Agni College of Technology

1

DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS

Subject code :MA 6566 Important Question and Answers PART-A

1. Define a rule of Universal specification. Ans: If a statement of the form (๐‘ฅ)๐ด(๐‘ฅ) is assumed to be True then the universal quantifier may be dropped from the statement to obtain A(x) which is true for each object in the universe, or to obtain P(x) which is true for a specific object of the universe. 2. What are the contrapositive, the converse, and inverse of the conditional statement.โ€ If you work hard then you will be rewarded.โ€ ยฌ๐‘: You will not work hard

Ans: P: You work hard

ยฌ๐‘ž:You will not be rewarded

Q: You will be rewarded Converse:๐‘ž โ†’ ๐‘ You will be rewarded only if you work hard. Contrapositive: ยฌ๐‘ž โ†’ ยฌ๐‘ If you will not be rewarded then you will not work hard Inverse: ยฌ๐‘ โ†’ ยฌ๐‘ž

3. Using truth table, show that the proposition ๐‘ โˆจ ยฌ(๐‘ โˆง ๐‘ž) is a tautology. Solution: ยฌ(๐‘ โˆง ๐‘ž)

๐‘โˆง๐‘ž

๐‘ โˆจ ยฌ(๐‘ โˆง ๐‘ž)

P

q

T

T

T

F

T

T

F

F

T

T

F

T

F

T

T

F

F

F

T

T

โˆด ๐‘ โˆจ ยฌ(๐‘ โˆง ๐‘ž)is a tautology 4. Write the negation of the statement โˆƒ๐‘ฅ โˆ€๐‘ฆ ๐‘ ๐‘ฅ, ๐‘ฆ . Solution: Given โˆƒ๐‘ฅ โˆ€๐‘ฆ ๐‘ ๐‘ฅ, ๐‘ฆ . Negation: โˆ€๐‘ฅ โˆƒ๐‘ฆ ๐‘ ๐‘ฅ, ๐‘ฆ .

5. In how many ways can all the letters in MATHEMATICAL be arranged. Ans: In the word MATHEMATICAL has 12 letters. M,T appears 2 times &A appears 3 times โˆด The required number of permutations =

12! 2!3!2!

= 19958400

6. Twelve students want to place order of different ice-creams in a ice-cream parlour,which has six type of icecreams. Find the number of orders that the twelve students can place. Ans: Here n=12,r=6 The number of possible selection is,

17! 12 + 6 โˆ’ 1 = 6!11! 6

7. State Pigeonhole principle. If (n+1) pigeon occupies โ€˜nโ€™ holes than atleast one hole has more than 1 pigeon. 8. Solve: ๐‘Ž๐‘˜ = 3๐‘Ž๐‘˜โˆ’1 , for kโ‰ฅ 1, ๐‘ค๐‘–๐‘ก๐‘• ๐‘Ž๐‘œ = 2. Ans: The characterisitics equation is ๐‘Ÿ โˆ’ 3 = 0 ๐‘Ÿ = 3 โ‡’ ๐‘Ž๐‘˜ = A3๐‘˜

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS

Subject code :MA 6566 Important Question and Answers PART-A

Given ๐’‚๐’ = ๐Ÿ โŸน ๐‘Ž0 = A30 โŸน2=A 1 โŸน2=A โˆด ๐‘Ž๐‘› = 2 3๐‘˜ 9. Define a regular graph.Can a complete graph can be a regular graph? If every vertex of a simple graph has the same degree, then the graph is called a regular graph.If every vertex in a regular graph has degree k, then the graph is called K-regular. Every complete graph is regular. 10. State the handshaking theorem. Ans: Let ๐บ = (๐‘‰, ๐ธ) be an undirected graph with e edges then ๐‘ฃโˆˆ๐‘‰ deg ๐‘ฃ = 2๐‘’.The sum of degrees of all the vertices of an undirected graph is twice the number of degrees of the graph and hence even. 11. Obtain the adjancey of the following graph.

Solution: ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ4 ๐‘ฃ5 ๐‘ฃ1 ๐‘ฃ2 ๐ด ๐บ = ๐‘ฃ3 ๐‘ฃ4 ๐‘ฃ5

0 1 0 0 1

1 0 1 0 1

0 1 0 1 1

0 0 0 0 1

1 1 1 1 0

12. Give an example of a non-Eulerian graph which is Hamiltonian

Solution: ๐‘ฃ1 ๐‘ฃ1

๐‘ฃ4

๐‘ฃ2

๐‘ฃ3

deg ๐‘ฃ1 = 3; deg ๐‘ฃ2 = 3; deg ๐‘ฃ3 = 3; deg ๐‘ฃ4 = 3 Here the vertices are not even degree. โˆด The given graph is non-Eulerian graph

Deg ๐‘ฃ1 + deg ๐‘ฃ2 โ‰ฅ ๐‘› โˆ’ 1 Deg ๐‘ฃ2 + deg ๐‘ฃ3 โ‰ฅ ๐‘› โˆ’ 1 Deg ๐‘ฃ3 + deg ๐‘ฃ4 โ‰ฅ ๐‘› โˆ’ 1 Deg ๐‘ฃ4 + deg ๐‘ฃ1 โ‰ฅ ๐‘› โˆ’ 1

2

Agni College of Technology

3

DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS

Subject code :MA 6566 Important Question and Answers PART-A

โˆด The given graph is Hamiltonian. The Hamiltonian circuit is ๐‘ฃ1 ๐‘ฃ2 ๐‘ฃ3 ๐‘ฃ4 ๐‘ฃ1 . 13. Define Isomorphism of two graphs.

Solution: Two graphs G and ๐บ โ€ฒ are isomorphic. If there is a function ๐‘“: ๐‘‰(๐บ) โ†’ ๐‘‰(๐บ โ€ฒ ) from the vertices of G (i) f is one-one (ii) f is onto and (iii) f preserves adjacency (iv) 14. Prove or disprove,โ€Every subgroup of an abelian group is normalโ€ Solution: If G is abelian,then every subgroup of G is normal in G,(as ๐ป๐‘Ž = ๐‘•๐‘Ž/๐‘• โˆˆ ๐ป = {๐‘Ž๐‘•/๐‘• โˆˆ ๐ป} since ๐‘•๐‘Ž = ๐‘Ž๐‘• = ๐‘Ž๐ป, ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘Ž โˆˆ ๐บ) 15. Define a Semi group. Solution: If S is nonempty set s together with the binary operation * satisfying the following properties(๐‘–)๐‘Ž โˆ— ๐‘ = ๐‘ โˆ— ๐‘Ž (๐‘–๐‘–) (๐‘Ž โˆ— ๐‘) โˆ— ๐‘ = ๐‘Ž โˆ— (๐‘ โˆ— ๐‘) ๐‘Ž, ๐‘, ๐‘ โˆŠ ๐‘† is called semigroup it is denoted by (S,*).

