Probabilistic Methods in Combinatorics: Homework Assignment Number 1 Noga Alon

Solutions will be collected in class on Wednesday, March 25, 2009. n−1

1. Suppose n > 4 and let H be an n-uniform hypergraph with at most 4 3n edges. Prove that there is a coloring of the vertices of H by 4 colors so that in every edge all 4 colors are represented. 2. Prove that there is an absolute constant c > 0 with the following property. Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no √ column in the permuted matrix contains an increasing sub-sequence of length at least c n. 3. (i) Prove that every set A of n nonzero integers contains two disjoint subsets B1 , B2 ⊂ A, so that |B1 | + |B2 | > 2n/3 and each set Bi is sum-free (that is, there are no b1 , b2 , b3 ∈ Bi so that b1 + b2 = b3 .) (ii) Prove that the same conclusion holds for any set A of n nonzero reals. 4. Let {(Ai , Bi ), 1 ≤ i ≤ h} be a family of pairs of subsets of the set of integers such that |Ai |+|Bi | = k for all i, Ai ∩ Bi = ∅ and (Ai ∩ Bj ) ∪ (Aj ∩ Bi ) 6= ∅ for all i 6= j. Prove that h ≤ 2k . 5. Let X be a collection of pairwise orthogonal unit vectors in Rn and suppose the projection of each of these vectors on the first k coordinates is of Euclidean norm at least ǫ. Show that p |X| ≤ k/ǫ2 , and this is tight for all n = 2r , and ǫ = k/2r < 1, with r ≥ 1 an integer.

1 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 uxna 25

1 dl`y

e

m`

xe

= 0-e

mirav 4-a dreav `l

e

xe

m`

e

xicbp

= 1

zyw lkl .z"ae cig` ote`a erav z` lixbp znev lkl -y xexa .mirav drax`a dreav

E [xe ] = 4 

 n

 n

3

2

6

4

 n 1

+4

4

4

<4

 n 3

4

:miiw .mipey mirav drax`a zereav `ly zezywd xtqn

E [x] =

X

e

E [xe ] <

X

e

3

n 4

n 1



4

n

1

n 3



3

n 4

n 1



x=

P

e xe

idi

1

x < 1 dxear driav zniiw okle

.mirav 4-a dreav `ly zyw da oi`y driav zniiw xnelk ,

2 dl`y



.c e xgap pA-n zlawznd dvixhnd z`  A -a onqp .zixwn dxenz  idz ,  i  n lkl c n jxe`a dler dxcq-zz yi  A ly i dcenra m` x

onqp . -l m`zda zexeyd selgy i"r

xi

zexazqdd .zxg`

k

= 0-e

E [xi ]  k

.

k

,

:=

jxe`a dler dxcq-zz zniiwy zexazqdd okle dl`k zexcq

 f pn

 

n k! k

1



en k k k k e

 =

E [x]

lw .

(

ez ) ik xexa f`e f (z ) = z e 2 2

)

(

)

=

k

yi . !

i

1

`id dler didz

= 1

k

2

1

lceba dxcq-zzy :zniiwn

  2 cpn  e 2cpn p en e2 n k 2e2 n = = = e 2 2 k cn c

x=

Pn

Stirling itl oekp oexg`d oeieey-i`d) dtivx divwpet xicbp .x = 0 dxear  zniiw f`e E [x] < 1 ik d`xp

jxe`a dler dxcq-zz oda yiy zecenrd xtqn z` 2

n k

(

i=1 xi -a

onqp (

:ik ze`xl 2 f 0 (z ) = 2ze 2e z (1

,

n

lkl xnelk ,

z

lkl

f (z ) < 1-y

f e

o`kn . (

2 f 00 (z ) = 2e 2e z (2z 2 e4

4

ok enk ,meniqkn zcewp efe

z

ze2 ) 2

)

<1

e2 z + 1) =

e

2

-a lawzn oeviwdy o`kn .yexck ,

E [x] < 1

` 3 dl`y

p > 2 maxa2A jaj miiwnd (mixf 6-e 5 ik Dirichlet itl dl`k seqpi` yi) ipey`x p = 6k + 5 idi

:ik ze`xl lw .

K (1) = f2k + 2; : : : ; 4k + 3g

K (2) = fk + 1; : : : ; 2k + 1; 4k + 4; : : : ; 5k + 4g

(2) (i) A(1) x \ Ax = ;-y xexa .Ax = fy 2 A j xy (mod p) 2 K (i) g xicbp 0 < x < p lkl .p elecen zeiyteg x-yk p - y -e li`ed .zxg` vy(i) = 0-e y 2 A(xi) m` vy(i) = 1 xicbp y 2 A lkl .ziyteg A(xi) ,ok enk .K (1) \ K (2) = ; (i) jK (i) j = 2k+2 > 1 :okl .mixtqn mze` lr weica xaer bx (mod p) ,f1; : : : ; p 1g lr xaer :miiw .Pr(vy ) = p 1 6k+4 3

ixdy

h

i

(2) E jA(1) x j + jAx j

X =

y 2A

h

E vy(1)

i

X +

y 2A

h

i

E vy(2) > 2  n = n 3 3

jB1 j jB2 j > 23 n mr B2

.

