Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 UNIT–1 1. a) What is periodic function, gave an example of periodic function. 2 Solution: A function f (x) is said to be periodic if there exist a least positive integer T such that Suppose f ( x )  f ( x  T )  f ( x  2T )  ......  f ( x  nT ) , n  I Where T is called period of f (x). Example: sin x, cos x of period 2 while period of tan x is  b) What are the Dirichlet’s conditions for a Fourier series expansion? 2 Solution: Suppose f (x) is any finite function defined in (–L, L), then the Fourier series of f (x) is exists only if the following conditions are satisfied: (i). f (x) is periodic i.e. f (x) = f (x + 2L), where 2L is the period of f (x) (ii). f (x) and its integral are finite and single valued. (iii). f (x) has a finite number of discontinuities. (iv). f (x) has a finite number of maxima and minima. These conditions are known as Dirichlet’s conditions. c)

2 Find the Fourier transform of e a x , where a > 0

Solution:

3

2 Given the function: F ( x)  e  x

The Fourier transform of a function F(x) is given by f ( p) 



f ( p) 

1



1



F ( x) e 2 

2 

e

 x2

ipx

e

ipx

dx

1

2 

dx 





f ( p) 

1 2







e



 x 2 ipx

 dx



 p2 p2     x 2  ipx    4 4   e dx



2



1 2





ip  p2   x    2 4 e  dx



[Add and subtract p2/4] 

 Putting

f ( p)  e x

p2 4

1 2





ip    x   2 e 

2

dx



ip  t , so that dx  dt 2

Page 1

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 



f ( p)  e 



f ( p)  e

p2 4

p2 4

1

  2 

 

F e x

Thus



2

1

2

2

e t dt



2

e

2 

e

p2 4



1



1





p2 4

 since 





  

2

e t dt 



 f ( p)

By change of scale property, we have

 

F e

 a x2

    F e 

 

F e a x

Thus

d)

2



2

 p  f   a  a





1

e

2a

 1  p   F  F (ax)  a f  a     

  

1





ax

 1 1  1  4  e  a 2 

p   a

2

     

1 2a

p2 4a



e

p2 4a

Answer

Expand f (x) = x sin x, 0 < x < 2 in a Fourier series.

7

Solution: Here, 2L = 2 – 0 i.e. L =  Suppose the Fourier series of f (x) with period 2L is,   a0  n x   n x  f ( x)    an cos     bn sin   2 n 1  L  n 1  L 



f ( x) 

  a0   an cos nx   bn sin nx 2 n 1 n 1

Now, a0 

1 

0

an 

1 

0

and

2

2

f ( x) dx 

1 

2

0

f ( x) cos nx dx 

x sin x dx  1 

2

0

---- (1)

[Since L = ]

1  x ( cos x)  1( sin x) 02   2 

x sin x cos nx dx

Page 2

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 1 2



1 0 x  2 cos nx sin x  dx  2 0 x sin (n  1) x  sin (n  1) x dx 2

2

…. (2) 2

  cos(n  1) x cos( n  1) x   sin( n  1) x sin( n  1) x     x    1   2 n  1 n  1   ( n  1) (n  1)2  0   

1  2 

2

an 

; n 1

2

n 1

For n = 1, from equation (2), we get

1 a1  2 and bn  

1 

2

0

2

f ( x) sin nx dx 

0

1 2

2

0

2

  cos 2 x   sin 2 x   1  x   2   1  4     2    0  

1 x sin 2 x dx  2 1 

2

0

x  2 sin nx sin x  dx 

x sin x sin nx dx 1 2

2

0 x  cos(n  1) x  cos(n  1) x dx

…. (3) 2

1   sin(n  1) x sin( n  1) x   cos( n  1) x cos( n  1) x     x    1   2   n  1 n  1   (n  1) 2 (n  1)2  0  bn  0; n  1 For n = 1, from equation (3), we get

