Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51 

DOI:10.4067/S0718-221X2017005000040

THE EFFECT OF NANO-MgO2 ON THE MECHANICAL AND FLAMMABILITY PROPERTIES OF HYBRID NANO COMPOSITES FROM WOOD FLOUR-POLYETHYLENE Majid KIAEI a,*, Yaser Rastegar MOGHDAM b, Behzad KORD c, Ahmad SAMARIHAd a: Department of Wood and Paper Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran; b: Department of Wood and Paper Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran; c: Department of Paper and Packaging Technology, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran d: Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran; *Corresponding author: [email protected] Received: December 01, 2016 Accepted: July 09, 2017 Posted online: July 10, 2017 ABSTRACT This study considered the effect of nanomagnesium oxide on the mechanical and flammability features of composites made of wood flour and high-density polyethylene. A sample of wood flour was made from the mixture of hardwoods and high density polyethylene with the weight ratio of 50%. Maleic anhydride was added as a compatibilizer (2 phc), and nanomagnesium oxide was applied at 6 levels (0, 1, 2, 3, 4, 5 phc). These materials were mixed, and samples were prepared with determined sizes by injection molding machine. The samples were subjected to flexural tests to examine the mechanical features, and to study flammability strength, various tests were conducted with a cone calorimeter, including the amount of char residue, total smoke production, time to ignition, and heat release rate, according to ASTM E1354-92 (1992). The addition of up to 3 phc nanomagnesium oxide increased flexural strength and modulus, but further additions decreased these values. The addition of 5 phc nanomagnesium oxide increased the char residue and ignition time, and it decreased the heat release rate, total smoke production, and burning rate. Scanning electron microscopy and energy dispersive X-ray (EDX) analysis indicated the improper transmittance of nanomagnesium oxide and accumulations in the samples. Keywords: Char residue, flexural modulus, high density polyethylene, nanomagnesium oxide, total smoke production INTRODUCTION One of the main problems of wood plastic composites is their high rate of flammability. Different measurements have been taken about the safety of using fire retardants. Some polymers, such as polyvinyl chloride, are inflammable because of the presence of a halogen element, while some others, such as polypropylene, polyethylene, polystyrene, and polyester, etc., are completely flammable and need late burners. Using late burners, such as organic halogenated compounds, antimony oxide, aluminum and

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103 

magnesium hydroxide, organic phosphate and boron compounds, has become widespread in making composites. However, large amounts of these compounds should be used to be effective in late burning. While these additions increase density and decrease flexibility and mechanical features, various problems occur during the production of composites. Furthermore, these compounds cause environmental problems because they create poisonous gas, smoke, and carbon monoxide. Using new chemical compounds with different dimensions in nanoscales has been required because they can improve the features of polymer products (Kiaei et al. 2014). Polymer materials usually are reinforced by fillers to modify mechanical features. Recently, polymer composites that are reinforced by nanophase have drawn attention in research and industry. Nano composites form new types of polymer composites in which nanoparticles are used (Poletto 2016). One of the most widely used nanoparticles in the medical and industrial fields is nanomagnesium oxide. These materials are used mostly as fungicides and antibiotics. They are also used to produce electronic devices, catalysts, ceramics, oil, color, etc. An 8.7% demand enhancement of these materials is predicted from 2013 to 2018 (Mazaheri et al. 2014). Sahraeian (2004) compared the flammability of 3 polymer groups (thermoplastic, thermoset, and elastomer) with their nanocomposites containing 5% modified clay. The results indicated the reduction of flammability for all nanocomposites of polymer-clay, so that the effect of nanoclay particles was significant on reduction of flammability and improvement of thermoplastic thermal sustainability. A research on the effect of nanoclay particles on flammability features of composites made of wood fibers and high-density polyethylene indicated that enhancement of nanoclay particles reduced ignition time to 18% (Guo et al. 2007). Kord (2012) studied the effect of nanoclay particles on physical and flammability features of high density polyethylene-wood flour composites and claimed that enhancement of nanoclay particles reduced water absorption, thickness swelling, burning amount, released heat amount, and total produced smoke of wood plastic composites. However, the amounts of char residue and ignition time of nanocomposites have been increased by enhancement of nanoclay particles. Nemati et al. (2016) studied the effect of nanoclay on the flammability and morphological features of nano composites made of recycled polystyrene, wood flour and reported that enhancement of nanoclay particles reduced sample flammability. Samariha et al. (2015) in a study entitled “effect of nanoclay contents on properties of bagasse flour/ high density polyethylene/nanoclay composites” reported that the tensile and flexural modulus increased with an increase in nanoclay content. Increasing the nanoclay content at 2 wt.%, the tensile and flexural strengths of the composite were increased. Although there has been considerable research conducted to examine the effect of nanoparticles on the characteristics of wood plastic composites, there are no enough information regarding the influence of nonmetals oxides on the performance of natural fiber plastic composites is available. The present article is a comprehensive investigation on the effect of nanomagnesium oxide on the mechanical, flammability, and morphological properties of composites based on wood flour/polyethylene. EXPERIMENTAL Materials Mixed hardwood flour was passed through a sieve of 80 meshes, and the rest was passed through the sieve of 100 meshes as filler. High-density polyethylene (HDPE; H500, Bandar Imam Petrochemical Company, Mahshar, Iran) with melting flow index of 23 g/10 min and density of 0.965 gr/cm3 was used as the polymer matrix. To create

