) 2 2 δS µν ˆ ∂ρ φ) ˆ ν φˆ + g µν L(φ, ˆ ˆ T ≡√ = ∂ µ φ∂ −g δgµν # ! " ¯ d−1 √ ¯ Ψ[t; λ] = log Tr exp − d x ¯ −gβ µ (x)Tˆ0µ (x) ! ! = log Dφ exp (SE [φ, β µ ]) = log Dφ exp (SE [φ, g˜]) S[φ, β µ ] =

=

!

β0



!



!

0

!

β0 0

"

−σ ¯i

√ e ¯ ˙ 2 − −e u (iφ)∂ ˙ ¯i φ − 1 d3 x ¯ −geσ u0 − ¯0 (iφ) 2 2u u¯0 u¯0 u¯0 −2σ

g˜µ¯ν¯ 3 d x ¯ −˜ g − ∂µ¯ φ∂ν¯ φ − V (φ) 2 "

#

$

#

¯¯

γ ij +

¯i ¯ j

uu u¯0 u¯0

$

∂¯i φ∂¯j φ − V (φ)

(eσ(¯x) ≡ β(¯ x)/β0 )

%

Ψ[t¯; λ] = log

!

Dφ exp (SE [φ, ; g˜])

Thermal metric

g˜µ¯ν¯ =

!



−e eσ u¯i

σ

e u¯j γ¯i¯j

Inverse thermal metric

"

(eσ(¯x) ≡ β(¯ x)/β0 )

g˜µ¯ν¯



−2σ

e  u¯0 u¯ 0 =  e−σ u¯i − ¯0 u u¯0

j −σ ¯

e u − ¯0 u u¯0   ¯i ¯ j  u u ¯i¯ γ j + ¯0 u u¯0

Interpretation of above result Ψ[t¯; λ] is described by QFT in ”curved spacetime” s. t. ¯i ¯ ¯i 2 ′ ˜ d˜ s = −e (dt + a¯i dx ) + γ¯i¯j dx dxj 2



(a¯i ≡ e−σ u¯i ,

γ¯i′¯j ≡ γ¯i¯j + u¯i u¯j ,



dt˜ = −idτ )

− ← − a µ¯ " 1 ¯ ! a µ¯ → ¯ L = − ψ γ ea D µ¯ − D µ¯ γ ea ψ − mψψ 2

Symmetric energy-momentum tensor T µ¯ν¯

=

−δνµ¯¯ L

→ − µ¯ ← − µ¯ ← −µ¯ − 1 ¯ µ¯ → − ψ(γ D ν¯ + γν¯ D − D ν¯ γ − D γν¯ )ψ 4

Result of path integral !" $% # dΣt¯ν β µ (x)Tˆνµ (x) + ν(x)Jˆν (x) Ψ[t¯; λ] ≡ log Tr exp

= log

!

¯ ¯ e˜] DψDψ exp SE [ψ, ψ; "

#

Ψ[t¯; λ] = log

!

¯ ¯ e˜] DψDψ exp SE [ψ, ψ; "

#

Euclidean action with thermal vielbein ¯ e˜] = SE [ψ, ψ;

!

β0

dτ 0

!

"

% # $ → ← − a µ¯ 1 ¯ a µ¯ − 3 ¯ d x ¯e˜ − ψ γ e˜a D µ¯ − D µ¯ γ e˜a ψ − mψψ 2

: e˜¯0a = eσ ua ,

Thermal vielbein

e˜¯i a = e¯i a (eσ ≡ β(x)/β0 )

Interpretation of above result Ψ[t¯; λ] is described by QFT in ”curved spacetime” s. t. 2

d˜ s =

¯i 2 ¯i ¯ a b µ ¯ ν ¯ 2σ ˜ ′ e˜µ¯ e˜ν¯ ηab dx dx = −e (dt + a¯i dx ) + γ¯i¯j dx dxj (a¯i ≡ e−σ u¯i , γ¯i′¯j ≡ γ¯i¯j + u¯i u¯j , dt˜ = −idτ )

Thermal QFT (Matsubara formalism)

Global equil. β0

T = const.

[ Matsubara, 1955 ]

Path int.



QFT in the flat spacetime with size β0

β0

x Local Thermal QFT

Local equil. {β(x), "v (x)}

Path int.