2

1 b1  2 

2

0

1 x 1  cos 2 x  dx  2

  sin 2 x   x 2 cos 2 x   x x     1  2   2 4     0

b1  

From equation (1), we have   a0 f ( x)   a1 cos x   an cos nx  b1 sin x   bn sin nx 2 n2 n2



 1 2 x sin x   1  cos x   2 cos nx   sin x 2 n  2 n 1

Answer

Or

Page 3

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 d)

Express f (x) = x as a (i). Half range cosine series in 0 < x < 2 (ii). Half range sine series in 0 < x < 2 Solution: (i). Suppose the half range cosine series is, f ( x) 

 a0  n x    an cos   2 n 1  2 

7

…. (1)

2

 x2  2 2 2 Now, a0   f ( x) dx   x dx     2 0 2 0  2  0

and

an 

2 2 2  n x   n x  f ( x ) cos dx  x cos     dx   0 0 2  2   2 

2   4 (1)n     2 4 4   n x     n x      x  sin     1  2 2 cos       0  2 2    0  2 2    2   n   2    0   n    n     n



an 

4

 (1) n  1  n  2 2

Putting in equation (1) we get

 (1)n  1  cos  n x  f ( x)  1  2     2  2   n 1 n 4

(ii).



Answer

suppose the half range sine series is, 

f ( x) 

n 1

Now, bn 

 n x   2 

 bn sin 

…. (2)

2 2 2  n x   n x  f ( x) sin  dx   x sin    dx  0 2 0  2   2 

2    4 (1)n    2 4  n x     n x      x  cos   1  sin    0  0  0              n  2    n 2 2  2    0      n 



bn  

4 n

Putting in equation (2), we get

Page 4

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 f ( x)  

4  (1) n  n x  sin     n 1 n  2 

Answer UNIT–2

2. a)

L 2sin t cos t  L sin 2t 

2

2

2

p 4

b) Write the Linearity property of Laplace Transform Solution: If a and b are any constants and F (t) and G(t) be any two function of t, then

L a F (t )  b G (t )  a L F (t )  b L G(t )

2

or L a F (t )  b G (t )  a f ( p)  b g ( p)

c) Find the Laplace Transform of f (t),

3

2, 0  t  2  f (t )  t  1, 2  t  3 7, t  3  Solution: By definition of Laplace transform, 

L  f (t )  

0

f (t ) e  pt dt

2

3



0

2

3



  2 e  pt dt   (t  1) e pt dt   0. e pt dt



 e  pt    e  pt  2  ( t  1)      p  0   p





2

L  f (t )  

d)

  e  pt   1 2   p

3

    0   2

  2 2 2 p e3 p   1 e 2 p  e  1     e 3 p  2    e2 p  2  p p   p p    p





e 2 p 2 e 2 p 2e 3 p e 3 p     p p p p2 p2

Answer

 6 s 2  22s  16  Evaluate: L  3  2  s  6 s  11s  6 

Solution:

1 

Suppose

6s 2  22 s  16

s 3  6s 2  11s  6 Where A, B and C determine by

7



6s 2  22 s  16 A B C    ( s  1)( s  2)( s  3) s  1 s  2 s  3

…. (1)

Page 5

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006  6 s 2  22s  16  6  22  16 A  0  (1)(2)  ( s  2)(s  3)  s  1  6 s 2  22s  16  24  44  16 B  4  (1)(1)  ( s  1)( s  3)  s  2 and

 6 s 2  22 s  16  54  66  16 C  2  ( s  1)( s  2) (  2)(  1)   s  3

Putting in equation (1) and taking Inverse Laplace Transform, we get  6 s 2  22s  16  1  1  1  1  L  3 4L    2L   2 s  2  s  3  s  6 s  11s  6  1 

 6 s 2  22s  16   2t 3t L1  3   4e  2e 2  s  6 s  11s  6 



Answer

Or d)

  s Using Convolution theorem, Evaluate L1  2 2 2  ( s  a ) 

Solution:

Suppose f ( s ) 

s 2

and g ( s ) 