+

1

1

=

2

(1) A(2) x -e B1 = Ax

exear

x miiw okl

a 3 dl`y

fa ; : : : ; an g = A  Rnf0g dveaw lkl ik d`xp .mcewd sirqdn diral zeliwy d`xp fPa01 ; : : : ; a0n g = zniiw n lceba Pn 1 n 0 0 . i=1 ai i ly oniql deey i=1 ai i ly ( 1; 0; 1) oniqd 1 ; : : : ; n 2 f 1; 0; 1g lkly jk n lceba A  Znf0g P

n if` 0 `ed oniqd m` . 3n -n zg` lkl i=1 ai i ly oniql m`zda oeieey(-i`) xicbp 1 ; : : : ; n xegal zeiexyt`d Pn Pn -i` xicbp . q -y jk q miiw .iaeig `ed ik k"da gipp ,0-n dpey oniqd m` . x  = 0 xicbp i=1 ai i Pni=1 i i x q :oeieey mincwnd lky oeeikn .iynn oexzt zlra mipzyn n-a miix`pil mipeieey(-i`) zkxrn eplaiw . i=1 i i



n

2Q



lawp ,mi`zn irah xtqna ilpeivxd oexzta mixtqnd zltkd i"r .zkxrnl ilpeivx oexzt mb miiw ,miilpeivx

0

0 0 0 0 0 0 0 0 0 0 enk .ziyteg Bi -e B1 \ B2 = ;-y jk B1 ; B2  A zeniiwy mcewd sirqa epi`xd .f (ai ) = ai 2 A ,ai 2 A lkl xicbp 0 0 0 0 0 0 0 ai +aj = ak -y xexa .zeyexcd zeveawd od B1 ; B2 f`e .i = 1; 2 xear Bi = ff (a ) j a 2 Bi g xicbp .jB1 j+jB20 j > n 3 ,ok Pn Pn 0 . a  = 0 = a  -l f`e xg` p lkl  = 0 -e  = 1 ,  =  = 1 xicbdl xyt` ixdy a + a = a m"m` p k i j i j k p=1 p p p=1 p p 2n sqepa .r"gg f ik B \ B = ; ,ok enk .i = 1; 2 xear ziyteg B okl 0 0 .jB1 j + jB2 j = jB1 j + jB2 j > 1 2 i .yexck ,a1 ; : : : ; an mixtqn

3

4 dl`y Sh Ai ixai` lky rxe`nd zeidl Ei xicbp .z"ae ixwn ote`a legke mec`a Y ixai` z` ravp .Y = i=1 (Ai Bi ) idz .x Ai Bj ik k"da gipp .`ly dlilya gipp .mixf Ej -e Ei zerxe`nd .legka mireav Bi ixai` lke mec`a mireav

2

\

[

:milawne Pr(Ei ) = 2

h2

k

=

k

ik xexa .Ej llba legka reav

h X

k

2

=

h X

h [

Pr(Ei ) = Pr

ipy cvne

!

Ei

i=1

i=1

i=1

x

Ei

llba mec`a reav

x

cg` cvn if`

 1 =) h  2k 5 dl`y

ozipy xexa .X ly mixehweed od dly zecenrdy ly dnxepd hxta ilnxepezxe` qiqa zeedn mb

n

AB

 m xcqn AX = (aij ) dvixhn xicbp X lkl .m = jX j onqp ly zexeyd f`e

B

ilnxepezxe` qiqal

X

dveawd z` milydl

.1 lr dler `l AX ly zexeyd ly dlnxepd ,zecenrdn wlg zwign i"r AB -n zlawzn AX -e li`ed .1 `id dxey lk Pk 2 2 zlgezd zxcbdn . 2 miiw 1 j m dcenr lkl .cig`e ixwn ote`a mly 1 s k xgap i=1 aij k :milawn .1 j m lkl

E [a2sj ]





1



 

   

2 3 m m X X   E4 a2sj 5 = E a2sj j =1 j =1

2

 m k

.yexck ,m

Ar

:onwlck iaihwecpi` ote`a zxcben



A1 =

1 1

xy`k

1



1

Br = 2

r=2



Ar

Ar 1 Ar = Ar 1

ly zecenrd zveaw zeidl

Ar 1 Ar 1

Xr

 k2

z` xicbp

:o`kn

r

lkl



T r T al miyp .Ar Ar = 2 I2r xnelk ,Br Br =

r

I2r ik ze`xdl witqn miilnxepezxe` Xr -a mixehweedy ze`xdl zpn lr 2 1 1 T r 2 0 = [ 0 2 ] :r = 1 xear .A2 1-l gipp .yexck , 1 1 r = 2 I2r ik r lr divwecpi`a d`xp ,okl .r lkl Ar = Ar ik 

:miwelaa letkp .r -l gikepe



Ar 1 Ar 1

Ar 1 Ar 1

.yexck ,

2

 =

2Ar 1 0

0 2Ar 1

 =

 r 2 I2r 1

 2r I2r 1

r

= 2 I2r

Pk 2r 2 2 r r :k lkly o`kn bij = 2 :i; j lkl .Br = (bij )i;j =1 onqp .yexck i=1 bij = k2

2

Probabilistic Methods in Combinatorics: Homework Assignment Number 2 Noga Alon

Solutions will be collected in class on Wednesday, April 22, 2009. 1. (i) Prove that there is a positive constant c so that for all n > 1 and every n-uniform hypergraph H with at most cn1/4 2n edges there is an ordering of the vertices of H such that there are no two edges A and B that intersect in a unique element, and all members of A − B precede all those of B − A, while the unique element in A ∩ B appears after all those of A − B and before all those of B − A. (ii) Apply (i) to conclude that for c, n and H as above, H is two-colorable. 2. (Every monotone property has a threshold). Let F be a family of graphs on n labeled vertices, and suppose F is monotone, that is, if F ∈ F and G contains all edges of F , then G ∈ F. Suppose ǫ > 0, 0 < p < 1 and suppose that the probability that the random graph G(n, p) ⌉}, the probability that G(n, q) ∈ F is at belongs to F is ǫ. Show that for q = min{1, p⌈ ln(1/ǫ) ǫ least 1 − ǫ. 3. Let v1 = (x1 , y1 ), . . . , vn = (xn , yn ) be n two dimensional vectors, where each xi and each yi is 2n/2 √ . Show that there are two disjoint nonempty sets a positive integer that does not exceed 100 n I, J ⊂ {1, 2, . . . , n} such that X X vi = vj . i∈I

j∈J

4. Call a family F of subsets of [n] = {1, 2, . . . , n} distinguishing if for every two distinct subsets A and B of [n] there is an F ∈ F so that |A ∩ F | = 6 |B ∩ F |. (i) Show that there exists such an F of size |F| ≤ (2 + o(1)) logn n . 3

