Aplicações da Eq. de Bernoulli

Ex. 5.42 MEDIÇÃO DA PRESSÃO: MANÔMETRO DIFERENCIAL – CASO PRÁTICO PA

PB

h

ρm

ρf

• Determine PA-PB em função da altura h e das densidades dos fluidos. Resp.: PA-PB = (ρm - ρf).g.h Pergunta: se os fluidos forem água e mercúrio, como fica a expressão? Resp.: PA-PB = (13600 - 1000).g.h

• Pergunta: e se os fluidos forem ar e água? Resp.: PA-PB = (1000 – 1.2)gh como ρliq>>ρgas → PA-PB ≈ ρmgh • Um engano freqüente dos alunos: aplicar a relação acima quando realizam medidas com dois líquidos.

The cavitation phenomenon The cavitation phenomenon is characterized by the formation and quick growth of vapor bubbles in the presence of a depression, followed by a violent implosion. Such an implosion, often supersonic, can generate a spherical shock wave in the liquid developing pressures higher than the solid material yield stress.

Erosão causada pela cavitação

FIXED CAVITATION IN A NOZZLE

incandescent light, exposure time 1/30 sec

strobe light, exposure time 5µs

Veja solução em ‘exercícios resolvidos’

Components of Thermodynamic Cycles • What can be the components of thermodynamic cycles? • Turbines, valves, compressors, pumps, heat exchangers (evaporators, condensers), mixers,

Where, Exactly, Are They Used For?

Vapor-cycle Power Plants

Refrigeration cycle

Equação da Energia: Regime Permanente 2 2       V V P P I I & −W & &  + ∑  u + & = Q + gz + m − ∑  u + + gz + m shaft    2 ρ 2 ρ       OUT   IN

• Considere o V.C. com duas portas (uma entrada / uma saída) • Expressando em função do calor e trabalho específicos & ), (dividindo por m      2   2   Joules  VI P  VI + gz + u + P   − + gz + u + = q − w shaft    2   2  ρ kg ρ   1 2 3 1 2 3     h  OUT  h  IN 

Representação Genérica dos Componentes de Ciclos Termodinâmicos • Aplicação de um balanço de energia para dispositivos que operam com fluxo de energia (entalpia), produzem trabalho e trocam calor com um reservatório a T0

W

mh1 mh2 Q T0

Turbine

• A turbine is device in which work is produced by a gas passing over and through a set of blades fixed to a shaft which is free to rotate. •

m in



m out •

W CV

Turbina a vapor ATP 4 - ABB Output range up to 100 MW Live steam conditions: Temperature up to 540 oC Pressure up to 140 Bara Exhaust steam conditions: Back-pressure: 3-16 Bara/300 oC Condensing 0,03 - 0,25 Bar Controlled extraction: Pressure/Temperature 3-25 Bara/400 oC

Turbines • We will draw turbines like this: inlet w

maybe q

outlet

TURBINES Isentropic s2 = s1

V22 − V12 q − w = ( h2 − h1 ) + + g ( z 2 − z1 ) 2 Almost always neglected

Sometimes neglected

w eixo = (h1 − h 2 )

Almost always neglected

T-s Diagram of an Adiabatic Turbine T T1

T2a T2s

Isentropic s2 = s1

0

Inlet P1 = 5 MPa T1=600oC V1=30m/s

q − w = (h 2 − h 1 ) +

− V12 2

0 + g( z 2 − z 1 )

W=? Outlet P2 = 7.5 kPa x=0.95 V2=100m/s

−w

V 22

=

1207 kJ/kg

(h 2 − h 1 )

1212 kJ/kg

+

V 22 − V12 2

4.5 kJ/kg

h1 superaquecido = 3666 kJ/kg h2 saturado , 40.2oC hl= 168.8 kJ/kg & hv=2574.8 kJ/kg → h2= 2454.5 kJ/kg



W = m.w = 603 MW !!!