1

s a s  a2 s    L1  f ( s )  L1  2   cos at  F (t )  s  a2  sin at  1  And L1  g (s )  L1  2   G (t )  a  s  a2  By Convolution theorem of Inverse Laplace transform, we have

L1  f ( s ) g ( s ) 

2

2

t

0 F ( x) G(t  x) dx





  L   2  s2  a2   

0





1 2a

1 

s





t

cos ax.

t

sin[a (t  x)] 1 dx  a 2a

0 sin  ax  at  ax 

t

0 2 cos ax.sin (at  ax) dx

 sin [ ax  ( at  ax )] dx



2 cos A sin B  sin( A  B)  sin( A  B)

Page 6

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 1 2a

t

0

sin at  sin  2ax  at  dx 

t 1  sin at 1 dx  0 2a 







cos  2ax  at   1    x sin at   2a  2a 0





1  cos at   cos at  t sin at    0    2a   2a   2a 





1 t sin at 2a



t



0 sin  2ax  at  dx 

t





Thus

  t sin at L   2 2a  s2  a2    1 

s





UNIT–3 3. a) Explain the ordinary point and singular point of differential equation. Solution: Suppose the second order differential equation is d 2y

dy  P2 ( x) y  0 dx dx Where P0(x), P1(x) and P2(x) be polynomial function of independent variable x. P0 ( x )

(i).

2

 P1 ( x )

2

------ (1)

Ordinary Point: A point x = 0, is said to be an ordinary point of equation (1) if P0(0) 

(ii).

Singular Point: A point x = 0, is said to be an singular point of equation (1) if P0(0) 

 b) Give the complete solution of differential equation when the roots of indicial equations are equal. Solution: When the roots of indicial equation are equal i.e. m1 = m2  y  The Complete solution is y  c1  y m  m  c2   1  m m  m 1

c)

Solve the differential equation

3

Page 7

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 d 2y dx Solution:

2

 2 tan x

dy  5y  e x sec x dx

Given the differential equation is, d 2y 2

 2 tan x

dy  5y  e x sec x dx

dx Here, P = –2 tan x, Q = 5 and R = ex sec x Now this problem solve by Removable of first derivative method. Suppose the complete solution is, y = v y1 Where v is a function of x only. Now we can find the value of y1 such as y1  e

and



1  Pdx 2

e



1  ( 2 tan x ) dx 2

….. (1)

….. (2)

 elog sec x  sec x

1 1 dP 1 1 Q1  Q  P 2   5  (2 tan x ) 2  (2 sec 2 x)  5  tan 2 x  sec2 x  6 4 2 dx 4 2 R1 

R e x sec x   ex y1 sec x

The normal form of Removable of first derivative is, d 2v dx 2



d 2v 2

 Q1v  R1  6v  e x

…. (3)

dx This is LDR of higher order. The A.E. is m2  6  0



m 6i

Therefore C.F .  c1 cos Now, P.I . 

1



ex 



6 x  c2 sin 1

D2  6 12  6 The solution of equation (3) is,

ex 



6x



ex 7

Page 8

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 v  C.F .  P.I .  c1 cos





6 x  c2 sin





6x 

ex 7

Putting in equation (2), which our complete solution

 y  c1 cos  d)

Solve (1  x 2 )

Solution:

d 2y





6 x  c2 sin

 2x



ex   sec x 7 



6x 

Answer

dy  y  0 in series solution. dx

7

dx 2 Given the differential equation is, d 2y

(1  x 2 )

dx 2

 2x

dy y0 dx

….. (1)

Here, P0(x) = 1– x2 Clearly at x = 0, P0(x) = 1– 0 = 1 ≠ 0 Therefore x = 0 is ordinary point. Suppose the complete solution of equation (1) by Power series method is

y = a0  a1x  a2 x 2  a3 x3 + ........ 