16. Give an example of a ring which is not a field. Solution:

The ring Z of all integers in an integral domain but not a field.

17. In Lattices (๐‘ณ, โ‰ค) ,prove that ๐’‚ โˆง (๐’‚ โˆจ ๐’ƒ) = ๐’‚๐’‡๐’๐’“๐’‚๐’๐’๐’‚, ๐’ƒ โˆŠ ๐‘ณ. Solution: since ๐‘Ž โˆง ๐‘ is the GLB of {๐‘Ž, ๐‘} ๐‘Žโˆง๐‘ โ‰ค๐‘Ž โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. 1 obviously๐‘Ž โ‰ค ๐‘Ž โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ. 2 from (1) and (2) we have ๐‘Ž โˆจ (๐‘Ž โˆง ๐‘) โ‰ค ๐‘Ž by the definition of LUB we have ๐‘Ž โ‰ค (๐‘Ž โˆง ๐‘) = ๐‘Ž Similarly we can prove that ๐‘Ž โˆง (๐‘Ž โˆจ ๐‘) = ๐‘Ž.

18. When is a lattice said to be bounded? Ans: Let (๐ฟ,โˆง,โˆจ) be a given lattice. If it has both 0 element and 1 element then it is said to be bounded lattice. It is denoted by (๐ฟ,โˆง,โˆจ ,0,1) 19. When is a lattice said to be a Boolean Algebra? Ans: A lattice which is complemented and distributive is called a Boolean algebra. 20. Give an example of a distributive lattice but not complemented. Solution:

No complement exist for 0,b,c,d,1 The element โ€˜aโ€™ is a complement of d and vice versa. โˆด The above graph is not complemented. 21. Define Semigroup and monoid. Give an example of a semigroup which is not a monoid. Sol. Semigroup: A non empty set S together with a binary operation ๏€ชis called a semigroup if the following conditions are satisfied. a. a ๏€ชb ๏ƒŽ S ๏€ขa,b๏ƒŽS ( Closure) b. a ๏€ช(b ๏€ชc) = (a ๏€ชb) ๏€ชc ๏€ขa,b,c๏ƒŽS ( Associative )

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS

Subject code :MA 6566 Important Question and Answers PART-A

Monoid : A non empty set M together with a binary operation ๏€ชis called a monoid if the following conditions are satisfied. a ๏€ชb ๏ƒŽ M ๏€ขa,b๏ƒŽM ( Closure) a ๏€ช(b ๏€ชc) = (a ๏€ชb) ๏€ชc ๏€ขa,b,c๏ƒŽM ( Associative ) There exists an element e๏ƒŽM such that a ๏€ช e = e ๏€ช a = a ๏€ขa๏ƒŽM ( Identity ) Example : (N, +) is a semigroup but not monoid For, we know that N is the set of all positive integers

i) ii) iii)

(i.e.) N = {1,2,3,โ€ฆโ€ฆ.}

4

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A

The additive identity is zero because a +0 = 0 +a = a ๏€ขa๏ƒŽN. But 0๏ƒN (i.e.) 0 is not an element of N

๏œ(N , +) is not a monoid. 22. Show that the intersection of two subgroups is a subgroup. Sol. Let H and K are subgroups of G. Then atleast the identity element e๏ƒŽH and e๏ƒŽK.

๏œe๏ƒŽH ๏ƒ‡K Thus H ๏ƒ‡K is a non empty subset of G. Let a,b๏ƒŽH ๏ƒ‡K ๏ƒža,b๏ƒŽH and a,b๏ƒŽK ๏ƒža๏€ชb-1๏ƒŽH and a๏€ชb-1๏ƒŽK ๏ƒža๏€ชb-1๏ƒŽH ๏ƒ‡K

๏œH ๏ƒ‡K

is a subgroup of G.

23. Define distributive lattice. Sol.

A lattice (L, ๏€ช,๏ƒ…) is said to be distributive lattice if for any a,b,c๏ƒŽL a ๏€ช (b ๏ƒ… c) ๏€ฝ (a ๏€ช b) ๏ƒ… (a ๏€ช c) a ๏ƒ… (b ๏€ช c) ๏€ฝ (a ๏ƒ… b) ๏€ช (a ๏ƒ… c)

24 . If B is a Boolean algebra, then for a๏ƒŽB, a + 1 = 1, a.0 = 0 Sol.

a + 1 = (a + 1).1

a.0 = a.0 + 0

= (a + 1).(a + aโ€™)

= a.0 + (a.aโ€™)

= a + (1.aโ€™)

= a. (0 + aโ€™)

= a + (aโ€™.1)

= a. (aโ€™ + 0)

= a + aโ€™

= a. aโ€™

=1

= 0

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A

PART-B 1.(i) Verify the validity of the following argument. Every living thing is a plant or an animal. Johnโ€™s gold fish is alive and it is not a plant. All animals have hearts. Therefore Johnโ€™s gold fish has a heart. Sol. Let P(x) : x is a plant A(x) : x is an animal H(x) : x has a heart, g : Johnโ€™s gold fish We need to show ( ๏€ข๏€ x)[P(x) ๏ƒš๏€ A(x)] , 7P(g) ,( ๏€ข๏€ x)[A(x) ๏‚ฎH(x)] ๏ƒž๏€ H(g) Argument 1. ( ๏€ข๏€ x)[P(x) ๏ƒš๏€ A(x)] Rule P 2. P(g) ๏ƒš๏€ A(g) Rule US 3. 7P(g) Rule P 4. A(g) Rule T [ From 2,3 i.e. 7P, P ๏ƒš๏€ Q๏ƒž๏€ Q] 5. ( ๏€ข๏€ x)[A(x) ๏‚ฎH(x)] Rule P 6. A(g) ๏‚ฎH(g) Rule US 7. H(g) Rule T ๏œThe argument is valid. ii) Prove that ( ๏€ข๏€ x)[P(x) ๏‚ฎQ(x)], ( ๏€ค๐‘ฆ๏€ )P(y) ๏ƒž๏€ ( ๏€ค๏€ x)Q(x) . Sol. 1. 7( ๏€ค๏€ x)Q(x) Rule P (assumed premise) 2. ( ๏€ข๏€ x)7Q(x) Rule T 3. 7Q(a) Rule US 4. ( ๏€ค๏€ ๐‘ฆ)P(y) Rule P 5. P(a) Rule ES 6. ( ๏€ข๏€ x)[P(x) ๏‚ฎQ(x)] Rule P 7. P(a) ๏‚ฎQ(a) Rule US 8. Q(a) Rule T [ From 5,7] 9. Q(a) ๏ƒ™๏€ 7Q(a) Rule T [ From 8,3] which is a contradiction 2.(i) Prove that 2 is irrarational by giving a proof by contradiction. Solution: Assume the contrary that 2 is rational number. ๐‘

โˆด 2 = ๐‘ž for some integer p&q such that p &q have no common factors. โˆด

๐‘2 = 2 โŸน ๐‘2 = 2๐‘ž 2 ๐‘ž2

Since ๐‘2 is an even integer, p is an even integer.