Verdadeiro, processo politropico Verdadeiro, 1a lei Falso, Falso, se rev. q=∫Tds (Ps/Pe)

Verdadeiro, S é propriedade

Compressors, pumps, and fans • Machines developed by engineers to make life easier, decrease world anxiety, and provide exciting engineering problems from the industrial revolution for students. • Analysis proceeds the same as for turbines, although the signs may differ. • Compressor - used to raise the pressure of a compressible fluid • Pump - used to raise pressure of an incompressible fluid • Fan - used to move large amounts of gas, but usually has a small pressure increase

Compressors, pumps, and fans

Compressor

Side view of pump

End view of pump

Compressores de Deslocamento Positivo

Identifique os fluxos para um Compressor W

• O compressor rejeita calor para o ambiente. mhs

mhe

T0

Q

• A temperatura T0 é a temperatura do ambiente

Vs2 − Ve2 q − w = (hs − he ) + + g(z s − z e ) 2 neglected

w = (h e − h s ) + q

neglected

Sample Problem Air initially at 15 psia and 60°F is compressed to 75 psia and 400°F. The power input to the air is 5 hp and a heat loss of 4 Btu/lbm occurs during the process. Determine the mass flow in lbm/min. 15 psia & 60oF

• • • •

HYPOTHESIS Steady state steady flow (SSSF) Neglect potential energy changes Neglect kinetic energy changes Air is an ideal gas

Compressor Wshaft = 5 hp 75 psia 400oF

Q = 4 Btu/lb

& W shaft & = = 2.46lbm / min w = (h e − h s ) + q → m q − Cp ( Ts − Te )

w = (h e − h s ) (tab. A-2.1) he = + 187 kJ/kg e se = 0.696 kJ/kgK processo reversível, ss = se = 0.696 kJ/kgK (tab. A-2.2) Ps = 1.6 MPa e ss = 0.696 kJ/kgK Æ hs = 216 kJ/kg w = (187 − 216) = −29kJ / kg

T T1 T2a T2s

Cars & Intercoolers

Compression with intercooling

1 Intake System pressure drop

6 Turbo pressure drop

2 Turbo Compressor pressure increase

7 Pre-Cat / Downpipe pressure drop

3 Intercooler & Piping pressure drop

8 Main Cat / Midpipe pressure drop

4 Manifold Boost Pressure

9 Muffler / Cat-back pressure drop

5 Total Backpressure

Se você entender este problema você compreenderá a razão do intercooler

Expressão para cálculo do trabalho de eixo compressão ou expansão

w eixo = (h e − h s ) + q

1a lei proc. rev. & relação termd. isolando ∆h+q

q = ∫ Tds = ∫ dh − ∫ vdP ⇒ (he − hs) + q = − ∫ vdP

w eixo = − ∫ vdP

Eq. (5.56)

Reversible work relations for steady-flow and systems

Compressor e o Diagrama P-v para um processo reversível P

Pvγ = cte Pvn = cte Pv1 = cte

vf

vi

v

Compressor e o Diagrama P-v para um processo reversível P

Pv1 = cte

Pvγ = cte

w eixo = − ∫ vdP

A área amarela representa o trabalho necessário para um processo isotérmico A área achurada representa o trabalho extra necessário para um processo v adiabático

Conclusão: menor trabalho é o processo isotérmico

Compressão com Resfriamento Intermediário P

Pv1 = cte

1o estágio Intercooler 2o estágio Trabalho eixo

Pvγ = cte

Trabalho ‘poupado’ Trabalho isotérmico

w eixo = − ∫ vdP

v Conclusão: inter-resfriamento ‘poupa’ trabalho eixo

Trabalho de Eixo Reversível, Gás Ideal Isotérmico: v = RT/P Æ

w adiab = − ( Pi v i )



1 γ

γ −1   γ   P  γ  dP  f  P v 1 = − − ( )     i i ∫ Pγ  γ − 1    Pi    

50

(W ad -W iso )/W iso (%)

Adiabático:

Pvγ =

w iso

 Pf  dP = − RT ∫ = − RT ln   P  Pi 

40 30 20 10 0 1

2

3

4

5

6

Razão Pressão

7

8

9

10

BUTTERFLY VALVE

GATE VALVE

SPHERE VALVE

PIPE CRACK

GLOBE VALVE

Throttling Devices (Valves)

Typical assumptions for throttling devices 1. 2. 3. 4. 5.