(ii) Show that any such F is of size at least (2 − o(1)) logn n . 2

5. Show that there is a positive constant c such that the following holds. For any n vectors P a1 , a2 , . . . , an ∈ R2 satisfying ni=1 ||ai ||2 = 1 and ||ai || ≤ 1/10, where || · || denotes the usual Euclidean norm, if (ǫ1 , . . . , ǫn ) is a {−1, 1}-random vector obtained by choosing each ǫi randomly and independently with uniform distribution to be either −1 or 1, then P rob(||

n X

ǫi ai || ≤ 1/3) ≥ c.

i=1

6. The Haj´ os number of a graph G is the maximum number k such that there are k vertices in G  with a path between each pair so that all the k2 paths are internally pairwise vertex disjoint (and no vertex is an internal vertex of a path and an endpoint of another). Is there a graph whose chromatic number exceeds twice its Haj´os number ?

2 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 lixt`a 22

zeillk zexrd

jXi j 6  i

.Pr [

.

;

(

= 1 2)]

>

3 :miiw 2 2



1

t  t  t 2t s 6 bt=2c miiw s lkl ok enk . bt=2c 6 pt+1

,

2 zepeye 0 zlgez ilra X1 ; X2 n"n bef xear :1 Berge htyn m

t > 3 xeare 22pm 6 2

m 22m m 6 p2m

2

miiw :ifkxn inepia mcwn zkxrd

` 1 dl`y

A \ B = fxg-y jk B -e A zezyw bef lkl .miznvd ly ixwn xeciq  idz :ik xexa ."B A-a miznvd lkl mcewy x-l ( itl) mincew A B -a miznvd lk" :rxe`nl XA;B

xehwicpi` dpzyn zeidl

XA;B = 1] =

Pr [

n (2n

[(

z` xicbp

2

1)!]

1)!

=

2

n

1

k-n

 nn [(

1

2

1)!]

(2

2)!

=

2

n

1

  nn 2

1

2



1

6 n

1

2(

1

1)

p  n 2



1 2

n

2 2

n

3 2

6 pn 2

P

H -a zezyw k := cn1=4 2n -n xzei `l yi m` .X = XA;B xicbp k 23p 2n < c2 23 = 1 :zlgezd zeix`piln if` 3=2 xeciq xnelk ,X < 1 exear ,xeciq miiw okle c = 2 xear ,E [X ] 6 2 2 n ,

A; B

dl`k (mixecq) zebef 2

2

xzei `l okle

.yexck

a 1 dl`y

 xeciqd itl zyw idyefi`a oey`xd znevd `ed v m` legka ravi v znev .l"pk xeciq  idz A ly oexg`d xai`d hxta .legka dreav A ik xexa .zipeb-cg A gipp .mec`a .dxizqa ,XA;B = 1 f` la` .B ly

eravi miznvd x`y .

oey`xd xai`d `edy oeeikn legka reav

2 dl`y

:=

dyrpy ieqipd lr xefgp . miieqipd



l

ln(1



=)

lky zexazqdd .minrt

m xear

(F -l

q

=

p ik gipp okl

.1 zexaqzda

jiiy sxbd m`d dwicae

p

G(n; q) = Kn 2 F

zexazqda zezyw dxiga





q = 1 m` l"x) G(n; p)-a f`

p divwpetd ik al miyp .(1 6 exp ( ) 6 exp ln(1=)  =  lr dler dpi` elyki 0 zexazqdd xnelk ,1 (1 p) 6 p = q ik milawn .f (0) = 0 ,ok enk .[0; 1] rhwa dler dpi` f okle f 6 0 zniiwn dphw dpi`y zexazqda F -l jiiy epx`izy ieqipdn lawznd sxbd .q lr dler dpi` miieqipdn cg`a xgaiz zywy .1 -n dphw dpi`y zexazqda F -l jiiy ,dphw `l zyw zxigal zexazqdd eay ,G(n; q) okle ,1 -n

f (p) = 1

(1

p)

)

3 dl`y xexa .

Berge

V

 

=

itl

X = P  v ok enk ;Y = P  y -e X = P  x onqp .z"ae cig` ote`a  ; : : : ;  2 f0; 1g xgap 1 n i i i i i i i i i Y P 2 P P 1 1 2n 1 2n :dnec ote`a .V ar [X ] = .V ar [Y ] 6 i xi 6 41002 :oke E [Y ] = 2 i yi ,E [X ] = 2p i xi -y 41002 4 :( = 100 2 xear) h Pr

jX E X j; jY E Y j 6 [

]

[

]

2

(

n

=

1) 2

i

>

1

4



3 10

4

Berge, P.O (1937), A note on a form of Tchebyche's theorem for two variables. Biometrika 29:405-4061

1

2 1





1 1 4103 4 -y o`kn lawzny jxr miiw okle ,mikxr 2 -n zegt milawn minekq 2  4 0 > 1-n xzei i"r P P 0 0 0 0 0 xexa .J = J K -e I = I K ,K = I \ J xicbp . 2 0 v = 2 0 v -y jk I 6= J  [n] zeniiw xnelk .minekq 3 4 10

n

n

i

j

0 did ynn miiaeig mixehwe ly mekq zxg`] I; J 6= ; ,I \ J = ; ik X X X X X X v = v v = v v = v i

I

j

J

:oke [

2

i

i

i

20

I

i

2

I

i

i

K

j

20

j

J

j

2

j

K

j

2

j

J

(zeillk zexrd) 4 dl`y

A (A)-a onqp .A ly A zecenrdn zakxeny dvixhnd z` A

log2  liaya lg  onqp

.