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A โˆด ๐‘ = 2๐‘šfor some integer m โˆด (2๐‘š)2 = 2๐‘ž 2 โŸน 2๐‘š2 Since ๐‘ž 2 is an even integer, q is an even integer. โˆด ๐‘ž = 2๐‘˜for some integer k Thus p and q are even. Hence they have a common factor 2. This contradicts the assumption p and q have no common factors. Thus our assumption 2 Is rational is wrong. Hence 2 is irrational. (ii) Prove by mathematical induction that 6๐‘›+2 + 72๐‘› +1 is divisible by 43 for each positive integer n. Solution: ๐‘ƒ ๐‘› : 6๐‘›+2 + 72๐‘› +1 is divisible by 43 Step 1: To prove ๐‘ƒ 1 is true ๐‘ƒ 1 : 61+2 + 72+1 is divisible by 43 ๐‘ƒ 1 : 63 + 73 is divisible by 43 โˆด ๐‘ƒ 1 is true Sep 2: Assume that ๐‘ƒ(๐‘˜) is true Ie., ๐‘ƒ ๐‘˜ : 6๐‘˜+2 + 72๐‘˜+1 is divisible by 43 6๐‘˜+2 + 72๐‘˜+1 = ๐‘ 43 Step 3: prove that ๐‘ƒ(๐‘˜ + 1) is true Ie., ๐‘ƒ ๐‘˜ + 1 : 6๐‘˜+3 + 72๐‘˜+3 is divisible by 43 6๐‘˜+3 + 72๐‘˜+3 = 6๐‘˜+2 6 + 72๐‘˜+1 72 = 6 ๐‘ 43 โˆ’ 72๐‘˜+1 + 72๐‘˜+1 72 258๐‘ โˆ’ (6)72๐‘˜+1 + 72๐‘˜+1 72

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A = 258๐‘ + 72๐‘˜+1 49 โˆ’ 6 258๐‘ + 72๐‘˜+1 . 43 = 43(6๐‘ + 72๐‘˜+1 ) which is divisible by 43 Hence the proof. 3.(i) Determine the number of positive integers n, 1 โ‰ค ๐‘› โ‰ค 2000 that are not divisible by 2,3 or 5 but are divisible by 7. Solution:

Let A denote the number of integers not divisible by 2

Let B denote the number of integers not divisible by 3 Let C denote the number of integers not divisible by 5 Let D denote the number of integers divisible by 7 Therefore, ๐ด =

2000 2

= 1000 , ๐ต =

2000 3

= 666

2000 2000 = 400, ๐ท = = 285. 5 7 ๐ดโˆฉ๐ตโˆฉ๐ถโˆฉD = ๐ดโˆช๐ตโˆช๐ถโˆฉD |๐ถ| =

= |๐ท โˆฉ ๐ด โˆช ๐ต โˆช ๐ถ | = ๐ท โˆ’ ๐ทโˆฉ ๐ดโˆช๐ตโˆช๐ถ = ๐ท โˆ’| ๐ทโˆฉ๐ด โˆช ๐ทโˆฉ๐ต โˆช ๐ทโˆฉ๐ถ | = ๐ท โˆ’[ ๐ทโˆฉ๐ด + ๐ทโˆฉ๐ต + ๐ทโˆฉ๐ถ โˆ’ ๐ดโˆฉ๐ตโˆฉ๐ท โˆ’ ๐ดโˆฉ๐ถโˆฉ๐ท โˆ’ ๐ตโˆฉ๐ถโˆฉ๐ท + ๐ด โˆฉ ๐ต โˆฉ ๐ถ โˆฉ ๐ท ]โ€ฆโ€ฆโ€ฆ.(1) 2000 ๐ป๐‘’๐‘›๐‘๐‘’, | ๐ท โˆฉ ๐ด | = = 142 2ร—7 2000 |๐ทโˆฉ๐ต| = = 95 3ร—7 2000 |๐ทโˆฉ๐ถ|= = 57 5ร—7 2000 |๐ด โˆฉ ๐ต โˆฉ ๐ท| = = 47 2ร—3ร—7 2000 |๐ด โˆฉ ๐ถ โˆฉ ๐ท| = = 28 2ร—5ร—7 2000 |๐ต โˆฉ ๐ถ โˆฉ ๐ท| = = 19 3ร—5ร—7

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A 2000 =9 2ร—3ร—5ร—7

|๐ด โˆฉ ๐ต โˆฉ ๐ถ โˆฉ ๐ท| =

(1)โ‡’ ๐ด โˆฉ ๐ต โˆฉ ๐ถ โˆฉ D = 285 โˆ’ 142 + 95 + 57 โˆ’ 47 โˆ’ 28 โˆ’ 19 + 9 = 76 (ii) Solve the recurrence relation relation ๐‘†(๐‘›) = ๐‘†(๐‘› โˆ’ 1) + 2(๐‘› โˆ’ 1)with ๐‘† 0 = 3, ๐‘† 1 = 1, ๐‘๐‘ฆ ๐‘ก๐‘•๐‘’ ๐‘š๐‘’๐‘ก๐‘•๐‘œ๐‘‘ ๐‘œ๐‘“ ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘ . Solution: ๐‘› Let ๐บ ๐‘ฅ = โˆž ๐‘›=0 ๐‘Ž๐‘› ๐‘ฅ โ€ฆโ€ฆโ€ฆโ€ฆ.(1) Where ๐บ ๐‘ฅ is the G.F for the sequence ๐‘Ž๐‘› . Given ๐‘Ž๐‘› = ๐‘Ž๐‘›โˆ’1 + 2๐‘› โˆ’ 2, ๐‘› โ‰ฅ 1โ€ฆโ€ฆโ€ฆโ€ฆ(2) โˆž