No work Potential energy changes are zero Kinetic energy changes are usually small Heat transfer is usually small Two port device

Look at energy equation: Apply assumptions from previous page: 20 2 0 0 0 V −V

q − w = ( h2 − h1 ) +

We obtain:

2

1

2

+ g ( z 2 − z1 )

( h2 − h1 ) = 0 or h2 = h1

Does the fluid temperature: increase, decrease, or remain constant as it goes through an adiabatic valve?

Look at implications: If the fluid is liquid/vapor: T

h const.

P const. During throttling process:

• The pressure drops, • The temperature drops, • Enthalpy is constant h const. s

Look at implications: if fluid is an ideal gas:

( h2 − h1 ) = C p ( T2 − T1 ) = 0 Cp is always a positive number, thus:

T2 = T1

15M Pa

611K (340oC)

T (K) 373K (100oC)

s, kJ/(kgK)

Fenômeno de Fragilização de Metais por Baixas Temperaturas

John Connor (T1000) in Terminator 2

Cold embrittlement

(dureza e rigidez mas baixa resistência a tensão)

Consequences of the Temperature Drop on Material Strenght

Low temperature embrittlement does affect most materials more or less pronounced. It causes overloaded components to fracture spontaneously rather than accommodating the stress by plastic deformation. The picture shows a fractured fitting whose material was not suitable for low temperatures.

P

T

S

P1 > P2

T

v v Pressão Entalpia Temperatura En. Interna Entropia

diminui constante gás ideal h=h(T), portanto T fica constante gás ideal u=u(T), portanto u fica constante diminui, ∆s = Cpln(T2/T1)-Rln(P2/P1)

s

TEAMPLAY Refrigerant 12 enters a valve as a saturated liquid at 0.9607 Mpa and leaves at 0.1826 MPa. What is the quality and the temperature of the refrigerant at the exit of the valve?

State (1) Liquid saturated, x=0 Psat = 0.9607 MPa 40oC Tsat = ? Hliq = ? 75kJ/kg

State (2) Liq+vap x=? 0.33 Psat = 0.1826 MPa -15oC Tsat = ? Hliq = ? 22 & 180 kJ/kg

Heat exchangers are used in a variety of industries • • • • •

Automotive - radiator Refrigeration - evaporators/condensers Power production - boilers/condensers Power electronics - heat sinks Chemical/petroleum industry- mixing processes

Something a little closer to home..

Heat Exchangers

Condenser/evaporator for heat pump

Heat Exchangers • Now, we must deal with multiple inlets and outlets:

m& 4 m& 2

m& 1

m& 3 If we have steady flow, then:

m& 1 = m& 2 = m& A m& 3 = m& 4 = m& B

Conservation of energy can be a little more complicated... I’ve drawn the control volume around the whole heat exchanger.

Implications: No heat transfer from the control volume.

m& 4

m& 2

m& 1 Fluid A

m& 3 Fluid B

Heat Exchangers • Now if we want the energy lost or gained by either fluid we must let that fluid be the control volume, indicated by the red.

m& 2

m& 1 = m& A

Heat Exchangers 0

0

Q& − W& CV

  V12 V22 + m& A  (h1 − h2 ) + − + g (z1 − z 2 ) 2 2  A 0, (sometimes 0, (usually negligible) negligible)

  V32 V42 + m& B  (h3 − h4 ) + − + g (z 3 − z4 ) = 0 2 2 B 

0, (sometimes 0, (usually negligible) negligible)

Heat Exchangers • And we are left with

m& A ( h1 − h2 ) = m& B ( h4 − h3 ) The energy change of fluid A is equal to the negative of the energy change in fluid B.

(2) mc = ? kg/s

hv = 100 kJ/kg

mv+mc = ? kg/s hs = 200 kJ/kg

(1) mv = 0,1 kg/s hv = 2776 kJ/kg

 1−m  2 +m 3 =0 −m  1h1 − m  2h 2 + m  3h 3 = 0 −m

(3)

Resp.: mc = 2,57 kg/s

Nozzles and Diffusers • Nozzle--a device which accelerates a fluid as the pressure is decreased.