A -a

onqp

A  [n] dveawe k  n xcqn A dvixhn xear A ly zecenrd mekq z` (A) heyt e`)

:zelewy ze`ad zeprhd ik orhp .

A

jF \ Aj =6 jF \ B j zniiwnd F 2 F zniiw ,A 6= B  [n] lkly jk k lceba F  2[ ] zniiw  .(A) = 6 (B ) ,A =6 B  [n] lkly jk 0=1 ly k  n xcqn A dvixhn zniiw (*)   (A) = ik ze`xl lw .A = 6 B  [n] dpiidz .jtidle ,j 2 F m"m` A = 1 xicbp F = fF1 ; : : : ; F g xear ,ok`e .ipyd geqipd xear dl`yd z` ,ok m` ,xeztp .jF \ Aj = jF \ B j ,i lkl m"m` (A) = (B ) okle .jF \ Aj n

.

i

i

ij

i

k

i

i

` 4 dl`y

k) k  n xcqn (1=2 zexazqdae z"a ote`a 0 zeidl xgap da xai` lk xnelk) zixwn 0=1 zvixhn A idz X P = 1 m`y xexa ."(A) = (B )" :rxe`nd ly X xehwicpi` dpzyn xicbp A; B  [n] bef lkl .(jynda 0 0 .E [X ] := \ =; E [X ] lr dler dpi` miiwzn `l (*)-y zexazqddy o`kn .X 0 0 = 1-y jk zexf A ; B mb zeni rawii

-iw f`

A;B

A

A;B

A ;B

A;B

B

2

E [X

A;B

fp;qg X

min

] = 42

p

q

  

q `

p `

`=0

:ik xexa

3k 5

q = jB j-e p = jAj xy`k

:okle .

E [X ] =

2

n! 42 p ! q !( n p q)! 16 + 6 X

p

q

fp;qg X

min p

q

  

`=0

n

q `

p `

3k

X

=

5





n! 2 p!q!(n p q)!

p

q

:lawpe

n!

 k



1

 

 k+1

p+q p

k

t = p + q onqp

t n 2 2 st = s t ( n t )! s !( t s )! =0 =0 =1 =1 :f`e . = (n) = 2 + 1= lg lg n = 2 + o(1) xy`k k = lg3

X n

E [X ] =

X t

X n

t

s

t

X t

tk

s

t

n

2

4n 2k

A(n) 6



n

lg n 2



n lg2 n n

:ixdy

n

2 lg2 n 2

lg nn

6 n 2e lg2 n

 n2

lg n

2

E [X ] 6

P lgn2 n

A(n) =

lg nn

t



s

t=3

6

t

 



2

4n 2k

= o(1) 

2 (t + 1) ( 1) 2 = o(1)  2 + n lg2 n lg(2 lg ) = o(1)

b 2c t=

= o(1) ixdy

xgap

n

t

k

=

t

lg nn +lg n

=2

:o`kn

 

lg nn +2 lg(2n)

=2

n

e



n

t :miiw t > 3 lkl ik reci 6 p2+1 t

4n2 + X n 2 (t + 1) 2 + 6 4n2 + X n 2 6 k+1 2 t 2 t 2 (t + 1) (t + 1) k 2 1 =3 =3 n

tk

t

t

tk

k

k

t

2 6 42n +

n 2n   lg X n

k

= 2

n

t=3

k 1 (2 lg lg n

2



lg2 n 2 + t n t

lg n)+n lg 3

t

k 1

2

t=

+ o(1) 6 2 .yexck

n X

k

 

n

lg2 n

lg lg n+



lg2 n n 2 6 n t t

21 lg n

( 2 1)

n lg

3

 k21

=2

3 + o(1) = n

n lg 3 lg lg n +o( lg nlg n )

= o(1)

A dvixhn zniiw ziaeig zexazqda (lecb witqn n xear) okle 2

a 4 dl`y .z"ae cig` ote`a

i

i

1 2

okl . -e

i

Pr xen`dn ."si

2 f0; 1g xgap

1 ; : : : ; n

:= E [v ] = 12 s

si

= ([n])

vi

 n xcqn zizexixy dvixhn A idz = (A)-e A = fj j  = 1g xicbp

k

onqpe ,yexck

ik xexa .v

j

Cherno itl ,o`kn . 2 := V ar[v ] = 41 s -e

:



h vi

.s

mixhnxt mr zinepia bltzn

p

si

2 >

> pn log n mbe v

si



i

log s 6 2 exp

2s log s i

i



2 >

si

i



 i

6 2 exp ( 2 log s ) = 2s i

si

ps log s " (*) :rxe`nl xehwicpi` dpzyn zeidl X i

i

i

i

i

i

i

2

1 6 i 6 k lkl

xicbp

:lirl

2 (n log n) 1 = 2k(n log n) 1 6 log2 n = o(1) `l yi zeveawd xzi xear .(*) i`pzd z` miiwnd aikx likn (A) oxear A  [n] zeveaw o(2 )-n xzei `l yi okl p p :o`kn ,2 6 (2 n log n) + o(2 ) :dl`yd ii`pz z` zniiwn A-e li`ed .aikx lkl mipey mikxr 2 n log n-n xzei n(1 o(1)) k> > (2 o(1)) lg n(1 n+ o(1)) = (2 o(1)) lgnn lg +lg lg 1+ 2 [ ] := E

EX

hX

Xi

i

=

X

X

[ ]6

E Xi

n

k

n

n

n

n

5 dl`y   X

:mihpnen xtqn aygp .