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120 

compatibility between wood flour and polyethylene, 2 phc maleic anhydride joint with polyethylene (MAPE; KJS 111, Kimia Javid Sepahan Company, Isfahan, Iran) with a melt flow index of 35 g/10 min was used. Moreover, nanomagnesium oxide (SigmaAldrich, St. Louis, MO, USA) was used at 6 levels of 0, 1, 2, 3, 4, and 5 phc. Nano magnesium oxide particles had a white color and 98% purity, and their size was 20 nm. Methods Mixing materials Polymer matrix (high density polyethylene), wood flour, compatibilizer (MAPE), and nanomagnesium oxide were mixed together according to Table 1. The polymer matrix with wood flour, adapter, and nanomagnesium oxide were mixed in a Collin antithetic round extruder (GmbH Company, Ebersberg, Germany). The heat regions of the extruder were 165, 170, 175, and 180 °C for regions 1 through 4. The rotational spiral speed was adjusted to 60 r/min; melt mixed materials were transformed to a granule-bygranule machine model WG-LS200/200 made by the Wieser Company, Hamburg, Germany. Table 1. Compositions of the studied formulations. Sample code 50W50H2M 50W50H2M1N 50W50H2M2N 50W50H2M3N 50W50H2M4N 50W50H2M5N

Wood flour content (wt%) 50 50 50 50 50 50

HDPE content (wt%) 50 50 50 50 50 50

MAPE (phc*) 2 2 2 2 2 2

Nano-MgO2 content (phc) 0 1 2 3 4 5

W: wood flour; H: high density polyethylene; M: MAPE; N: nanomagnesium oxide. (*) phc: parts per hundred compounds.

121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146 

Sample production To prepare samples, first granules of each compound were dried for 24 h at 85 °C, and then they were made in semi industrial injection molding machine model MPC-40 (Aslanian Machine, Tehran, Iran) under 190 °C for the stretching and bending tests. The specimens were stored under controlled conditions (65 ± 5% relative humidity and 20 ± 2 °C) for at least 40 h prior to bending tests according to ASTM D-790-10 (2010). A laboratory press (Toyoseiki, Tokyo, Japan) was used to create samples for flammability tests. The samples were prepared at 200 °C and 25 MPa pressure for 4 min. The boards were cooled at 80 °C with continued pressure. Mechanical properties The standard of ASTM D790-10 (2010) was applied to test the flexural modulus and strength at a speed of 2 mm/min using an Instron Universal Testing Machine (model 1186, Instron Crop, Canton, Mass, USA). The specimen dimensions were 105 mm × 13 mm × 5 mm (length × width × thickness) for the flexural tests. Determination of flammability The samples with dimensions of 100 mm × 100 mm × 6 mm were prepared as sheets. The combustion parameters, such as char residue (CR), total smoke production (TSP), time to ignition (TTI), and heat release rate (HRR) tests were measured according to the ASTM E1354-92 (1992)7 with a cone calorimeter (FTT Company, East Grinstead, UK). The tests were conducted at an incident heat flux of 50 kW/m2. The burning rate (BR) test was carried out by a horizontal burning test device (Jiangning Courty, Nanjing, China), according to standard ASTM D635-98 (1998). For each flammability treatment level, one replicates were measured for each property were reported.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169 