ak x k



y=

….. (2) …. .(3)

k 0

Differentiating both sides w.r.t. x, we get

dy = dx













2





ak k (k  1) x k



2

k 0

d 2y dy and in equation (1), we get dx dx 2

ak k (k  1) x k

2

k 0



and

d 2y dx

k 0

Putting the value of y,

(1  x 2 )

ak k x

k 1

ak k (k  1) x k



2 x



ak k x k

1





k 0

2

k 0





 k 0

ak k (k  1) x k  2



ak x k  0

k 0





ak k x k 

k 0





ak x k  0

…. (4)

k 0

0

Equating the coefficient of x on both sides in equation (4), we get 2 (2  1) a2  0  0  a0  0

Page 9

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 a0 2 1 Equating the coefficient of x on both sides in equation (4), we get 3(3  1)a3  0  2a1  a1  0



a2  

a1 2 2 Equating the coefficient of x on both sides in equation (4), we get



a3  

a2 1 a  a    0   0 4 4 2  8 Equating the coefficient of x3 on both sides in equation (4), we get 5 (5  1)a5  3(3  1)a3  6a3  a3  0 a4  



a5  

a3 1  a  a    1   1 20 20  2  40

Putting the values of a2, a3, a4 and a5 in equation (2), we get  a  a   a  a  y  a0  a1x    0  x 2    1  x 3   0  x 4   1  x5  .....  2   2  8   40  

d)

 x2 x4   x3 x5  y  a0 1    .....  a1  x   ..... 2 8 2 40    

Answer

Or Solve by the method of variation of parameter

7

 D 2  1 y  x Solution:

The given differential equation is, d 2y

yx dx 2 Here, P = 0, Q = 1 and R = x The A.E. is

….. (1)

m2  1  0



m i

Therefore C.F. is yc  c1 cos x  c2 sin x

Page 10

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 Suppose

u  cos x and v  sin x



u    sin x and v  cos x

and

w

cos x sin x  cos 2 x  sin 2 x  1  0  sin x cos x

Suppose the complete solution of equation (1) is y  Au  Bv  A  cos x   B  sin x 

….. (2)

Where A and B determine by the formula,

 and 

 v.R  A    dx  c1    x sin x dx  c1    x( cos x)  ( sin x)   c1  w  A  x cos x  sin x  c1  u.R  B    dx  c2   x cos x dx  c2   x(sin x )  1.( cos x )   c2  w  B  x sin x  cos x  c2

Putting the values of A and B in equation (2), we get y   x cos x  sin x  c1  cos x   x sin x  cos x  c2  sin x

y  c1 cos x  c2 sin x  x



Answer

UNIT–4 4. a) Find the Partial differential equation by eliminating a and b from the relation

2

( x  a )2  (y  b) 2  z 2  c

Solution:

Given the equation is, ( x  a )2  (y  b) 2  z 2  c

Partially differentiating w.r.t., x we get z 2 ( x  a)  0  2 z  0 x  x  a  zp

…..(1)

…. (2)

Again equation (1) Partially differentiating w.r.t., y, we get z 0  2 (y  b)  2 z  0 y 

y  b  zq

…. (3)

Putting in equation (1), we get

Page 11

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 z 2  p2  q 2   z 2  c  

b).

Answer

Solve y z p  z x q  x y

Solution:

Given differential equation is y z p  z xq  x y

2 ….. (1)

This is Lagrange PDE. Here P = y z, Q = z x and R = x y The Lagrange A.E. is dx dy dz   yz zx xy Taking first two ratios, we get dx dy   x dx  y dy yz zx Integrate both sides, we get

x 2 y2 x 2  y2   c1   c1 2 2 2 Taking Last two ratios, we get dy dz   y dy  z dz zx xy Integrate both sides, we get

y2 z 2 y2  z 2   c2   c2 2 2 2 The General solution of equation (1), we get  x 2  y2 y2  z 2   , 0 2   2 c)

Answer

2z 2z Solve 2  2  2  e3x  2y x y y x

Solution:

2 z

3

The given Partial differential equation is

2 z x 2

2

2z 2z   e3x  2y x y y 2

….. (1)

Page 12

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 Suppose,

D

From (1), we have

  , D  x y

 D 2  2 DD  D2  z  e3x  2y

The A.E. is, m2  2m  1  0  m   1,  1

The C.F. is,

P.I . 