[ Hayata-Hidaka-MH-Noumi PRD(2015) ] [ MH (2016) ]



QFT in the “curved spacetime” with “line element”

β(x)

d˜ s2 = d˜ s2 (β, "v )

x

¯i ¯ ¯i 2 ′ ˜ d˜ s = −e (dt + a¯i dx ) + γ¯i¯j dx dxj 2





β(x)

(a¯i ≡ −e−σ u¯i , γ¯i′¯j ≡ γ¯i¯j + u¯i u¯j , dt˜ ≡ −idτ )

x

Symmetry of “curved spacetime” ( 1 ) Spatial diffeomorphism

:


  Physics does not depend on the choice of Spatial coordinate system!! ( 2 ) Imaginary time tran. & Kaluza-Klein gauge:
   Parameters λ (e.g. T) does not depend on imaginary time!! Ψ[λ] = log

!

Partition function method Banerjee et al.(2012), Jensen et al.(2012)

¯ e] S[ψ,ψ,˜ ¯ DψDψe should respect the above symmetries!!

¯i 2 ¯i ¯ ′ j ˜ d˜ s = −e (dt + a¯i dx ) + γ¯i¯j dx dx (dt˜ = −idτ ) 2



e˜µ¯µ (β µ )

Ψ[λ] = log

!

τ

“Kaluza-Klein” gauge tr.

β(x)



 

Parameters λ don’t depend on imaginary time .

x ¯ e] S[ψ,ψ,˜ ¯ DψDψe ∋

(f¯i¯j ≡ ∂¯i a¯j − ∂¯j a¯i )

  ¯ t˜ → t˜ + χ(x) ¯→x ¯ x   ¯ → a¯i (x) ¯ − ∂¯i χ(x) ¯ a¯i (x) ¯i¯ j

f f¯i¯j , · · · ¯

a¯i , a¯i ai , · · ·

Local Thermal QFT

Local equil. {β(x), "v (x)}

[ Hayata-Hidaka-MH-Noumi PRD(2015) ] [ MH (2016) ]

Path int.



QFT in the “curved spacetime” with “line element”

β(x)

d˜ s2 = d˜ s2 (β, "v )

x Ψ[t¯; λ] ≡ log Tr exp

!"

#

dΣt¯ν β µ (x)Tˆνµ (x) + ν(x)Jˆν (x)



%$① Ψ[λ] ② Ψ[λ] is written in terms of QFT in curved spacetime

2 δ µν LG ˆ Ψ[λ] plays a role as the generating functional: !T (x)" = √ −g δgµν (x) ¯ ¯ ¯ d˜ s2 = −e2σ (dt˜ + a¯i dxi )2 + γ¯i′¯j dxi dxj

Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

  Motivation:

µ5 != 0

Quantum field theory under local thermal equilibrium?

N

S

! !j ∝ B

  Approach: QFT for Local Gibbs distribution



β(x)

① ② Ψ[λ] is written in terms of QFT in “curved¯ spacetime” 2 δ µν LG ˆ √ ! T (x)" = Ψ[λ] Variation formula: −g δgµν (x)

¯i ¯ i 2 ′ ˜ d˜ s = −e (dt + a¯i dx ) + γ¯i¯j dx dxj 2



Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

  Application:

Derivation of Anomalous hydrodynamics

x

µR = µL

Derivative expansion of ψ Ψ[β µ , ν] = Ψ(0) [β µ , ν] + Ψ(1) [β µ , ν, ∂] + O(∂ 2 ) + · · ·

≃ βp

= 0 Parity-even system

Symmetry property

Non-dissipative constitutive relation 2 δ µν µν ¯ = T [λ(x)] + T √ !Tˆµν (x)"LG = Ψ[ t ; λ] (0) (1) [λ(x), ∇λ(x)] + · · · t¯ −g δgµν (x) 2 δ µ µ µ LG ˆ !J (x)"t¯ = √ Ψ[t¯; λ] = J(0) [λ(x)] + J(1) [λ(x), ∇λ(x)] + · · · −g δAµ (x)

=0

[ Banerjee et al.(2012), Jensen et al.(2012) ]

Masseiu-Planck functional ! S[φ,˜ g ] = Ψ(0) [λ] + Ψ(1) [λ, ∂] + O(∂ 2 ) Ψ[λ] = log Dφe O(p0 )

O(p1 )



- Building blocks λ = {eσ , a¯i , µ, A¯i }

:Spatial diffeo,Kaluza-Klein,Gauge

- Symmetry A¯i

:not Kaluza-Klein inv.

