Therefore, S(f ) = T 2 sinc2 (πf T ). Option (c) is correct. 1 Q2: S(f0 ) = 0 ⇒ sin(πf0 T ) = 0 ⇒ f0 = T Option (a) is correct. Q3: Fourier transform can be calculated as: Z X(f ) =
∞
exp(−σt) exp(−2πjf t)dt =
0
1 σ + 2πjf
1 Therfore, S(f ) = |X(f )|2 = 2 σ + 4π 2 f 2 Option (c) is correct. Q4: Energy contained within the band [−f, f ] is calculated as: Z f df 0 1 2πf −1 E(f ) = = tan 2 2 02 πσ σ −f σ + 4π f Therefore, total energy of the signal is: lim E(f ) =
f →∞
1 2σ
From definition, σ 0.9 ⇒ f90 = tan E(f90 ) = 2σ 2π
0.9π 2
Option (b) is correct. Q5: Using differentiation property, x(t) = sinc(tT ) ←→ Therefore, S(f ) =
4π 2 f 2 rect2 T2
1 rect T
t t dx(t) 2πjf ⇒ ←→ rect T dt T T
t T
Option (d) is correct. Q6: Note that, Z E(f ) =
f
S(f 0 )df 0
0
dE(f ) Then, S(f ) = = f 2 exp(−σf ). df Option (d) is correct. σf S(f ) = f exp − , f > 0. The Fourier transform therefore, can 2 σf exp (−2πjf T ) , f > 0 X(f ) = f exp − 2
Q7: The magnitude response is given by: |X(f )| = be calculated as:
p
2
The signal is given by Inverse Fourier transform: Z ∞ Z 0 X(f ) exp(2πjf t)df X(f ) exp(2πjf t)df + x(t) = 0 Z Z−∞ ∞ ∞ X(f ) exp(2πjf t)df X(−f ) exp(−2πjf t)df + = 0 0 Z ∞ Z ∞ X(f ) exp(2πjf t)df X ∗ (f ) exp(−2πjf t)df + = 0
0
Now, ∞
Z
∞
Z X(f ) exp(2πjf t)df =
0
0
σf f exp − exp(2πjf (t − T ))df 2
and Z
∞
X ∗ (f ) exp(2πjf t)df =
0
Z 0
Therefore,
Z x(t) = 0
∞
∞
σf exp(2πjf (t + T ))df f exp − 2
σf 2f exp − cos(2πf T ) exp(2πjf t)df 2
Option (a) is correct. Q8: Autocorrelation can be calculated as follows: Z ∞ Rx (τ ) = x(t)x(t + τ )dt −∞ Z ∞ 1 1 exp − t2 + (t + τ )2 dt = 2 −∞ 2π Z ∞ 1 τ2 1 exp − 2(t + τ /2)2 + dt = 2 2 −∞ 2π 2Z ∞ 2 τ 1 1 y √ exp − = √ exp − dy 4 2 2 π 2π 2 −∞ 1 τ = √ exp − 4 2 π
Replacing y =
√
2(t + τ /2)
Option (b) is correct. Q9: Fourier transform of Autocorrelation function, Rx (τ ) (which equals to the ESD of x(t)) can be calculated as: Z ∞ S(f ) = Rx (τ ) exp(−2πjf τ )dτ −∞ Z ∞ 1 1 = √ exp − (τ + 4πjf )2 − 4π 2 f 2 dτ 4 2 π −∞ 2 Z ∞ (τ + 4πjf ) 1 y √ = √ exp(−4π 2 f 2 ) exp − dy Replacing y = 2 2π 2 −∞ 2 2 = exp(−4π f ) Using the identity given in Q1 Option (b) is correct. Q10: Note that x(t) can be rewritten as follows: ( exp(−σt) [exp(jωt) + exp(−jωt)] t ≥ 0 x(t) = 0 elsewhere
3
Fourier transform, X(f ) of the signal can be found as follows: Z ∞ x(t) exp(−2πjf t)dt X(f ) = −∞ Z ∞ Z = exp(−(σ − jω + 2πjf )t)dt + 0
Loading⦠Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Week3 Solution.pdf. Week3 Sol