C.F .  1 (y  x)  x 2 (y  x)

1 D 2  2 DD  D2

e

3 x  2y



1

3 x  2y

(3)2  2(3)(2)  (2)2

e

e3 x  2y  25

The Complete solution is,

z  1 (y  x)  x 2 (y  x) 

d)

e3 x  2y 25

Solve the Charpits method ( p 2  q 2 ) y  q z

Solution:

Answer

7

Given Partial differential equation is, ( p2  q2 ) y  q z

…. (1)



p2 y  q 2 y  q z  0

Suppose

f  p2y  q2 y  q z



f f f f f  0,  p2  q2 ,   q,  2 p y,  2q y  z x y z p q

The Charpits A.E.is dp dq dz dx dy     f f f f f f f f p  q p q   x z y z p q p q 

dp dq dz dx dy     2 2 2 0 pq  p(2 p y)  q (2q y  z ) 2 p y z  2q y p q  q

Taking first two ratios, we get dp dq  pq p2 

p dp   q dq

Page 13

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 Integrate both sides, we get p2  q 2  a 2

…. (2)

where a2 = 2c1

Putting in equation (1), we get

a2 y  q z  q 

a2 y z

Putting in equation (2), we get 2

 a2 y  p2    a2  z    p2 



a 2 z 2  a 4 y2 z

2

 p

a 2 z  a 2 y2 z

dz  p dx  q dy

Since



 z dz  a 2 y dy



2

2 2

a 2 a2 y z  a 2 y2 dx  dy z z

 a dx

z a y

Integrating both sides, we get

z 2  a2 y2  a x  c

Answer Or

d)

Solve

Solution:

u u  2  u by the method of separation of variables, where u  x, 0   6 e3 x x t Given differential equation is, u u  2 u ….. (1) x t

7

With initial condition u  x, 0   6 e3 x Suppose the complete solution is, u ( x, t )  X ( x).T (t )  X . T

…. (2)

Where X is function of x and T is function of t only. Now equation (2), partially differentiate w.r.t. x and t respectively

Page 14

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 u dX u dT  T.  X  T and  X. = X .T  x dx t dt Putting the values in equation (1), we get X  T  2 X .T   X .T  X  T  (2.T   T ) X



X  2.T   T X  2T      1  k (Let) X T X T

X 2T   k ….. (3) and 1  k …. (4) X T Now from (3) and integrate w.r.t. x, we get



X log X  kx  log c1  log    kx c   1 

X ( x)  c1 e kx

And From equation (4), we have

2T  T  k 1 1  k   T T 2 Integrate w.r.t. “t” on both sides, we get

T  k 1  log T   t  log c  log   2 c  2   2 

T (t )  c 2

  k 1   t   2  

 k 1  t e 2 

Putting the values of T(t) and X(x) in equation (2), we get u ( x, t )  c1c 2

 k  1 t k x  2  e e

….. (5)

By initial condition, u  6 e3 x at t = 0 

6 e3 x  c1 c 2 ek x

Equating both sides, we get c1 c 2  6 and k   3 Putting in equation (5), we get

Page 15

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 u ( x, t )  6 e 3 x  2t

Answer

UNIT–5  2  d  5. a) If u  t i  t j  (2t  1)k and v  (2t  3)i  j  t k , find u.v ? at t = 1 2 dt Solution:   Now, u . v  t 2 i  t j  (2t  1)k  . (2t  3)i  j  t k   2t 3  3t 2  t  2t 2  t  2t 3  5t 2  2t     d   u.v  6t 2  10t  2  6  10  2   6 at t = 1 Answer dt

 

 

b)

Find the directional derivative of   x y  y z  z x in the direction of the vector i  2 j  2k at the

point (1, 2, 0). Solution: Given   x y  y z  z x      grad       i  j  k  (x y  y z  z x ) y z   x  (y  z ) i  ( x  z ) j  (y  x)k