A¯¯i ≡ A¯i − µa¯i

: λ = O(p )

- Power counting scheme

f¯i¯j ≡ ∂¯i a¯j − ∂¯j a¯i = O(p1 )

0

f f = O(p2 )

0

O(p ) Masseiu-Planck functional ! S[φ,˜ g ] = Ψ(0) [λ] + Ψ(1) [λ, ∂] + O(∂ 2 ) Ψ[λ] = log Dφe O(p0 )

O(p1 )



- Building blocks λ = {eσ , a¯i , µ, A¯¯i } ! ! β0 " dτ d3 x ¯ γ ′ eσ p(β, µ) Ψ(0) [λ] = 0

Perfect fluid µ ν µν !Tˆµν (x)"LG = (e + p)u u + pη ¯ t µ !Jˆµ (x)"LG = nu t¯

µR != µL

◆ Chiral Magnetic Effect (CME)

eµ ! !j = 5 B 2π 2 ◆ Chiral Vortical Effect (CVE)

µµ 5 !j = ω ! 2π 2

[ Fukushima et al.2008, Vilenkin 1980 ]

µR != µL S

N

! !j ∝ B

[ Erdmenger et al. 2008, Son-Surowka 2009 ]

!j ∝ ω !

µR != µL

Derivative expansion of ψ Ψ[β µ , ν] = Ψ(0) [β µ , ν] + Ψ(1) [β µ , ν, ∂] + O(∂ 2 ) + · · ·

≃ βp Symmetry property

= 0 Parity-even system != 0 Parity-odd system

Non-dissipative constitutive relation 2 δ µν µν ¯ = T [λ(x)] + T √ !Tˆµν (x)"LG = Ψ[ t ; λ] (0) (1) [λ(x), ∇λ(x)] + · · · t¯ −g δgµν (x) 2 δ µ µ µ LG ˆ !J (x)"t¯ = √ Ψ[t¯; λ] = J(0) [λ(x)] + J(1) [λ(x), ∇λ(x)] + · · · −g δAµ (x)

=0

!= 0



→ ← − m µ" i † ! µ m− Weyl fermion L = ξ em σ D µ − D µ σ em ξ 2 ! † S[ξ,ξ † ,A,˜ e] = Ψ(0) [λ] + Ψ(1) [λ, ∂] + O(∂ 2 ) Ψ[λ] = log Dξ Dξe O(p0 ) O(p1 )



- Building blocks λ = {eσ , a¯i , µR , A¯¯i }

:Spatial diffeo,Kaluza-Klein,Gauge

- Symmetry A¯i

:not Kaluza-Klein inv.

A¯¯i ≡ A¯i − µR a¯i

: λ = O(p )

- Power counting scheme

f¯i¯j ≡ ∂¯i a¯j − ∂¯j a¯i = O(p1 )

0

f f = O(p2 )

0

O(p )



→ ← − m µ" i † ! µ m− Weyl fermion L = ξ em σ D µ − D µ σ em ξ 2 ! † S[ξ,ξ † ,A,˜ e] = Ψ(0) [λ] + Ψ(1) [λ, ∂] + O(∂ 2 ) Ψ[λ] = log Dξ Dξe O(p0 ) O(p1 )

: !

- Building blocks λ = {eσ , a¯i , µR , A¯¯i } β0

Ψ(0) [λ] =

0



!

d3 x ¯

"

γ ′ eσ p(β, µR )

Perfect fluid µ ν µν !Tˆµν (x)"LG = (e + p)u u + pη t¯ µ µ (x)"LG !JˆR = n u R t¯

O(p)



→ ← − m µ" i † ! µ m− Weyl fermion L = ξ em σ D µ − D µ σ em ξ 2 ! † S[ξ,ξ † ,A,˜ e] = Ψ(0) [λ] + Ψ(1) [λ, ∂] + O(∂ 2 ) Ψ[λ] = log Dξ Dξe O(p0 ) O(p1 )



- Building blocks λ = {eσ , a¯i , µR , A¯¯i } ! " ¯ ¯ ¯i¯ 3 jk ′ d x ¯ γ C1 (β, µR )ǫ A¯i ∂¯j A¯k¯

!