โˆž

โˆž

๐‘›

๐‘›

๐‘Ž๐‘› ๐‘ฅ = ๐‘›=1 ๐‘› =1 โˆž ๐‘› ๐‘›=1 ๐‘›๐‘ฅ โˆ’ 2

๐บ ๐‘ฅ โˆ’ ๐‘Ž0 = ๐‘ฅ๐บ ๐‘ฅ + 2 Since ๐‘ฅ๐บ ๐‘ฅ =

โˆž ๐‘› +1 ๐‘›=0 ๐‘Ž๐‘› ๐‘ฅ

(2๐‘› โˆ’ 2)๐‘ฅ ๐‘›

๐‘ฅ ๐‘Ž๐‘›โˆ’1 +

๐‘› =1 โˆž ๐‘› ๐‘›=1 ๐‘ฅ [by (1)]

โˆž ๐‘› ๐‘› =1 ๐‘Ž๐‘›โˆ’1 ๐‘ฅ

=

2 +2 1โˆ’๐‘ฅ 2 ๐บ ๐‘ฅ (1 โˆ’ ๐‘ฅ) = 3 + 2๐‘ฅ 1 โˆ’ ๐‘ฅ 2 โˆ’ +2 1โˆ’๐‘ฅ 2๐‘ฅ 2๐‘ฅ =5+ โˆ’ 2 (1 โˆ’ ๐‘ฅ) 1โˆ’๐‘ฅ

๐บ ๐‘ฅ โˆ’ ๐‘ฅ๐บ ๐‘ฅ = 3 + 2๐‘ฅ 1 โˆ’ ๐‘ฅ

โ‡’๐บ ๐‘ฅ = โˆž

โˆž ๐‘›

โˆด ๐‘› =0

โˆž

โˆž

โˆ’2 ๐‘›

๐‘ฅ โˆ’2 ๐‘›=0

โˆ’

5 2 2๐‘ฅ โˆ’ โˆ’ (1 โˆ’ ๐‘ฅ) (1 โˆ’ ๐‘ฅ)2 (1 โˆ’ ๐‘ฅ)3

๐‘›

๐‘Ž๐‘› ๐‘ฅ = 5

2

(1 โˆ’ ๐‘ฅ)โˆ’3 ๐‘ฅ ๐‘›

(1 โˆ’ ๐‘ฅ) ๐‘ฅ โˆ’ 2๐‘ง ๐‘›=0

๐‘› =0

Hence๐‘Ž๐‘› = 5 1๐‘› โˆ’ 2 ๐‘› + 1 + 2๐‘›(๐‘› + 1) which is the required solution. = 2๐‘›2 + 3 4.(i) Prove that a given connected graph G is an Euler graph if and only if all the vertices of G are of even degree. Proof: Let G be an Eulerian graph. We have to prove all vertices are of even degree. Since G is Eulerian, G contains an Euler circuit, say,๐‘ฃ0 , ๐‘’1 , ๐‘ฃ1 , ๐‘’2 โ€ฆ , ๐‘ฃ๐‘› โˆ’1 , ๐‘’๐‘› , ๐‘ฃ0 . Both the edges ๐‘’1 and ๐‘’๐‘› contributes one to the degree of ๐‘ฃ0 and so deg๐‘ฃ0 is at least two. In tracing this circuit we find an edge enters a vertex and another edge leaves the vertex contributing 2 to the degree of the vertex.

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A This is true for all vertices and so each vertex is of degree 2, an even integer. Conversely, Let the graph G be such that all its vertices are of even degrees. We have to prove: G is an Eulerian graph We shall construct an Euler circuit and prove. Let ๐‘ฃ be an arbitrary vertex in G. Beginning with ๐‘ฃ form a circuit ๐ถ: ๐‘ฃ, ๐‘ฃ1 , ๐‘ฃ2 , ๐‘ฃ3 โ€ฆ . ๐‘ฃ๐‘› โˆ’1 , ๐‘ฃ This is possible because every vertex of even degree. We can leave a vertex (โ‰  ๐‘ฃ) along an edge not used to enter it.This tracing clearly stops only at the vertex ๐‘ฃ because ๐‘ฃ is also of even degree and we started from ๐‘ฃ.Thus we get a circuit or cycle ๐ถ. If ๐ถ includes all the edges of G, then ๐ถ is an Euler circuit and so G is Eulerian. If ๐ถ does not contain all the edges of G,consider the subgraph H of G obtain by deleting all the edges of ๐ถ from ๐บ and vertices not incident with the remaining edges. Note that all vertices of H have even degree. Since G is connected, H and C must have a common vertex ๐‘ข. Beginning with ๐‘ข construct a circuit ๐ถ1 for H. Now combine ๐ถand ๐ถ1 to form a larger circuit ๐ถ2 .If it is Eulerian. ie., if it contains all the edges of ๐บ,then ๐บ is Eulerian. Otherwise continue this process until we get an Eulerian circuit. Since ๐บ is finite this procedure must come to an end with a Eulerian circuit. Hence ๐บ is Eulerian. (ii)

Let ๐‘“: ๐บ โ†’ ๐บ โ€ฒ be a homomorphism of groups with kernel K. Then prove that K is a

normal subgroup of G and ๐บ/๐‘˜ is isomorphic to the image of f. Proof: Given ๐‘“: ๐บ โ†’ ๐บ โ€ฒ be a homomorphism from the group ๐บ,โˆ— to the group ๐บ โ€ฒ , โˆ† . Then ๐‘˜ = ker ๐‘“ = ๐‘ฅ โˆˆ ๐บ/๐‘“(๐‘ฅ) = ๐‘’ โ€ฒ is a normal sub-group of ๐บ,โˆ— Also we know that the quotient set (๐บ/๐‘˜, โจ‚) is a group ๐บ

Define ๐œ™: ๐บ/๐‘˜ โ†’ ๐บ โ€ฒ by ๐œ™ ๐‘˜๐‘Ž = ๐‘“ ๐‘Ž โˆ€ ๐‘˜๐‘Ž โˆˆ ๐‘˜ , ๐‘Ž โˆˆ ๐บ ๐“is well-defined: Let ๐‘˜๐‘Ž = ๐‘˜๐‘ โˆ€๐‘Ž, ๐‘ โˆˆ ๐บ