Scanning electron microscopy (SEM) A model VEGA-II scanning electron microscope (TESCAN Company, Czech Republic) was used. The energy dispersive spectroscopy (EDX) technique was used to determine nanomagnesium oxide, and its distribution status was considered in the wood plastic composite samples, from flexural strength specimens used for SEM. Statistical analysis To determine the effect of nanomagnesium oxide on the mechanical properties, statistical analysis was conducted using the SPSS (IBM Software, Armonk, New York, version 20) programming method in conjunction with the analysis of variance (ANOVA) techniques. The average values of mechanical properties were compared and classified by Duncan test at the 95% confidence level. RESULTS AND DISCUSSION Mechanical Properties In this study, nanomagnesium oxide was used at six levels (0, 1, 2, 3, 4, and 5 phc); the F values and the significance level are indicated in Table 2. The analysis of variance (ANOVA) indicated that the nanomagnesium oxide level had significant effects on flexural strength and flexural modulus at the 95% level. Table 2. Statistical analysis of variance (ANOVA) for effect of Nano-MgO2 on the mechanical properties of WF/HDPE composites. Sample code 50W50H2M 50W50H2M1N 50W50H2M2N 50W50H2M3N 50W50H2M4N 50W50H2M5N F-Value

Flexural Strength (MPa) 26.07c (1.95) 32.93b (1.65) 35.53b (3.83) 46.27a (5.74) 37.10b (2.08) 38.93b (2.41) 12.478*

Flexural Modulus (MPa) 1975.0c (250.14) 2075.0bc (32.91) 2170.33bc (166.50) 2561.67a (233.58) 2286.67ab (39.88) 2481.67a (78.82) 6.193*

* 95% significance level; ns no significance (Small letters indicate the Duncan ranking of the averages at a 95% confidence interval.) Values in parentheses are standard deviation

170  171  172  173  174  175  176  177  178  179  180  181  182  183  184  185  186  187  188 

Flexural strength and modulus In the flexural test, one side of the sample was stretched, and the other side was pressed. Therefore, the two factors of distribution and wetting affected this feature (Gao et al. 2008). Trend variations of flexural strength and flexural modulus at different levels of nanomagnesium oxide are shown in Table 2. The highest and lowest means of flexural strength were attributed to the sample of 3 phc (46.27 MPa) and 0 phc (26.07 MPa). The highest and lowest means of flexural modulus were attributed to the sample of 3 phc (2561 MPa) and 0 phc (1975 MPa). Enhancement of flexural strength and modulus was attributed to better distribution and homogeneous fibers in polymer matrix that could lead to the enhancement of interaction between lignocellulose materials and polymer matrix, and, eventually, enhancement of allowable stress; this confirmed the findings of other researchers (Balasuriya et al. 2001, Gao et al. 2012). Enhancement of nanomagnesium oxide first increased flexural strength and modulus to 3 phc, and then they decreased; enhancement of nanoparticles in nanocomposites reflected the interfacial effect of organic chains and nanoparticles. Moreover, non-homogeneity and high ratio of surface to volume in nanomagnesium oxide and organic materials affected the boosting capability of nanoparticles (Wu et al.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  189  190  191  192  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207 

2007). However, adding nanomaterials can increase composite strength (Asif et al. 2007). Therefore, the results showed that enhancement of nanomagnesium oxide increased flexural strength and modulus of wood plastic composites, as noted by Deka and Maji (2012). Flammability Features Changes of the level of composite char residue at different levels of nano magnesium oxide are shown in Fig. 1. The highest and lowest means of char residue were attributed to the sample of 5 phc (51.67%) and 0% (18.43%). Changes of the level of composites ignition time is indicated in Fig. 2 at different levels of nanomagnesium oxide. The highest and lowest means of ignition time were attributed to the sample of 5 phc (79.12 s) and 0 phc (29.33 s). Changes of the level of composites total smoke production was indicated in Fig. 3 at different levels of nanomagnesium oxide. The highest and lowest means of total smoke production were attributed to the sample of 0 phc (320.83 m2/kg) and 5 phc (223.92 m2/kg).

208  209  210 

Figure 1. The effect of nano magnesium oxide on char residue amount.