" ¯ ¯ ¯i¯ 3 jk ′ d x ¯ γ C2 (β, µR )ǫ A¯i ∂¯j ak¯

µR != µL S

! !j ∝ B

!j ∝ ω !

µR != µL

N

① Non-perturbative way (WZ consistency condition …) ② Perturbative evaluation of ψ in external field [ Banerjee et al.(2012), Jensen et al.(2012) , Haehl et al. (2015) ]

[ MH-Hidaka in preparation (2016) ]

P +Q

δ2Ψ = δAµ δAν





Q

Q

≃ −iε

0µρν

P

µR ˜ Qρ 2 4π

P +Q

Aα Q

P

Ψ

(1)

[λ] =

!

3

d xε

0ijk

"

˜ ρ C(η ν0 ερµ0α + δij η νi ǫρµjα ) ≃ iQ {

δ˜ gµν δ2Ψ = δ˜ gµν δAα Q

µ2R T2 = 2+ 8π 24

νR Ai ∂j Ak + 2 8π

#

ν R µR T + 2 8π 24

$

Ai ∂j g˜0k

%

Ψ

(1)

[λ] =

!

3

d xε

0ijk

"

νR Ai ∂j Ak + 2 8π (1)

#

ν R µR T + 2 8π 24

µR i 1 δΨ i LG ˆ = !JR (x)"(0,1) = √ B + 2 −g δAi (x) 4π

!

µ2R 8π 2

$

N

S

! !j ∝ B

!j ∝ ω !

µR != µL

2

T + 24

µ5 i µµ5 i i LG ˆ !JV (x)"(0,1) = B + ω 2 2 2π 2π ! " 2 2 2 µ + µ5 µ i T i LG i ˆ !JA (x)"(0,1) = B + + ω 2π 2 4π 2 12 µR != µL

Ai ∂j g˜0k "

ωi

%

  Motivation:

µ5 != 0

Quantum field theory under local thermal equilibrium?

N

S

! !j ∝ B

  Approach: QFT for Local Gibbs distribution



β(x)

① ② Ψ[λ] is written in terms of QFT in “curved¯ spacetime” 2 δ µν LG ˆ √ ! T (x)" = Ψ[λ] Variation formula: −g δgµν (x)

x

¯i ¯ i 2 ′ ˜ d˜ s = −e (dt + a¯i dx ) + γ¯i¯j dx dxj 2



Symmetry = Spatial diffeomorphism + Kaluza-Klein gauge

  Application:

Derivation of Anomalous hydrodynamics

Ψ(1) → !j =

eµ5 ! B 2 2π

  Dissipation and Fluctuation: How to implement dissipation and fluctuation based on QFT? - Haehl, Loganayagam, Rangamani (2015-) - Harder, Kovtun, Ritz (2015) - Crossley, Giorioso, Liu (2015)

- Zubarev et al. (1979) - Becattini et al. (2015) - Hayata, Hidaka, MH, Noumi (2015)

  Non-dissipative transport: Evaluation of Masseiu-Planck fcn. in several situations s.t. in the presence of magnetic field/vorticity … - Hattori, Yin(2016)

- Becattinil et al. (2015)

  superfluid/ Magneto-hydrodynamics: Extension to cases with other zero modes ( NG-mode / photon )



Time evolution



β(x)

β0 t¯f

g˜µν Σt¯ × S 1

gµν t¯0 x ¯

λa (x) on Σt¯

Path-integral formula for local thermal equilibrium

Ψ[¯t;λ] ≡ log Tr exp[∫ dΣ¯tν (βµ. (x)ˆTν. µ. (x) + ν(x)ˆJν(x))] .... is described by QFT in ”curved spacetime” s. t.. Ψ[¯t;λ]. Interpretation of above result d˜s. 2. = -e. 2σ.

4MB Sizes 0 Downloads 183 Views

Recommend Documents

A LOCAL TRACE FORMULA FOR ANOSOV FLOWS ...
The new counting result is proved by establishing a local trace formula .... In the case of flows obtained by suspending Anosov maps the growth of the number of.

Casimir-Lifshitz force out of thermal equilibrium
accepted providing a common tool to deal with dispersive forces in different fields of ... 1 m at room temperature between the bodies and was readily confirmed ...