E X2

[ ] =

2 3 X E4 xi xj i j 5

=

i;j



E X

4

X

=

X

[

xi xj E i j

]=

X

i;j

[

xi1 xi2 xi3 xi4 E i1 i2 i3 i4

]=

[

X

] =

x4i

i

:z` aygp .E

[X 2 + Y 2 ] = 1 hxtae ,Y [

xi1 xi2 yi3 yi4 E i1 i2 i3 i4

]=

i1 ;i2 ;i3 ;i4

X

=

Pn

=1  a = i

i

Pn

=1 

i

i

i

xi yi

onqp

x2i

i

X

i1 ;i2 ;i3 ;i4

E X 2Y 2

Y

 

 

+ 42

X

x2i x2j

i
ly mihpnend z` milawn dnec ote`a

x2i yi2

+4

X

xi yi xj yj

i
i;j

:ik al miyp



E2 X 2



+Y2 =

X

x2i

+

X

yi2

2

=

X

x4i

+2

X

x2i x2j

+2

X

x2i yj2

yi2 yj2

+

X

yi4

i
i;j

i
+2

X

:okle



V ar X 2

+Y2



h

i 2 2



i

i

j

i

i
Cauchy

Bunyakovsky



= E X2 + Y E2 X 2 + Y 2 = X X  x2 x2 + 2x y x y + y 2 y 2 = 4 = 4 ha ; a i2 6

6 4

X

ka k2 k a k2 6 i

j

j



j

i

i

j

j

i
   2 2 X ka k2 6 2 2 10 10 i

i

i
.)-: xzei e` zegt dfd libxzd lr cibdl il yiy dn lk dfe

6 dl`y sxb-zz

H

= G[S ]-e dl`yak micewcw ly klceba dveaw S idz .G ly Haj o s xtqn z` k-e miznv v lr sxb G idi 2 1 zegtl H -a okle ,e 6 1 2 ,T uran htyn itl if` K +1 * G m` .zezyw e lra S lr yxtpd    2  k(k 1) 1 k k k 1 m 2 =2 m 1 2 k

m

m

3

S

:o`kn . -a `ly miznvd cg`a zegtl ynzyny lelqn i"r mixaegn dxqg zyw ly zeevwd ipy .zexqg zezyw

v>

k 2

k

m



+1

>

k2 2m

Km+1 likn `ly miznv 2m=2plr sxb miiw m lkl xnelk - r(m + 1; m + 1) > 2m=2 ,m > 2 lkl ,Erdos htyn itl  > 2m=2 2m ! 1 :milawn .(G) > 2m=2 :ok enk .k2 < 2m2m=2 :l"pd q"r .K ,m = 8 xear hxta , m+1 likn `le k m+1 (m+1)2m=4 . > 3k

4

Probabilistic Methods in Combinatorics: Homework Assignment Number 3 Noga Alon

Solutions will be collected in class on Wednesday, May 6, 2009. 1. Let G = (V, E) be a graph with maximum degree d and let V = V1 ∪ V2 . . . ∪ Vs be a partition of V into s pairwise disjoint sets. Suppose, further, that |Vi | ≥ 2ed for all i. Prove that there is an independent set of G containing precisely one vertex from each Vi . 2. Let G = (V, E) be a simple graph and suppose each v ∈ V is associated with a set S(v) of colors of size at least 10d, where d ≥ 1. Suppose, in addition, that for each v ∈ V and c ∈ S(v) there are at most d neighbors u of v such that c lies in S(u). Prove that there is a proper coloring of G assigning to each vertex v a color from its class S(v). 3. A simple path of an even length P = v1 v2 · · · v2k in a graph G = (V, E) with a vertex coloring f : V 7→ [r] = {1, 2, . . . , r} is periodic if f (vj ) = f (vk+j ) for all j, 1 ≤ j ≤ k. Prove that there is a finite r so that every graph G with maximum degree 3 admits a vertex coloring with r colors in which no simple path (of any even length) is periodic. 4. Prove that there is a positive constant c so that every d-regular graph, where d ≥ 2, contains a spanning subgraph in which every connected component is a star with at least c logd d leaves. 5. Show that the probability that in the random graph G(2k, 1/2) the maximum degree is at most k − 1 is at least 1/4k . 6. Let G be a graph and let P denote the probability that a random subgraph of G obtained by picking each edge of G with probability 1/2, independently, is connected (and spanning). Let Q denote the probability that in a random 2-coloring of G, where each edge is chosen, randomly and independently, to be either red or blue, the red graph and the blue graph are both connected (and spanning). Is Q ≤ P 2 ? (Prove, or supply a counter-example).

3 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 i`na 6

1 dl`y

10 [    [ V 0 lr yxtpd sxb xear gikepe k lcebn V 0  V xgap zxg` ,jV j = k ea sxb xear gikepe k = d2ede onqp .(v1 ; : : : ; v ) 2 V1      V miznv zxcq cig`e ixwn ote`a xgap .[ixewnd sxba mb z"a ,ycgd sxba z"a dveaw]