211  212  213 

Figure 2. The effect of nanomagnesium oxide on ignition time.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version 

214  215  216  217  218  219  220  221  222  223  224  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239 

240  241  242 

Figure 3. The effect of nanomagnesium oxide on total produced smoke. Changes of the level of composites burning rate is indicated in Fig. 4 at different levels of nanomagnesium oxide. The highest and lowest means of burning rate were attributed to the sample of 0 phc (43.16 mm/min) and 5 phc (23.14 mm/min). Changes of the level of composites heat release rate is indicated in Fig. 5 at different levels of nanomagnesium oxide. The highest and lowest means of heat release rate were attributed to the sample of 0 phc (83.62 KW/m2) and 5 phc (44.95 KW/m2). As observed in Figs. 1- 5, enhancement of nanomagnesium oxide from 0 to 5 phc in nanocomposites, the amount of char residue and ignition time increased; while heat release amount, total smoke produced, and burning rate decreased. When a composite containing nanomagnesium oxide was burnt, a char layer was made by nanomagnesium oxide particles on external layer of composites and this insulated lower layer and postponed burning. In addition, nanomagnesium oxide had high coefficient that could increase heat analysis temperature and heat sustainability of composites. Enhancement of thermal sustainability in nanocomposites postponed penetration of oxygen in to polymer matrix. However, improvement of thermal sustainability was attributed to the ability of nanoparticles in crystallization and increasing temperature required for ignition. Oxygen emission and volatile compounds emersion were postponed by agglomeration of nanoparticles and then ignition time of composites was postponed. In addition, adding nanomagnesium oxide to wood plastic composites reduces oxygen penetration significantly (Deka and Maji 2012). These findings were similar to those of Sahraeian (2004), Guo et al. (2007), and Kord (2012).

Figure 4. The effect of nanomagnesium oxide on burning rate.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version 

243  244  245  246  247  248  249  250  251  252  253  254  255  256  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272 

Figure 5. The effect of nanomagnesium oxide on released heat. Morphological Features SEM micrographs show the fracture surfaces of the composites at different loadings of Nano-MgO2 in Figure 6. As can be seen, in the composites at lower NanoMgO2 content the well-dispersed nanoparticles results to better stress or strain distribution in the composite (Fig. 6a and b). This dispersion state demonstrated that the interfacial adhesion between Nano-MgO2, wood flour, and polymer matrix was markedly improved and further contributed to the stress transfer from fiber to Nano-MgO2, and consequently enhanced the mechanical performance of the composites. As illustrated in Fig. 6c, with increasing the Nano-MgO2 content from 3 to 5 phc, some reign of agglomerated nanoparticles can be seen.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version 

a

b

273  274  275  276  277  278  279  280  281  282 

c Figure 6. SEM of composites with (a) 1%, (b) 3%, and (c) 5% nanomagnesium oxide.

CONCLUSIONS 1. This study considered the effect of nanomagnesium oxide on the mechanical and flammability features of high-density hardwood/polyethylene composites.

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  283  284  285 

2. Flexural strength and modulus of composites obtained from 5% nanomagnesium oxide were 49.4 and 25.7%, respectively, more than samples without nanomagnesium oxide.

286  287 

3. The addition of 5 phc nanomagnesium oxide increased char residue amount and ignition time to 180.4 and 169.8%, respectively.

288  289 

4. The enhancement of nanomagnesium oxide to 5 phc decreased the released heat, total produced smoke, and burning rate to 86.51, 43.27, and 86.02%, respectively.

290  291  292  293  294  295  296  297  298  299  300  301  302  303  304  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328  329  330  331  332 