• Diffuser--a device which decelerates a fluid and increases the pressure.

V1, P1

V2 , P2

V1 , P1

V2 , P2

This configuration is for sub-sonic flow.

For supersonic flow, the shape of the nozzle is reversed.

Nozzles

General shapes of nozzles and diffusers nozzle

diffuser

Subsonic flow

nozzle

diffuser

Supersonic flow

conservation of energy 0

0

0 V −V q − w = ( h2 − h1 ) + + g ( z 2 − z1 ) 2 2 2

2 1

q = 0 (adiabatic) w = 0 (these are not work producing devices; neither is work done on them)

V −V ( h2 − h1 ) = 2 2 1

2 2

Sample Problem An adiabatic diffuser is employed to reduce the velocity of a stream of air from 250 m/s to 35 m/s. The inlet pressure is 100 kPa and the inlet temperature is 300°C. Determine the required outlet area in cm2 if the mass flow rate is 7 kg/s and the final pressure is 167 kPa.

INLET OUTLET

T1 = 300°C P1 = 100 kPa V1 = 250 m/s

m&

= 7 kg/s

Diffuser

P2 = 167 kPa V2 = 35 m/s

A2=?

Conservation of Mass: Steady State Regime

m& =

V1 A1

ν1

=

V2 A2

ν2

solve for A2

m& ν 2 A2 = V2

But we don’t know v2! Remember ideal gas equation of state?

RT1 ν1 = P1

and

RT2 ν2 = P2

We know T1 and P1, so v1 is simple. We know P2, but what about T2? NEED ENERGY EQUATION!!!!

Energy Eqn V −V ( h1 − h2 ) ≡ CP (T1 − T2 ) = 2 2 1

2 2

If we assumed constant specific heats, we could get T2 directly

T2 = T1 − (V − V 2 1

The ideal gas law:

2 2

)

2 ⋅ CP = 602 K

ν 2 = RT2 P2 = 1.0352 m kg 3

And the area:

& ν 2 7 ⋅1.035 4 m 2 A2 = = ⋅10 = 2070cm 35 V2

Turbojet Engine Basic Components

Turbojet Engine Basic Components and T-s Diagram for Ideal Turbojet Process qin =calor combustão

h1

h6

Identifique os fluxos para um Motor a Jato • Há adição de calor a pressão constante pela queima do combustível.

W

mhe

mhs

T0

Q

• A temperatura T0 é a temperatura da câmara de combustão

   2  2 w = q + (he − hs ) −  VI 2 − VI 2  s e 1 2 3   ≅0  

Aplicações da Eq. de Bernoulli - MOBILPASAR.COM

Page 45. John Connor (T1000) in Terminator 2. Fenômeno de Fragilização de Metais por Baixas Temperaturas. Page 46. Cold embrittlement. (dureza e rigidez m as baixa resistência a tensão. ) Low temperature embrittlement does affect most materials more or less pronounced. It causes overloaded components to fracture ...

5MB Sizes 1 Downloads 64 Views

Recommend Documents

Eq.3. - Europe PMC
be a linear one parameter group of one to one transformations of Q into itself (steady flow on Q) preservinga certain measure m on Q in the sense of Lebesgue. We set. (f, g) = Jff(P)g(P)dm, lIfil = V(f'f)f for any two q. s. f. (quadratically summable

Manual de Receitas da Magali.pdf
Manual de Receitas da Magali.pdf. Manual de Receitas da Magali.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Manual de Receitas da ...

CANDILLAC, Maurice de. Gêneses da Modernidade.pdf ...
(DANTE, MORUS, RABELAIS, CAMPANELLA, BACON). 219. Post-scriptum. Page 3 of 111. CANDILLAC, Maurice de. Gêneses da Modernidade.pdf.