V

s

ea ,sxb

i

i

i

H = (A E ) idi ." 2 ( [ ])" :rxe`nd zeidl xicbp 2 zyw xear . = f j 1 6 6 g onqp 0 g 2 E -e A = f g H ik xexa . dveaw dze`a cg` dvw zegtl 0 -e -l m"m` f 2 2 .zraep dprhd zilweld dnldn .  2 6 1 :o`kne .Pr[ ] 6 ik ze`xl lw .(H) 2 ( ) 6 2 s

s

;

f

E G U

miiwe zeielz sxb `ed

Af

f

E

Vi

U

f

ek

kd

Af

f

vi

i

s

Af

Af ; Af

k

<

k

G

kd

2 dl`y

10 lcebn 0( )  ( ) xgap zxg` ,j ( )j = 10 xear gikep :rxe`nd zeidl xicbp 2 ( ) \ ( ) rave ( ) = 2 zyw xear . ( ) 2 ( ) rav z"ae cig` ixwn 0 0 j 2 0 0 2 ( )g onqp . -e ly mrava wx ielz ( ) ik xexa ." ( ) = ( ) = " f`e , ( ) = f ( ) :miiw . ( ) [ ( )-a wx ielz

ote`a v znev lkl xgap .el` zeveaw xear gikepe Af;c

A u;v ;c

c

N w

S u

w

Af ;c

d

S v

f ;c

S

u; v

S w

v

f

v

S v

S v

E

c v

u

d

S v

A u;v ;c

c u

N u

e

 Pr [

Af;c

c v

c

N v

]  (j ( ) [ ( )j + 1) 6  (10 ) 2  (2  10  + 1) 3 1 N u

N v

e

d

d

d

<

e

<

.zilweld dnldn zraep dprhde

3 dl`y

= 18 16 miravdn cg`a z"ae ixwn ote`a znev lk ravp .zeielz sxb H ik xexa . \ 6= ; m"m` f g 2 E -e A = f g ea ,sxb H = (A E ) idi ."[dxgapy driavd itl] S ( ) mb onqp ;H-a ly oky y jk 2 jxe`n milelqnd lk z` ( )-a onqp 2 lra lelqn . ( ) = . ( ) 6 4 9 =:  miiw j j = 2 lkl okle .miznv 2 ilra milelqn 4 32 -n xzei `l mr znev wleg miznv :oeieey-i`l al miyp .1 > exp ( 2 ) :miiw . = xicbp 2 jxe`a lelqn xear f`e = 18 xicbp lkl P Y Y Y Y Y (1 ) = 2  = (1 )j ( )j > (1 ) = (1 ) = 1

ixefgn P " :rxe`nd zeidl AP xicbp P lelqn lkl . ; : : : ; r P

i

N P

Nj P

ij

j

Q

j

Nj P

Q

2 ( )

xQ

j

N P

= 18

i

e

Q

8

xP

N

Q

18

aj

ai

P

ij

9 > j

h

18 8 e

P

j

i

ai

Nj P

ij

aj

ai

i

aj

ai e

ij

j

j

P

j

i

Nj P

j

ij

ai

xQ

2 j( ) P

j

j

ai

xP

;

AQ

i

ai

xP

AP

AP

P

ij

e

AP ; AQ

2

j

i

i



> 18

16 

i

e

=

r

i

= Pr[ ] AP

.zraep dprhd (illkd gqepd) zilweld dnldn okle

4 dl`y ote`a da xag zeidl xgap znev lky jk miznv ly zixwn dveaw (ixlebx d-d sxbd `ed G xy`k) V e` Xv

= 0" :rxe`nd

Av

0 -e V -a v

ly mipkyd xtqn Xv eidi v

2

V

znev lkl .p

( ) \ ( ) = ; xy`k z"a

mr v xear miiwzn `l oexg`d oeieeyde li`ed .N u

N v

= (2 + 2ln )

d =d

Av -e Au

(

Pr [ ] 6 (1 ) + Pr( 3 ) 6 (1 ) + ( 2 27)2+2 ln 6 + .0 6 6 + 6 ln =: -y jk 0 dveaw zniiw zilweld dnld itl okle p

< Xv

d

X >

d

pd

k

p

V

1

d

e =

d

e

pd

zexazqdae z"a

3 1) 2 xzeid lkl 1 2 Pr[ ] 2 1 :miiw

zerxe`nd ik xexa ."Xv >

.u miznv d d Av

0  V [G] idz

e

pd

< d

<

e

=ed

Av d

<

pd

v

m"m`

f(

g2

v; i); u

=

E -e X

f(

v; i)

j 2 v

xzeid lkl `id Y -a znev lk ly dbxcde d milrd zveaw z` xicbp ,v

2

V

0

0

V ; 0 < i < d=k

g,

Y

=

V

lkl .X z` deexny H -a f : X

!

Y

ik xexa .S

S

.onwck H = (X

[

Y; E)

v"ec sxb xicbp

zegtd lkl `id X -a znev lk ly dbxcd ik al miyp .G-a u ly oky

k

j vj =

0

V

d k

d

1=

1

6 + 6 ln d

beeif miiw ,H all q"r okl .

d k

1



k

=

d

k

v = ff (v; i) j 0 < i < d=kg :ezail v -y akeka

> 7 ln d

d

.izexixy ote`a miniiw miakekl xagp Y -a mixzepd miznvd z` .H all q"r mikzgp mpi` miakekd

5 dl`y ik xexa .d

i6k

1 dpekzd zeidl

Mi ] = 21

Pr[

.Pr

hT

2k i=1

i

k Pr [M ] > 2 Mi > Q2i=1 i

2k = 4

Mi xicbp ,1 6 6 2 i

2k

kX1 2k i=0

k

1 i

 =

k

znev lkl .1; : : : ; 2k :miznvd z` onqp

1 2

:K leitman itl .(zecxei) zeipehepen

Mi zepekzdy al miyp 6 dl`y

(V [G]; N mb ik xexa

E)

m"m` E

2 C -e (yxete) xiyw ( [ ] ) m"m` 2 A-y jk A C  2N dpiidz . = [ ] idz .ok jAj = 2jN j -y oezp .zcxei zipehepen C -e dler zipehepen A ik xexa .(yxete) xiyw jN j . 6 2 okle 22jN j = 2jN j jA \ Cj 6 jAjjCj = 22jN j 2 : itl .jCj = 2 V G ;E

jN j Q-e .jA \ Cj = 2

E

;