5. SEM and EDX pictures taken from samples including nanomagnesium oxide (1 to 5 phc) showed improper distribution and accumulation of nanomagnesium oxide, which weakened the mechanical features of nanocomposites. REFERENCES Asif, A. L.; Roa, V.; Ninan, K. N. 2007. Hydroxyl terminated poly(ether ketone) with pendant methyl group-toughened epoxy ternary nanocomposites: Preparation, morphology and thermomechanical properties. Journal of Applied Polymer Science 106(5): 3793-3799. American Society for Testing and Materials. 1997. D790-10 Standard test method for bending properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA, USA. American Society for Testing and Materials. 1998. D635-98 Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position, ASTM International, West Conshohocken, PA. American Society for Testing and Materials. 1992. E1354-92 Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter, ASTM International, West Conshohocken, PA. Balasuriya, P. W.; Ye, L.; Mai, Y. W. 2001. Mechanical properties of wood flake-polyethylene composites. Part 1: Effects of processing methods and matrix melt flow behavior. Composites: Part A 32(5): 619-629. Kiaei, M.; Kord, B.; Vaysi, R. 2014. Influence of residual lignin content on physical and mechanical properties of kraft pulp/pp composites. Maderas-Cienc Tecnol 16(4): 495-503. Deka, B. K.; Maji, T. K. 2012. Effect of nanoclay and ZnO on the physical and chemical properties of wood polymer nanocomposite. Journal of Applied Polymer Science 124(4): 2919-2929. Gao, H.; Song, Y. M.; Wang, Q. W.; Han, Z.; Zhang, M. L. 2008. Rheological and mechanical properties of wood fiber-PP/PE blend composites. Journal of Forestry Research 19(4): 315-318. Gao, H.; Xie, Y.; Ou, R.; Wang, Q. 2012. Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood-plastic composites. Composites Part A: Applied Science and Manufacturing 43(1): 150-157. Guo, G.; Park, C. B.; Lee, Y. H.; Kim, Y. S.; and Sain, M. 2007. Flame retarding effect of nanoclay on wood-fiber composites. Polymer Engineering and Science 47(3): 330-336. Kord, B. 2012. Effect of nanoclay particles on the physical properties and flammability of HDPE/wood flour composites. Journal of Wood and Forest Science and Technology 18(4): 131-143. Mazaheri, N.; Karimi, A.; Salavati, H.; Rezaei Zarchi, S.; Khalilian, S.; Rezaei Ranjbar Sardari, R. 2014. Investigating the effect of intraperitoneal injection of

Maderas-Cienc Tecnol 19(4):2017 Ahead of Print: Accepted Authors Version  333  334  335  336  337  338  339  340  341  342  343  344  345  346  347  348  349 

magnesium oxide nanoparticles on the liver and kidney function of rat in vivo. Journal of Shahid Sadoughi University of Medical Science 22(4): 1430-1438. Nemati, M.; Eslam, H. K.; Talaeipour, M.; Bazyar, B.; Samariha, A. 2016. Effect of nanoclay on flammability behavior and morphology of nanocomposites from wood flour and polystyrene materials. BioResources 11(1): 748-758. Poletto, M. 2016. Effect of styrene maleic anhydride on physical and mechanical properties of recycled polystyrene wood flour composites. Maderas-Cienc Tecnol 18(4): 533-542. Sahraeian, R. 2004. Flammability Behavior of Nanocomposites of Polymer-Clay Soil, Master’s Thesis, Tarbiat Modarres University, Tehran, Iran. Samariha, A.; Hemmasi, A. H.; Ghasemi, I.; Bazyar, B.; Nemati, M. 2015. Effect of nanoclay contents on properties, of bagasse flour/reprocessed high density polyethylene/nanoclay composites. Maderas-Cienc Tecnol 17(3): 637-646. Wu, Q.; Lei, Y.; Yao, F.; Xu, Y.; Lian, K. 2007. Properties of HDPE/clay/wood nanocomposites. in: 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems, Sanya, China, pp. 181-188.

Art. 40 The effect of Nano-MgO2 on the mechanical ...

Retrying... Art. 40 The effect of Nano-MgO2 on the mechanical an ... rid nano composites from wood flour-polyethylene.pdf. Art. 40 The effect of Nano-MgO2 on ...

342KB Sizes 0 Downloads 133 Views

Recommend Documents

Mechanical stress effect on imprint behavior of ...
polarization distribution and d33-loop measurements in individual 11.5- m2 capacitors before .... images, respectively, of the array of as-grown 11.5- m2.

beneficial effect of heat treatment on mechanical ...
consisted of systematically abrading the specimen using silicon carbide abrasive paper of grit sizes 400, 600, 800, 1000, 1200, 1500 and. 2000. Final polishing to get a scratch free and mirror like surface was carried out on revolving disc using alum

The Effect of Crossflow on Vortex Rings
The trailing column enhances the entrainment significantly because of the high pressure gradient created by deformation of the column upon interacting with crossflow. It is shown that the crossflow reduces the stroke ratio beyond which the trailing c

The Effect of Crossflow on Vortex Rings
University of Minnesota, Minneapolis, MN, 55414, USA. DNS is performed to study passive scalar mixing in vortex rings in the presence, and ... crossflow x y z wall. Square wave excitation. Figure 1. A Schematic of the problem along with the time hist

The effect of mathematics anxiety on the processing of numerical ...
The effect of mathematics anxiety on the processing of numerical magnitude.pdf. The effect of mathematics anxiety on the processing of numerical magnitude.pdf.