Now

 Suppose 

2

grad   2 i  j  3k at (1, 2, 0)  a  i  2 j  2k  i  2 j  2k i  2 j  2k a a     3 1 4  4 a

Directional Derivative =  grad  . a

 i  2 j  2k  1 10 D.D.  2 i  j  3k   (2  2  6)     3 3 3     c) If r  xi  y j  zk , then show that grad r n  n r n  2 r  Solution: Given r  xi  y j  zk







Answer 3

r 2  x2  y2  z 2

Partially differentiate w.r.t., x, y and z respectively, we get

Page 16

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 2r

r r r  2y and 2r  2 z  2 x , 2r x y z

r y r x r z  and  ,  x r y r z r



     grad r n   i  j  k  r n y z   x

Now,   d)

 r   r   r   n r n  1   i  n r n  1   j  n r n  1   k  x   z   y   z  x y grad r n  n r n  1  i  j  k   n r n  2 r Proved r r  r  Verify Stoke’s theorem for F  ( x 2  y 2 ) i  2 x y j taken round the rectangle bounded by

x =  a, y = 0, y = b Solution: Given the function is,  F  ( x 2  y 2 ) i  2 x y j

7

By Stoke’s theorem we have,    F . d r  curl F .n ds -----(1)   c

s

To evaluate Line integral: The curve C consists of four lines AB, BC, CD and DA. 

c

  F .d r   

AB

  F .d r 

BC

  F .d r 

CD

  F .d r 

Now , F d r   ( x 2  y 2 ) i  2 xy j  dx i + dy j









DA

  F .d r

------ (2)

 ( x 2  y 2 ) dx  2 xy dy

….. (3) Along line AB, Here x = a, dx = 0 and 0  y  b



AB

  F .d r 

b

0

b

 0

2ay dy   a y 2

  ab 2

Along the line BC, Here, y = b, dy = 0 and a  x   a



BC

  F .d r 

a

a

a

 x3  ( x  b ) dx    b 2 x   3  a 2

2

 

2a3  2ab2 3

Along the line CD,

x = 0, dx = 0 and b  y  0

Page 17

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 

 

CD F .d r

  since F d r  0  

 0

Along the line OA,

y = 0, dy = 0 and  a  x  a 

DA

  F .d r 

a

 x3  2a3  a x dx   3   3   a a

2

Putting these values in equation (2), we get

  2a3 2a 3 2 2 2 F . d r   a b   2 ab  a b    4a b 2 c 3 3

--- (3)

To Evaluate surface integral:

Now,

  Curl F    F 

i

j

k

 x

 y

 z

x2 + y2



 2xy  Curl F = ( 2y  2y) k   4yk

0

Since the surface on the xy-plane, then n  k (Projection on XY-Plane)

 and Curl F . n 



S

  4yk .k

 curl F .n dS 

  4y

b a

0 a  4y dx dy b

 y2    4    2   0 From (4) and (3), we get

c

  F .d r 

s

 x a a

  4ab 2

…… (4)

 curl F .n ds   4ab 2

Hence Stoke’s theorem is verified.

Or Prove that div  grad r m   . r m  m (m  1)r m  2    Solution: r  xi  y j  zk d)



7

r 2  x2  y2  z 2

Page 18

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 Partially differentiate w.r.t., x, y and z respectively, we get r r r  2y and 2r  2 z 2r  2 x , 2r x y z  Now,

r y r x r z  and  ,  x r y r z r      grad r m   i  j  k  r m y z   x

 r   r   r   m r m  1   i  m r m  1   j  m r m  1   k  x   z   y   y z  x  grad r m  m r m  1  i  j  k   m r m  2 r r r  r   L.H.S = div  grad r m   div  m r m  2 r   m  div r m  2 r             m  r m  2 div r  r grad r m  2   m  r m  2 (3)  r (m  2) r m  4 r          div .a   div a  a  grad      









 

 m 3r m  2  (m  2) r m  2   m (m  1)r m  2 = R.H.S.  