N

E G

P

Q

P

Q

P

2

K leitman

P

Probabilistic Methods in Combinatorics: Homework Assignment Number 4 Noga Alon

Solutions will be collected in class on Wednesday, June 3, 2009. 1. Let G1 , G2 , . . . , Gm be m graphs on the same set of vertices [n] = {1, 2, . . . , n}, and suppose that the chromatic number of each graph Gi is exactly k. Show that there is a partition of the set of vertices [n] into two disjoint sets A1 , A2 so that for every i, 1 ≤ i ≤ m, and for every j, 1 ≤ j ≤ 2, √ p the chromatic number of the induced subgraph of Gi on Aj is at least k/2 − 2 ln(2m) k. Hint: use an appropriate martingale to show that this holds with positive probability for a random partition. 2. Prove that there exists a positive constant δ > 0 and an integer n0 = n0 (δ) so that for all n > n0 and every collection S1 , S2 , . . . , Sm , where m ≤ 2δn , of subsets of [2n] = {1, 2, . . . , 2n}, satisfying |Si | = n for all i, there is a function f : [2n] 7→ [n] = {1, 2, . . . , n} so that for every i, 1 ≤ i ≤ m, 0.63n ≤ |f (Si )| ≤ 0.64n. Hint: 0.63 < 1 −

1 e

< 0.64.

3. Show that for any ǫ > 0 there is a C = C(ǫ) such that every set S of at least ǫ3n vectors in Z3n contains three vectors so that the Hamming distance between any pair of them is at least √ n − C n. Hint: use an appropriate martingale to show that more than 2/3 of the vectors are within √ distance C n/2 of S. 4. Using Janson’s Inequality, find a threshold function for the property: G(n, p) contains at least n/10 pairwise vertex disjoint copies of K5 . 5. (i) Is it true that for every ǫ > 0 there is a finite constant C = C(ǫ) such that every set X of n points in the plane contains a subset Y of size at most C with the following property: any convex set K which is the intersection of 10 half-planes and contains at least ǫn points of X, contains at least one point of Y ? Prove, or give a counterexample. (ii) Is it true that for every ǫ > 0 there is a finite constant C = C(ǫ) such that every set X of n points in the plane contains a subset Y of size at most C with the following property: any convex set K which contains at least ǫn points of X, contains at least one point of Y ? Prove, or give a counterexample.

4 libxz - dwixehpianewa zeizexazqd zehiy 317610087 l`kin bxaxtiw 2009 i`na 22

1 dl`y S

`id

mb ik xexa .(dcig` zebltzdae z"a ote`a da xag zeidl xgap xai` lky) zixwn dveaw-zz miiw

E [(Gi [S ])] = E [(Gi [S ])]

(Gi [S ]) + (Gi [S ]) > (Gi ) = k-e

oke

S

 [n] idz

li`ed .zixwn dveaw-zz

 = E [(Gi [S ])] > k=2 xear

fv j ci (v) 6 j g onqp .fgg zeivwpet zveawe Gi [S ] mitxbd oia zedfl ozip .Gi zriav ci : [n] ! [k] idz :Azuma q"r okle Lipschitz i`pz z` zniiwn L ik ze`xl lw .L = -e 0 6 j 6 k h h p p pi pi ln(2m) 2 ln(2m) k 6 Pr  (Gi [S ]) <  2 ln(2m) k < e = 1= 2 m Pr  (Gi [S ]) < k=2

Bj

=

6 i 6 m xear Gi [S ]; Gi [S ] mitxbdn cg` zegtly zexazqdd o`kn

okle ,1-n (ynn) dphw yexcd z` miiwi `l 1

.A2 =

S -e A1

=

S

xicbdl xzep .yexck

S

zniiw

2 dl`y

 4 6 0:64-y jk xgap 0 6 j 6 2n xear Bj = [j ] onqp .Si -a opeazp .zeivwpet n jezn ixwn ote`a f : [2n] ! [n] divwpet xgap    1 n okle Lipschitz i`pz z` zniiwn Li ik ze`xl lw .i = E [jf (Si )j] = n 1 1 ik xexa .Li (f ) = jf (Si )j-e n .jynda xgai

n0 .e

2

= 2 -y jk



xicbpe 0:63

61

1=e

2n

h Pr oekp ipyd oeieey-i`d)

0:63

jLi (f )

61

1=e

i j 6

jLi (f )

i j >

6

p

p

2 4n ln(4e n )

4 = lim

i n

p

p

4

.n0 = maxi

2 ln(4m)

2n

2 4n ln(e4 n )

i

:Azuma q"r

< 1=m

6 4 n :1 6 i 6 m lkly jk f zniiwy o`kn zrk .(milecb witqn mi-n xear

6 lim Lin(f ) 6 lim ni + 4 = 1

1=e + 4

6 0:64

fn0i g xicbp .0:63 6 Li (f ) 6 0:64 ,n > n0i lkly jk n0i miiw xnelk 3 dl`y

S -a

xehweel

g -n

:mipeieey-i`d

Hamming wgxn `ed L(g ) ,Zn3 -a xehwe zbviin g miniiw Azuma q"r okle Lipschitz i`pz z` zniiwn L ik