The effect of mathematics anxiety on the processing of numerical ...
The effect of mathematics anxiety on the processing of numerical magnitude.pdf. The effect of mathematics anxiety on the processing of numerical magnitude.pdf.

The effect of ligands on the change of diastereoselectivity ... - Arkivoc
ARKIVOC 2016 (v) 362-375. Page 362. ©ARKAT-USA .... this domain is quite extensive and has vague boundaries, we now focused only on a study of aromatic ...

The Effect of Recombination on the Reconstruction of ...
Jan 25, 2010 - Guan, P., I. A. Doytchinova, C. Zygouri and D. R. Flower,. 2003 MHCPred: a server for quantitative prediction of pep- tide-MHC binding. Nucleic ...

On the Effect of Bias Estimation on Coverage Accuracy in ...
Jan 18, 2017 - The pivotal work was done by Hall (1992b), and has been relied upon since. ... error optimal bandwidths and a fully data-driven direct plug-in.

On the Effect of Bias Estimation on Coverage Accuracy in ...
Jan 18, 2017 - degree local polynomial regression, we show that, as with point estimation, coverage error adapts .... collected in a lengthy online supplement.

25 Effect of the Brazilian thermal modification process on the ...
25 Effect of the Brazilian thermal modification process ... Part 1: Cell wall polymers and extractives contents.pdf. 25 Effect of the Brazilian thermal modification ...

The Effect of the Internet on Performance, Market ...
May 19, 2017 - are not the most popular ones, without affecting other movies. .... studies the impact of various policy, economic, and social changes, .... net users–where Internet users are people with access to the worldwide network. ..... on the

The Effect of Second-Language Instruction on the ...
Jun 1, 2007 - into account the mental maturity of the children, no significant differences .... off-campus location, you may be required to first logon via your ...

The effect of time synchronization errors on the ...
In large wireless sensor networks, the distribution of nodes can be looked at in ...... tems with Rayleigh fading”, IEEE Transactions on Vehicular Technology,. Vol.

The effect of management structure on the performance ...
Mar 4, 2009 - procedure. In a multi-domain network a particular network management/controller may have complete information about its own domain but ...

Doing and Learning: The Effect of One on the Other
Technion, Israel Institute of Technology, Department of Education in Technology and Science. Introduction. During the last ... constructing, and debugging some amazing machinery, their social and communication skills improved. Another .... o A change

The Effect of Second-Language Instruction on the ...
Jun 1, 2007 - In ,June, again in groups of five to seven, all subjects took the California ... achievement, and the California Reading Test, as a major subsection. Results of .... College; M.A., Univ. of Minnesota; Ph.D., Penn. State University ...

Reconsidering the Effect of Market Experience on the ... - lameta
Jun 10, 2010 - University, Royal Holloway, The Paris School of Economics and the LSE, .... market in which subjects can trade with each other without any ...

The Effect of the Financial Crisis on Remittance ...
the economic growth rate in advanced economies is unlikely to reduce the flow of ... despite the crisis, whereas countries in Latin America and the Caribbean.

the effect of intrachamber nonstationarities on the ...
α - ionization degree e. U ... Calculating ionization degree using -function φ ... on pressure (b) at 0.4 MPa, 2000 К, acoustic signal with frequency 50 kHz and.

Doing and Learning: The Effect of One on the Other
design, to the amazement of his care-takers. Thinking and. Multi-Media. Doppelt, MA. Thesis, in press. 10 th graders, judged and classified by school system to low- level classes. Tagged as un-able to pass matriculation. Considered at school as troub

REVISIT OF THE WALL EFFECT ON THE SETTLING ...
Newtonian Fluids: Wall Effects and Drag Coefficient Canadian Journal of Chemical .... settling column; (4) high-speed camera; (5) monitor; (6) computer. 1. 3. 4.

The Effect of the Financial Crisis on Remittance ...
that have a large number of migrants in the US, Europe and the GCC ... Contact: The Gabelli School of Business, Roger Williams University, Bristol, RI, USA. Email: ..... 1800. 7357. 971. 2488. 3979. 43508. 2008-09. 14430. 13790. 1891. 9163.

Reconsidering the Effect of Market Experience on the ...
Jun 10, 2010 - mistakes – the market acts as a teacher (see List and Millimet, 2008, and the numerous ..... Table 1: Summary of the experimental treatments.