Proved

Page 19

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006 Subjects available for Engineering students

1. Engineering Mathematics-I 2. Engineering Drawing 3. Engineering Mechanics and civil 4. Basic Electrical and Electronics

1. Engineering Mathematics-II 2. Network Analysis 3. Strength of Material 4. Machine Design & Drawing 5. Electro-magnetic theory 6. C, C++ and JAVA 1. Engineering Mathematics-III 2. Electro-magnetic theory 3. Electronic Device Circuit 4. Fluid Mechanics 5. Theory of Mechanism

1. Structural design and Drawing 2. Theory of structure 3. Control system 4. Digital signal processing 5. Theory of computation 1. Structural design and Drawing 2. Theory of structure-II 3. Control system 4. Heat Mass Transfer

FIRST YEAR M1 ED Civil EM BEEE

Sonendra Gupta Mohit Pandya Ajay Sir Shruti Jain

THIRD SEMESTER M2 Sonendra Gupta NA Rahul Arrora SOM Ishwar singh MDD Ankit Sir EMT Rahul Arrora Vishal Thakur FORTH SEMESTER M3 Sonendra Gupta EMT Rahul Arrora EDC Mohit Sir FM Ajay Sir TOM Ankit Sir FIFTH SEMESTER Steel Ishwar singh TOS-I Ishwar singh Control Rahul Arrora DSP Mohit Sir TOC Sunil Tripathi SIXTH SEMESTER Steel Ishwar singh TOS-II Ishwar singh Control Rahul Arrora HMT Ankit Sir

Page 20

Visit: www.sonendragupta.blogspot.in

Solution of Engineering Mathematics-II [June 2015] Subject: Engg. Mathematics-II Paper Code BE-301 Faculty: Sonendra Gupta Mobile: 9893455006

EKLAVYA ACADEMY

Announcing

GATE/NET st

FROM 1 Feb. 2016 [MATHEMATICS]

Page 21

Solution Engineering Mathematics-II June 2015 [BE-301].pdf ...

Retrying... Solution Engineering Mathematics-II June 2015 [BE-301].pdf. Solution Engineering Mathematics-II June 2015 [BE-301].pdf. Open. Extract. Open with.

1MB Sizes 3 Downloads 132 Views

Recommend Documents

June 2015
DISASTER MANAGEMENT (PGDDM). Ted Examination. Ui../ thane, 2015. MPA-003 : RISK ASSESSMENT AND. VULNERABILITY ANALYSIS. Time : 2 hours. Maximum Marks : 50. Note : Attempt any five questions in about 400 words each, from the following questions given

June 2015
Explain the operation of an On-site Treatment 10 plant of waste water in a health care facility. 2. List the importance of monitoring of health care.

June 2015
June, 2015. ELECTIVE COURSE : POLITICAL SCIENCE. EPS-08 : GOVERNMENT AND POLITICS IN. AUSTRALIA. Time : 3 hours. Maximum Marks : 100. Note. (i) Section I — Answer any ... aboriginals in Australia ? Elaborate. EPS-08. 1. P.T.O. ... Australian politi

June 2015
BNS-111. No. of Printed Pages : 2. POST BASIC BACHELOR OF SCIENCE. (NURSING) ... (c) Steps of evaluation process of students. (d) Types of data analysis.

June 2015
.71." O. June, 2015. BHM-002 : HEALTHCARE WASTE. MANAGEMENT : CONCEPTS, TECHNOLOGIES. AND TRAINING. Time : 3 hours. Maximum Marks : 70.

June 2015
IN COMPUTER SCIENCE). M.Sc. (MACS). Term-End Examination. June, 2015. 00898. MMT-005 : COMPLEX ANALYSIS. Time : 1-1- hours. Maximum Marks : ...

June 2015
Give reasons for your answer. (b) Describe the important features of Microsoft. Excel. Why is it called the most versatile and popular spreadsheet programs ?