:

ixrfn

Pr



p



L(g ) >  +  n < e

2 =2

Pr



L(g ) < 

B

! A ,B = [n] ,A = [3] xicbp 6 i 6 n xear Bi = [i]-e

ze`xl lw .0

p



 n
2 =2

:ipnid oeieey-i`dn zxg`

h

 = Pr [L(g ) = 0] 6 Pr L(g ) <  C

 =2

p

2 ln  +

p

 2 ln 3

p

p

p

p

2 ln 

i

6

p

pn ik orhp

2 ln 

n <

pni < 1=3 :il`nyd oeieey-i`dn f`e .dxizqa pnC=2 mixehweedn 2=3 ik lawpe 0 .S -a mixehwe ly ef dveaw onqp .S -l miaexw h

onqp .Pr

L(g ) >



2 ln  +

1



2 ln 3

wegx

n-y

mixehweed lr xearp exqei okl .dl`k

z0

2 S -e y-l y0

.n

C

pnC=2-y dyly zniiw ik orhp .S -l daexw

2n yi Zn3 -a mixehweed 3n -n cg` lkl n n .dl`k zeyly 3 2 yiy o`kn .mdn cg` lkn

(weica) cg` xehwe yi dfk bef lkle mdn miwegx-n-y mixehwe

3  2n -n xzei `l yi u lkly xexa .u z` zelikny zeyly oze` lk z` xiqp ,u xehwe lkle Zn3 S 0 -a 2 S ,x-l xzeia aexw x0 2 S idi .(x; y; z ) zg` dyly zegtl x`yize ,3n 1  3  2n -n (ynn) zegt :(y -e x oia Hamming wgxn `ed (x; y )) miiw .z -l p n = (x; y ) 6 (x; x0 ) + (x0 ; y 0 ) + (y 0 ; y ) 6 C n + (x0 ; y 0 )

pn-n ohw `l z 0 -e y0 oiae z 0 -e x0 oia wgxnd dnec ote`a .n

C

pn-n ohw `l y0 -e x0 oia wgxnd ik eplaiw .miyexcd mixehweed md

x0 ; y 0 ; z 0

4 dl`y .dievxd dpekzd xear sq ziivwpet `id

5

:okl `id mi-K -d xtqn zlgez

( )=n

t n

2=5 ik orhp

(5) `id G[S ] ' K5 zniiwn 5 lceba S dveawy zexazqdd f` p  n

p 2

  n

5

o(n) n=10

2=5 m`

(5) 6 n5p10 = o(n)

p 2

= o(1) lr dler dpi` mi-K5 n=10 zegtl yiy zexazqdd ,M arkov q"r o`kn 2=5 ln n ik (dler zipehepen dpekzd ixdy) k"da gipp f` p  n 2=5 m` .n=2 lceba miznv zveawa opeazp .p 6 n f`e "G[S ] ' K5 " :rxe`nd zeidl BS z` xicbp ef dveawa miznv dying za S dveaw lkl     X n=2 10 n=2 (5) 2  = Pr[BS ] = 5 p = 5 p S V;jS j=5  4    X n=2 X 5 (n=2 i) p2(52) (2) Pr [BS ^ BS0 ] = 5  = i S S 0 i=2 V  :lr dler epi` K5 z` zelikn opi`y n=2 lceba zeveawd xtqn okl .Pr B S < e +=2 :J anson q"r .yexck ,

i



n n=



2

e +=2 < :okle

lim (n



+ =2) = lim



en n=

2

n6 p14

n

n=2

=O

e +=2 < en +=2



n n6 ln n 5:6



= o (n) ik al miyp .zniiw dti`yd ik d`xp   Cn5 p10 + C 0 n6 p14 6 lim C 00 n Cn5 p10 14

p>n

:mialwne

lim (n dveaw

V1



+ =2) 6 lim



C 00 n

!0

Cn5

1 + C 00 n C

4



  2=5 1+C 00 1=10 hxtae p  n 2=5 la`

C

= lim((C 00 1

) )= 1

C 00 n

 V (G) iaihwecpi` ote`a zeveaw ly dxcq xicbp .K5 z` dlikn n=2 lceba dveaw lk hrnk ,xnelk G[S2 ] ' K5 -y jk S2  V2 -e V2  V (G) V1 .G[S1 ] ' K5 -y jk S1  V1 -e n=2 lceba idylk .yexck ,k > n=10 ,jSi j = 5-e li`ed .jV (G) S1 [    [ Sk j > n=2

cer lk d`ld jke

` 5 dl`y mixeyin-ivgd lk ly

V C -d

cnin ik dcaera aygzdae ,Spencer -e

Alon

ly mxtq jezn 14.4.3 dpwqn itl .oekp

10 ly jezig opidy (zexenwd) zeveawd lk ly V C -d cnin ik lawp ,3 `ed xeyina zecewp lrn ( ) divwpet zniiw ,14.4.5 htynn okl .iteq hxtae ,2  3  10  log(3  10) lr dler epi` xeyina zecewp

lrn mixeyin-ivg

X

lky jk

C 

jY j 6 C mr Y

.

zyx- dlikn

a 5 dl`y ipt lr zecewp

n

> 2C ly dveaw zeidl X z` xgap

.edylk

C

.X -n zecewp

jX

Y

j>n

C

= C ()-e  = 1=2 idi .oky dlilya gipp .oekp `l

idi .jY j 6 C -y calae idylk Y  X idz .lbrn > n=2 = n likne Y -n dcewp s` likn `l K ,ok enk .xenw K ik xexa .X Y -n

zecewpd md eicewcwy (eil` zkiiy dneqgd d`tdy jk) rlevn

2

K

Probabilistic Methods in Combinatorics: Homework ...

eravi miznvd x`y . xeciqd itl zyw idyefi`a oey`xd znevd `ed v m` legka ravi v .... xen`dn ."si > p nlogn mbe vi si. 2. > p si logsi" (*) :rxe`nl xehwicpi` dpzyn zeidl Xi ...

369KB Sizes 1 Downloads 235 Views

Recommend Documents

Implementing eigenvector methods/probabilistic neural ...
conducted with the purpose of answering the question of whether the expert ... machine (SVM) with the error correcting output codes (ECOC) for classification of ...

HOMEWORK
Homework​​is one​​of​​the​​options​​parents/legal​​guardians​​have​​to​​support​​their​​child's learning.

PDF Download Matrices in Combinatorics and Graph Theory (Network ...
PDF Download Matrices in Combinatorics and. Graph Theory (Network Theory and Applications). Full eBook. Books detail. Title : PDF Download Matrices in ...