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A ๐‘˜๐‘Ž = ๐‘˜๐‘ โŸน ๐‘ โˆˆ ๐‘˜๐‘Ž, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘˜ โˆˆ ๐พ[โˆต ๐ป ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐‘œ๐‘“ ๐‘Ž ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐บ &๐‘Ž, ๐‘ โˆˆ ๐บ ๐‘ก๐‘•๐‘’๐‘› ๐‘Ž โˆˆ ๐ป โŸบ ๐ป๐‘Ž = ๐ป] โŸน ๐‘“ ๐‘ = ๐‘“ ๐‘˜๐‘Ž = ๐‘“ ๐‘˜ .๐‘“ ๐‘Ž = ๐‘’ โ€ฒ . ๐‘“(๐‘Ž)[โˆต ๐‘˜ = ๐‘˜ ๐‘˜ โˆˆ ๐บ&๐‘“ ๐‘˜ = ๐‘’ โ€ฒ ] โˆด๐‘“ ๐‘ =๐‘“ ๐‘Ž Thus ๐‘˜๐‘Ž = ๐‘˜๐‘ โŸน ๐œ™ ๐‘˜๐‘ = ๐œ™ ๐‘˜๐‘Ž โˆด ๐œ™is well defined. ๐“ ๐’Š๐’” ๐Ÿ โˆ’ ๐Ÿ: Let ๐œ™ ๐‘˜๐‘Ž = ๐œ™ ๐‘˜๐‘ โ‡’๐‘“ ๐‘Ž =๐‘“ ๐‘ โ‡’ ๐‘“ ๐‘Ž . [๐‘“ ๐‘ ]โˆ’1 = ๐‘“ ๐‘ . [๐‘“ ๐‘ ]โˆ’1 โ‡’ ๐‘“ ๐‘Ž . ๐‘“(๐‘ โˆ’1 ) = ๐‘’ โ€ฒ โ‡’ ๐‘“(๐‘Ž๐‘ โˆ’1 ) = ๐‘’ โ€ฒ โ‡’ ๐‘Ž๐‘ โˆ’1 โˆˆ ker ๐‘“ = ๐‘˜ โ‡’ ๐‘Ž๐‘ โˆ’1 โˆˆ ๐‘˜ โŸน ๐‘Ž โˆˆ ๐‘˜๐‘ โŸน ๐‘˜๐‘Ž = ๐‘˜๐‘ Thus ๐œ™ ๐‘˜๐‘Ž = ๐œ™ ๐‘˜๐‘ โŸน ๐‘˜๐‘Ž = ๐‘˜๐‘ โˆด ๐œ™ is 1-1 ๐“ is onto: Let ๐‘Žโ€ฒ โˆˆ ๐บ โ€ฒ & ๐‘“: ๐บ โ†’ ๐บ โ€ฒ is an epimorphism โŸน โˆƒ an element ๐‘Ž โˆˆ ๐บ โˆ‹: ๐‘“ ๐‘Ž = ๐‘Žโ€ฒ Hence ๐œ™ ๐‘˜๐‘Ž = ๐‘“ ๐‘Ž = ๐‘Žโ€ฒ ๐‘Žโ€ฒ โˆˆ ๐บ โ€ฒ โŸน โˆƒan element ๐‘˜๐‘Ž โˆˆ ๐บ/๐‘˜ โˆ‹: ๐œ™ ๐‘˜๐‘Ž = ๐‘Žโ€ฒ

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A โˆด ๐œ™ is onto. ๐“ is homomorphism: Let ๐‘˜๐‘Ž, ๐‘˜๐‘ โˆˆ ๐บ

๐‘˜, ๐‘Ž, ๐‘ โˆˆ ๐บ ๐œ™ ๐‘˜๐‘Ž๐‘˜๐‘ = ๐œ™ ๐‘˜๐‘Ž๐‘ = ๐‘“ ๐‘Ž๐‘ =๐‘“ ๐‘Ž ๐‘“ ๐‘ = ๐œ™ ๐‘˜๐‘Ž ๐œ™ ๐‘˜๐‘

โˆด ๐œ™ is homomorphism โˆด ๐œ™ is well defined,1-1,onto&homomorphism. โˆด ๐œ™ is an isomorphism Thus ๐บ/๐‘˜ โ‰… ๐บโ€ฒ. 5.(i) State and prove the Lagrangeโ€™s theorem . Statement : Lagrangeโ€™s theorem The order of a subgroup H of a finite group G divides the order of the group. ie) ๐‘‚(๐ป)/ ๐‘‚(๐บ). Proof:Given G is a finite group of order n . H is a subgroup of G, Let ๐‘‚ ๐บ = ๐‘› & ๐‘‚ ๐ป = ๐‘š ie |๐บ| = ๐‘› & |๐ป| = ๐‘š To prove: ๐‘‚(๐ป)/๐‘‚(๐บ). ie ) to prove :๐‘š/๐‘› G is finite โ‡’ There are only a finite number of distinct left cosets of H in G, let it be ๐‘Ž1 ๐ป, ๐‘Ž2 ๐ป,โ€ฆโ€ฆโ€ฆ, ๐‘Ž๐‘˜ ๐ป. These cosets are pairwise disjoint and ๐บ = ๐‘Ž1 ๐ป โˆช ๐‘Ž2 ๐ป โˆช โ€ฆ โ€ฆ โˆช ๐‘Ž๐‘˜ ๐ป Then ๐‘› = ๐‘‚ ๐บ = ๐‘‚ ๐‘Ž1 ๐ป + ๐‘‚ ๐‘Ž2 ๐ป + โ‹ฏ + ๐‘‚ ๐‘Ž๐‘˜ ๐ป = ๐‘‚ ๐ป + ๐‘‚ ๐ป + โ‹ฏ + ๐‘‚ ๐ป ๐‘˜ ๐‘ก๐‘–๐‘š๐‘’๐‘  = ๐‘˜๐‘‚ ๐ป =๐‘˜โˆ™๐‘š โŸน ๐‘š/๐‘›ie) ๐‘‚(๐ป)/๐‘‚(๐บ). (ii) Prove that every chain is distributive lattice.