EQ?????? Series - NSE
6 days ago - Sub : Transfer of equity shares of 21st Century Management Services Limited from ''BE'' series to ''EQ'' Series. Further to Exchange Circular dated January 03, 2018, Members of the Exchange are hereby informed that the following securiti

LABORATORIO DE CIENCIAS DA NATUREZA E MATEMATICA.pdf ...
51043394 EEPSG PROFa NADIR DE OLIVEIRA VARZEA GRANDE X. EE NOSSA SENHORA DO PERPÉTUO SOCORRO VERA X. 51025639 EEPSG PROFa ...

Eq.3. - Europe PMC
6An innovation in the technique of measuring the Joule-Thomson effect to be re- ported later has been developed which is adapted to low temperatures and low ...

Bernoulli Consulting Pvt Ltd Services.pdf
•Date down. •Document Indexing. •Document Uploading. Page 1 of 1. Bernoulli Consulting Pvt Ltd Services.pdf. Bernoulli Consulting Pvt Ltd Services.pdf. Open.

Bernoulli Consulting Pvt Ltd Services.pdf
Page 1 of 1. BERNOULLI CONSULTING PVT. LTD. Bangalore, India. Title Search. •Current owner search. •Full Search. •40 Year Search. •O & E Report.

eq-) SEP 1 6 2015
Sep 16, 2015 - This is to inform the field that there will be an emergency meeting on September 16, 2015,. 1:00 pm at the Division Conference Room, City Schools Division of ... Phone: 046-432-9355, 046-432-9384 I Tele-Fax: 046-432-3629.

ALC EQ-PRTL.pdf
BMS Port: EIA-485 port jumper configurable as ARCNET 156 kbps or MS/TP. (9600 bps – 78.6 kbps). - Equipment Port: EIA-232/EIA-485 software configurable.

Relatóro de Validação Vitoria da Conquista.pdf
Relatóro de Validação Vitoria da Conquista.pdf. Relatóro de Validação Vitoria da Conquista.pdf. Open. Extract. Open with. Sign In. Main menu.

LABORATÓRIO DE INFORMÁTICA DA BC.pdf
Whoops! There was a problem loading more pages. Retrying... LABORATÓRIO DE INFORMÁTICA DA BC.pdf. LABORATÓRIO DE INFORMÁTICA DA BC.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying LABORATÓRIO DE INFORMÁTICA DA BC.pdf.

Cartilha de Filosofos da America Latina.pdf
Cartilha de Filosofos da America Latina.pdf. Cartilha de Filosofos da America Latina.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Cartilha de ...

CELEBRAÇÃO DA PROMESSA DE PIONEIRO.pdf
Ámen. Page 3 of 3. CELEBRAÇÃO DA PROMESSA DE PIONEIRO.pdf. CELEBRAÇÃO DA PROMESSA DE PIONEIRO.pdf. Open. Extract. Open with. Sign In.

Relatóro de Validação Santa Cruz da Vitoria.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Relatóro de ...

DA - DE THI THPT QG 2017 - 1.pdf
Charlotte Taylor, a management consultant, had noted, "In the 1970s women ... Consider ASK Computer Systems, a $22-million-a-year computer software.

Lei da Inducao de Faraday-fisicacb.pdf
De outra forma, a lei de Lenz (Heinrich Lenz, Alemanha, 1804-1865) está relacionada com a corrente elétrica. através de uma espira onde é induzida uma fem: ...

A importância do processo de alinhamento da ...
Sigma é uma abordagem que visa melhorias no negócio, por meio da eliminação das causas de ...... Machine Design Cleveland, v. 77, n. 4, p. 126 -130, 2005.

album da colorare_album da colorare.pdf
Page 2 of 26. 3 2. NERETTA. La carita' e' un cuore che vede. Page 2 of 26. Page 3 of 26. 4 5. Page 3 of 26. Page 4 of 26. 6 7. Page 4 of 26. album da ...

COMPREHENSIVE EQ PLAN (1).pdf
Andrew J. Mulvihill Sussex County. J. Peter Simon Morris County. Dorothy S. Strickland Essex County. David C. Hespe. Commissioner of Education. Secretary. Robert L. Bumpus. Assistant Commissioner. Division of Field Services. 11. Page 3 of 38. COMPREH