June, 2015
O. MFP-4 : CURRENCY AND DEBT MARKETS. Time : 3 hours. Maximum Marks : 100. Note : Answer any five questions. All questions carry equal marks. 1.

June 2015
components with suitable illustrations, wherever required. 10. 4. (a) What do you understand by data quality in the context of GIS ? Explain the components of ...

June 2015
(ii) Data structure is the format of the data as stored and manipulated on computer. ... (a) What do you understand by data quality in the context of GIS ? Explain ...

June 2015
BNS-111. No. of Printed Pages : 2. POST BASIC BACHELOR OF SCIENCE. (NURSING) ... (c) Steps of evaluation process of students. (d) Types of data analysis.

1 to 5 June 2015 1 to 5 June 2015 1 to 5 June 2015
This programme gives participants a comprehensive understanding of planning and conducting scientific experiments for collecting data and analysing the data ...

1 to 5 June 2015 1 to 5 June 2015 1 to 5 June 2015
approved by All India Council for Technical Education (AICTE) and Mechanical department is permanently affiliated to. Savitribai Phule Pune University, Pune.

June 2015 Menu.pdf
In accordance with Federal law and the U.S. Department of Agriculture policy, this institution is prohibited from discriminating on the basis of race, color, sex, age ...

June 9, 2015
9 Jun 2015 - the school system to support its proposed Pathways to Health Careers program. Spotlight on Success. ▫ Heather Glass ~ SEC Softball Coach of the Year. ▫ Regena McLaughlin ~ SEC Women's Track Coach of the Year. ▫ Maya Singletary ~ Wo

Solution Manual Chemical Reaction Engineering, 3rd Edition ...
Solution Manual Chemical Reaction Engineering, 3rd Edition [studypoint4u.com].pdf. Solution Manual Chemical Reaction Engineering, 3rd Edition ...

wankat separation process engineering solution manual pdf ...
20 workers & P5M & above sales per annum. P160.00. COMMUNICATION SERVICES: MESSENGERIAL (DHL) US ..... Whoops! There was a problem loading this page. Retrying... wankat separation process engineering solution manual pdf. wankat separation process eng

Edit (Solution manual) Introduction to chemical engineering ...
Edit (Solution manual) Introduction to chemical engine ... thermodynamics - 7th ed - Smith, Van Ness & Abbot.pdf. Edit (Solution manual) Introduction to chemical engine ... thermodynamics - 7th ed - Smith, Van Ness & Abbot.pdf. Open. Extract. Open wi

\\csm\System-09\DTP Backup\Solution June-2013 ... -
The fundamental basis of corporate governance and responsibility in the value system of the corporation .... Reputation Risk: Reputation is the trust that an organization has gained over the years by the products, services, brands it has provided to

2015 June 3 Minutes.pdf
Bill Payment. 5.3.1. Approval of Monthly Bills for Payment – Trustee Wilson moved to pay the bills. Trustee Ragle seconded. Motion approved unanimously. 5.3.2 ...

Trading Update - June 2015 - WHSmith PLC
Jun 3, 2015 - sales also down 4%, in line with expectations and our profit focused strategy. Gross margin improvement and cost savings have been delivered in line with plan. We will continue to focus on ... Media Relations. 020 7406 6350.

MRD June 2015.pdf
111,901.58 111,901.58. 7,661,965.64 1,593,654.45 9,255,620.09. 64,412.29 (64,412.29) -. Page 1 of 1. MRD June 2015.pdf. MRD June 2015.pdf. Open. Extract.

Sikh Phulwari June 2015 Hindi.pdf
Waheguru Ji and me............................... y|. E-mail : [email protected]. [email protected]. ∞∑§ ∑§Ê¬Ë — wÆ L§¬ÿ . Website : www.sikhmissionarycollege.net. aÈL§¬fl ̧ ∞fl¢ ∞ ÁÄUÊÁ‚∑§ ÁŒfl‚. â—

print shop June 2015.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. print shop June ...