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A Solution: Let ๐ฟ, โ‰ค be a chain and ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ฟ It enough to verify one of the conditions say๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (1) This is symmetric in b and c Since L is a chain either ๐‘ โ‰ค ๐‘ and ๐‘ โ‰ค ๐‘ Because of the symmetric of the roles of b and c We shall consider only of them say ๐‘ โ‰ค ๐‘ Then ๐‘โจ๐‘ = ๐‘ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) We have the following cases . Case i: ๐‘Ž โ‰ค ๐‘ โ‰ค ๐‘ Then ๐‘Ž โˆ— ๐‘ = ๐‘Ž, ๐‘Ž โˆ— ๐‘ = ๐‘Ž ๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ = ๐‘Ž [๐‘๐‘ฆ 2 ] ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ = ๐‘Žโจ๐‘Ž = ๐‘Ž ๐‘Žโˆ— ๐‘โˆ—๐‘ = ๐‘Žโˆ—๐‘ โจ ๐‘Žโˆ—๐‘ Case ii: ๐‘ โ‰ค ๐‘ โ‰ค ๐‘Ž Then ๐‘Ž โˆ— ๐‘ = ๐‘, ๐‘Ž โˆ— ๐‘ = ๐‘ ๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ = ๐‘ ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ = ๐‘โจ๐‘ = ๐‘ ๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ Case iii: ๐‘ โ‰ค ๐‘Ž โ‰ค ๐‘ Then ๐‘Ž โˆ— ๐‘ = ๐‘, ๐‘Ž โˆ— ๐‘ = ๐‘Ž ๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ = ๐‘Ž ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ = ๐‘โจ๐‘Ž = ๐‘Ž[โˆต ๐‘ โ‰ค ๐‘Ž] ๐‘Ž โˆ— ๐‘โจ๐‘ = ๐‘Ž โˆ— ๐‘ โจ ๐‘Ž โˆ— ๐‘ So, the distributive law hold in all the cases. Hence the result.

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A 6.(i) In any Boolean algebra, show that ๐‘Ž + ๐‘ โ€ฒ ๐‘ + ๐‘ โ€ฒ ๐‘ + ๐‘Žโ€ฒ = (๐‘Žโ€ฒ + ๐‘)(๐‘ โ€ฒ + ๐‘)(๐‘ โ€ฒ + ๐‘Ž) Solution: LHS= ๐‘Ž + ๐‘ โ€ฒ + 0 ๐‘ + ๐‘ โ€ฒ + 0 ๐‘ + ๐‘Žโ€ฒ + 0 = ๐‘Ž + ๐‘ โ€ฒ + ๐‘. ๐‘โ€ฒ ๐‘ + ๐‘ โ€ฒ + ๐‘Ž. ๐‘Žโ€ฒ ๐‘ + ๐‘Žโ€ฒ + ๐‘. ๐‘โ€ฒ โ€ฒ = ๐‘Ž + ๐‘ + ๐‘ . ๐‘Ž + ๐‘ โ€ฒ + ๐‘โ€ฒ . ๐‘ + ๐‘ โ€ฒ + ๐‘Ž . ๐‘ + ๐‘ โ€ฒ + ๐‘Žโ€ฒ . ๐‘ + ๐‘Žโ€ฒ + ๐‘ . ๐‘ + ๐‘Žโ€ฒ + ๐‘โ€ฒ = ๐‘Žโ€ฒ + ๐‘ + ๐‘ . ๐‘Žโ€ฒ + ๐‘ + ๐‘ โ€ฒ . ๐‘โ€ฒ + ๐‘ + ๐‘Ž . ๐‘โ€ฒ + ๐‘ + ๐‘Žโ€ฒ . { ๐‘โ€ฒ + ๐‘Ž + ๐‘ . ๐‘โ€ฒ + ๐‘Ž + ๐‘ โ€ฒ } = ๐‘Žโ€ฒ + ๐‘ + ๐‘๐‘โ€ฒ . ๐‘โ€ฒ + ๐‘ + ๐‘Ž๐‘Žโ€ฒ . ๐‘โ€ฒ + ๐‘Ž + ๐‘๐‘โ€ฒ = ๐‘Žโ€ฒ + ๐‘ + 0 . ๐‘โ€ฒ + ๐‘ + 0 . ๐‘โ€ฒ + ๐‘Ž + 0 = (๐‘Žโ€ฒ + ๐‘)(๐‘ โ€ฒ + ๐‘)(๐‘ โ€ฒ + ๐‘Ž) = ๐‘…. ๐ป. ๐‘† (ii)

Show that in a distributive and complemented lattice satisfied DeMorganโ€™s laws.

Proof: Let (L, ๏ƒ…๏€ช) be a Boolean lattice . Ie., L is complemented and distributive lattice. The De-Morganโ€™s laws are (i) ๐‘Žโจ๐‘ = ๐‘Ž โˆ— ๐‘ ;(ii)๐‘Ž โˆ— ๐‘ = ๐‘Žโจ๐‘ โˆ€๐‘Ž, ๐‘Ž, ๐‘ โˆˆ ๐ฟ Assume that ๐‘Ž, ๐‘ โˆˆ ๐ฟ. There exists elements ๐‘Ž, ๐‘ โˆˆ ๐ฟ such that ๐‘Žโจ๐‘Ž = 1; ๐‘Ž โˆ— ๐‘Ž = 0; ๐‘โจ๐‘ = 1; ๐‘ โˆ— ๐‘ = 0. Claim:๐‘Žโจ๐‘ = ๐‘Ž โˆ— ๐‘ Now ๐‘Ž โŠ• ๐‘ โŠ• ๐‘Ž โˆ— ๐‘ = ๐‘Ž โŠ• ๐‘ โŠ• ๐‘Ž โˆ— ๐‘Ž โŠ• ๐‘ โŠ• ๐‘ = ๐‘Žโจ๐‘Ž โŠ• ๐‘ โˆ— [๐‘Ž โŠ• ๐‘ โŠ• ๐‘ ] = 1โŠ•๐‘ โˆ— ๐‘ŽโŠ•1 =1โˆ—1=1 ๐‘ŽโŠ•๐‘ โˆ— ๐‘Žโˆ—๐‘ = ๐‘ŽโŠ•๐‘ โˆ—๐‘Ž โˆ— ๐‘ŽโŠ•๐‘ โˆ—๐‘ = (๐‘Ž โˆ— ๐‘Ž) โŠ• (๐‘ โˆ— ๐‘Ž) โˆ— [(๐‘Ž โˆ— ๐‘ ) โŠ• (๐‘ โˆ— ๐‘) ] = 0 โŠ• (๐‘ โˆ— ๐‘Ž) โˆ— [(๐‘Ž โˆ— ๐‘ ) โŠ• 0 ] = ๐‘ โˆ— ๐‘Ž โˆ— (๐‘Ž โˆ— ๐‘ ) = ๐‘โˆ— ๐‘Žโˆ—๐‘Ž โˆ—๐‘ = ๐‘โˆ— 0 โˆ—๐‘ =0 Hence (i) is proved (ii)Claim:๐‘Ž โˆ— ๐‘ = ๐‘Žโจ๐‘ Now ๐‘Ž โˆ— ๐‘ โŠ• ๐‘Žโจ๐‘ = ๐‘Ž โˆ— ๐‘ โŠ• ๐‘Ž โˆ— ๐‘Ž โˆ— ๐‘ โŠ• ๐‘ = ๐‘Žโจ๐‘Ž โˆ— (๐‘ โŠ• ๐‘Ž) โˆ— [(๐‘Ž โŠ• ๐‘) โŠ• (๐‘ โŠ• ๐‘) ] = 1 โˆ— (๐‘ โŠ• ๐‘Ž) โˆ— ๐‘Ž โŠ• ๐‘ โˆ— 1 = (๐‘ โŠ• ๐‘Ž) โŠ• (๐‘Ž โŠ• ๐‘) =๐‘โŠ• ๐‘ŽโŠ•๐‘Ž โŠ•๐‘ = ๐‘โŠ•1โŠ•๐‘ = 1 ๐‘Ž โˆ— ๐‘ โˆ— ๐‘Žโจ๐‘ = ๐‘Ž โˆ— ๐‘ โˆ— ๐‘Ž โˆ— ๐‘Ž โˆ— ๐‘ โˆ— ๐‘ = ๐‘Ž โˆ— ๐‘Ž โˆ— ๐‘ โŠ• [๐‘Ž โˆ— ๐‘ โˆ— ๐‘) ] = 0 โˆ— ๐‘ โŠ• [๐‘Ž โˆ— 0) ] = 0+0 =0