Identification of a best thermal formula and model for oil ...
Identification of a best thermal formula and model for oil and winding ... new model with the good best fit for the heat transfer ..... degrees from KTH University,.

Identification of a best thermal formula and model for oil ...
new model with the good best fit for the heat transfer ... Index: best fit, simulation, identification, error, model. 1. ... Cc: thermal capacitance core and winding.

Apparatus for controlling thermal dosing in a thermal treatment system
Sep 8, 2005 - Patent Documents. Reissue of: (64) Patent No.: 6,618,620. Issued: Sep. 9, 2003. Appl. No.: 09/724,670. Filed: Nov. 28, 2000. (51) Int. Cl. A61B 18/04 .... 9/2007 Talish et 31, system for ultrasound surgery,” IEEE Trans. Ultrason. Ferr

Apparatus for controlling thermal dosing in a thermal treatment system
Sep 8, 2005 - agement of stroke,” Neurosurgery, vol. 65, No. 5, pp. ..... By way of illustration, FIG. ... ing sinus wave, thereby creating the desired ultrasonic wave energy. 20. 25 ..... Will be appreciated by those skilled in the art that a vari

Surface–atom force out of thermal equilibrium and its ...
theorem and after integrating over an infinite volume, the vacuum half space ..... the distance d between the centre of a cloud of 40K fermionic atoms (α0 = 4.3 × ...

EQUILIBRIUM RESULTS FOR DYNAMIC ...
the sense of Mas-Collel [11]) game in which each player chooses a particular sequence of .... Mas-Colell [11] ...... E-mail address: [email protected].

Formula for Obstructed height.pdf
R + h1. R cos s. R. +. h. sin s. R. i q. (R + h1). 2 − R2. − 1... . (4). 2. Page 2 of 2. Formula for Obstructed height.pdf. Formula for Obstructed height.pdf.

Integral Formula for Spectral Flow for p-Summable ...
1 Aug 2017 - calculates spectral flow for a given path; double operator integral techniques are used to show that the one-forms under considerations are exact. ..... finitely-summable case when the power is an integer (see [CP98]), but changes the pr

general equilibrium
Thus saving, or the kending of money, might be thought of as the ... reasons why the rate of interest is always positive). Once utility is ... Debreu. But at best this will give an “ordinal' utility, since if .... in some commodtty l, which (taking

Equilibrium strategic overbuying
chases from Alcatel to deprive competitors from access to modems or if it acted in order to secure an “adequate future supply” (following the terms used in the Alcoa decision). It is in general a difficulty in these cases and in the analysis of o

Quasi-equilibrium - Infoscience
Mar 28, 2012 - All agents bid at the same time for all locations → prices and location distributions are defined. - The assignment mechanism is an auction ...

Formula One.pdf
the 'Double Taxation Avoidance Agreement' (DTAA). entered into between the Government of United. Kingdom and the Republic of India?; and. (ii)whether FOWC was having any 'Permanent. Establishment' (PE) in India in terms of Article. 5 of DTAA? Another

thermal engg.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. thermal engg.

Thermal Engineering.pdf
Actual valve timing diagram of four stroke engine. Theoretical port timing diagram of two stroke engine. Comparison of two stroke and four stroke engine. Comparison of petrol and diesel engine. Simple Carburetor. Diesel Pump and Injector system. Dies

The Nash Equilibrium
Bi(a-i) = fai 2 Ai : ui(ai;a-i) ¸ ui(bi;a-i. ) ... Bi(a-i. ) is a set which may or may not be a singleton.) So, for example, in a ..... final order of business in this chapter.

Equilibrium strategic overbuying
Co. of Am., 1945): Judge Learned Hand, writing the opinion for the U.S. .... recover the cost corresponding to the qi − xi units of unused input it owns. .... Actually, it assumes overbuying since a merchant either gets nothing or the total supply.

Equilibrium strategic overbuying
Overbuying takes place when firms purchase more from a constrained supplier than ..... The entrant anticipates that in stage 3 its best reply to qI will be. 1−qI. 2.

Equilibrium strategic overbuying
on the final market and present illustrative examples of overbuying with and .... Along this line, Gabszewicz and Zanaj (2008) show that an incumbent can deter .... and its unconstrained best reply to its rival's output xj (j ∈ {I,E}, j = i) would