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A

Hence (ii) proved. 7.(i) Show that every chain is a lattice. Solution:Let (๐‘ƒ, โ‰ค) be a chain.so any two elements of p are comparable. So far any two elements ๐‘Ž, ๐‘ โˆˆ ๐‘ƒ, ๐‘’๐‘–๐‘ก๐‘•๐‘’๐‘Ÿ ๐‘Ž โ‰ค ๐‘ ๐‘œ๐‘Ÿ ๐‘ โ‰ค ๐‘Ž. Case i: Let ๐‘Ž โ‰ค ๐‘.Then b is an upper bound of{a,b} If c is any other upperbound of {a,b} then ๐‘Ž โ‰ค ๐‘ and ๐‘ โ‰ค ๐‘ Thus ๐‘ โ‰ค ๐‘ for every upper bound c of a and b. Hence b is the LUB {a,b} โŸน๐‘ŽโŠ•๐‘ =๐‘ Since ๐‘Ž โ‰ค ๐‘, a is a lower bound of {a,b}. If d is any other lower bound of {a,b} then ๐‘Ž โ‰ค ๐‘Ž and ๐‘‘ โ‰ค ๐‘ Thus ๐‘‘ โ‰ค ๐‘Ž for every lower bound d. Hence a is the GLB {a,b} โŸน๐‘Žโˆ—๐‘ =๐‘Ž Thus we have proved for any two elements a,b if ๐‘Ž โ‰ค ๐‘, then GLB and LUB exist for {a,b}. Caseii: Let ๐‘ โ‰ค ๐‘Ž.proceeding as above we can prove GLB and LUB exist for {a,b}. Thus for any ๐‘Ž, ๐‘ โˆˆ ๐‘ƒ by cases (i) and (ii) ๐‘Ž โˆ— ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ž โŠ• ๐‘ exist. Hence the chain (๐‘ƒ, โ‰ค) is a lattice.

๏ƒ™ 7(7Q ๏ƒš 7P)] Sol. P ๏‚ฎ [(P ๏‚ฎ Q) ๏ƒ™ 7(7Q ๏ƒš 7P)] ๏ƒ› 7P ๏ƒš [(P ๏‚ฎ Q) ๏ƒ™ 7(7Q๏ƒš 7P)] ๏ƒ› 7P๏ƒš [(7P๏ƒš Q) ๏ƒ™ (Q ๏ƒ™ P)] ii) Obtain PCNF and PDNF of P ๏‚ฎ [(P ๏‚ฎ Q)

๏ƒ› [7P๏ƒš (7P๏ƒš Q)] ๏ƒ™ [7P๏ƒš (Q ๏ƒ™ P)] ๏ƒ› [(7P๏ƒš 7P) ๏ƒš Q] ๏ƒ™ [(7P๏ƒš Q) ๏ƒ™ (7P๏ƒš P)] ๏ƒ› (7P๏ƒš Q) ๏ƒ™ [(7P๏ƒš Q) ๏ƒ™ T]

Agni College of Technology DEPARTMENT OF CSE

Subject Name: DISCRETE MATHEMATICS Subject code :MA 6566 Important Question and Answers PART-A

๏ƒ› (7P๏ƒš Q) ๏ƒ™ (7P๏ƒš Q) ๏ƒ› (7P๏ƒš Q), which is PCNF. To find PDNF

Now,7A ๏ƒ› (P ๏ƒš Q) ๏ƒ™ (P ๏ƒš 7Q) ๏ƒ™ (7P ๏ƒš 7Q) 7(7A) ๏ƒ› 7 [(P ๏ƒš Q) ๏ƒ™ (P ๏ƒš 7Q) ๏ƒ™ (7P ๏ƒš 7Q)] A ๏ƒ› 7(P๏ƒš Q) ๏ƒš 7(P๏ƒš 7Q) ๏ƒš 7(7P๏ƒš 7Q) A ๏ƒ› (7P ๏ƒ™ 7Q) ๏ƒš (7P ๏ƒ™ Q) ๏ƒš (P ๏ƒ™ Q) which is PDNF.

DM (1).PDF

Define Semigroup and monoid. Give an example of a semigroup which is not amonoid. Sol. Semigroup: A non empty set S together with a binary operation is called a semigroup if the following. conditions are satisfied. a. a b S a,b S ( Closure). b. a (b c) = (a b) c a,b,c S ( Associative ). Page 3 of 16. DM (1).PDF.

872KB Sizes 3 Downloads 300 Views

Recommend Documents

dm-e.pdf
DEPUTY MANAGER (ELECTRICAL) FOR ITS PLANT SITE, SURAT ... scale continuously operating process industry like fertilizers, ... Displaying dm-e.pdf.

DM BedZED.pdf
Page 1 of 2. BedZED ou Beddington Zero Energy (fossil). Development est un รƒยฎlot rรƒยฉsidentiel composรƒยฉ de 82. logements, situรƒยฉ dans le borough (district) deย ...

Chapman DM, Char DM, Aubin CD. Clinical decision ...
clinical decision naking and has been described as the scientific method of clinical medicine."" Diagnostic and Management. Processes of Clinical Decision Making. Emergency physicians operate in situations in which even small mistakes may cause high

DM-OLEDCC15-622Datasheet.pdf
Serial Interface Timing Characteristics: (4-wire SPI). Serial Interface Timing Characteristics: (3-wire SPI). Driver/Controller Information. Functional Specification. Power down and Power up Sequence. Power up Sequence. Power down Sequence. Reset Cir

DM-LCD0802-417Datasheet.pdf
WITH PARALLEL MPU INTERFACE. Page 1 of 14 ... Driver/Controller Information. Reliability ... Number of Characters 8 characters x 2 lines. Display Mode STNย ...

DM-TFT28-105_SCH.pdf
VSYNC 11. HSYNC 12. DOTCLK 13. DE 14. DB17 15 DB16 16 DB15 17 DB14 18 DB13 19 DB12 20 DB11 21 DB10 22 DB9 23 DB8 24 DB7 25 DB6 26 DB5 27ย ...

DM-TFT13-330Datasheet.pdf
Download. Connect more apps... Try one of the apps below to open or edit this item. DM-TFT13-330Datasheet.pdf. DM-TFT13-330Datasheet.pdf. Open. Extract.

DM-ADTAU-003_SCH.pdf
PIU5020. PIU602. PIU604. NLVCC. PIC2301. PIICSP02. PIJ504 PIJ104. PIU603. NLVDD5. Page 1 of 1. DM-ADTAU-003_SCH.pdf. DM-ADTAU-003_SCH.pdf.

Notice dm mch.pdf
Sign in. Page. 1. /. 1. Loadingรขย€ยฆ Page 1 of 1. Page 1 of 1. Notice dm mch.pdf. Notice dm mch.pdf. Open. Extract. Open with. Sign In. Main menu. Page 1 of 1.

8937 DM NEPHROLOGY.pdf
70 30022 JOHN JACOB KUTTYKANDATHIL 08/11/1985 28 72 40 1 70 No. 71 23175 CHANDRA ADITYA DASARI B 13/05/1990 22 50 38 0 71 No. Page 2 of 2. 8937 DM NEPHROLOGY.pdf. 8937 DM NEPHROLOGY.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying 8937 D

crisp-dm 1.0
CRISP-DM was conceived in late 1996 by three รขย€ยœveteransรขย€ย of the young and immature data mining market. DaimlerChrysler (then Daimler-Benz) was alreadyย ...

8935 DM NEUROLOGY.pdf
Page 1 of 2. SLNO ROLL NO. NAME OF THE CANDIDATE DOB. (dd/mm/yyyy). CORRECT. RESPONSE. NEGATIVE. RESPONSE. TOTAL. MARKS PERCENTILE RANK ELIGIBILITY. 1 28318 SOURABH JAIN 03/07/1987 71 27 257 99 1 Yes. 2 29048 VAIBHAV TANDON 26/06/1989 67 26 242 98 2

DM-TFT35-107_SCH.pdf
Page 1 of 1. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. 6. D D. C C. B B. A A. A0 1. A1 2. A2 3. A3 4. A4 5. A5 6. J3. CON_ARDUINO_A. /RESET 3. 3V3 4. 5V 5. GND 6. GND 7.

DM-TFT24-104_SCH.PDF
K. SD_. C. S. SD_MOS. I. SD_. C. LK. SD_M. I. S. O. 3 . 0. V. 2. 1. J. 3CON2. R. 5. 10K. 3 . 0. V. I. M. 0. GND. 6. X4. Y+. 3. Y5 IN3 7. VC. C. 1. VC. C. 1. 0. IN4. 8. X+. 2. PENI. R. Q. 1. 1 DOUT 12 CS 15 CLK 16. DIN. 1. 4. B. US. Y. 1. 3. Vre. f. 9

8939 DM ENDOCRINOLOGY.pdf
92 23169 LAKSHMI DEEPA V 15/04/1983 46 44 140 11 92 No. 93 29066 ASHWINI B R 06/11/1987 44 44 132 10 93 No. 94 31129 KASUKURTI LAVANYA 04/05/1989 40 29 131 9 94 No. 95 31263 BADVELI LAKSHMI ANUSHA 18/05/1989 41 36 128 8 95 No. 96 25129 NARAYANA MURTH

DM-TFT43-108_SCH.pdf
Sign in. Loadingรขย€ยฆ Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying.

DM-OLEDCC17-623Datasheet.pdf
Item Specification Unit. Diagonal Size 1.69 inch. Display Mode Passive Matrix OLED -. Display Colors 262,144 Colors. Resolution 160(RGB) x 128 pixel. Controller IC SEPS525 -. Duty 1/128 duty. Interface Serial or 6800/8080-series MPU Parallel -. Power

DM-TFT18-101_SCH.pdf
ber. Rev. Dat. e. S. heet. o. f. 1 . 8. " T. F. T Base B. oard. B. DMT. F. T. 1. 8-1. 0. 1. 1 . 0. 2. 0. 1. 3. /. 1. 2. /. 2. 2. 1. 1. D. raw. n B. y. w. w. w.displaymodu. l. e .co. m.

8934 DM NEONATOLOGY.pdf
2 28111 RAJA ASHOK KOGANTI 13/11/1988 76 24 280 98 2 Yes. 3 28367 PARTHA PRATIM MANDAL 31/12/1984 75 22 278 97 3 Yes. 4 22053 GAURAV DADHICH 10/07/1982 75 23 277 96 4 Yes. 5 23140 KIRAN KUMAR HARIDAS 20/04/1985 73 24 268 95 5 Yes. 6 23121 NALINA A 10

dm-4800 owner's manual - Musicworld.bg
software. รขย€ยข A guide to the use of the DM-4800's automation features. รขย€ยข Warranty card. WARNING. The DM-4800 is a large and bulky piece of equipment. We strongly suggest ...... To set the type of filter for a band, press and hold the. CTRL key to t

DM 268.pdf
"I can honestly say that we are the preppiesi rebel army. in Central America," Calero said last night. "Win or lose. (the civil war] we can revel in the fact that we looked. sharp." Regan commented: "They look marvelous." The Players. Pholos Courtesy

DM 413.pdf
Loadingรขย€ยฆ Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. DM 413.pdf. DM 413.pdf. Open. Extract. Op

dm-4800 owner's manual - Musicworld.bg
AC power cable. รขย€ยข A CF card, pre-formatted, and installed in the card slot of the DM-4800. รขย€ยข A USB cable. รขย€ยข A CD-ROM containing the utility software and ..... BUS MSTR LVL. 1 รขย€ย“ 24. Global. 24 buss levels controlled by encoders acting as fader

DM-SDS-2017-033.pdf
Sign in. Loadingรขย€ยฆ Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying.