Entire Frame Image Display Employing Monotonic Convergent Non-negative Matrix Factorization Yogesh Kumar Soniwal Supervisors: Prof. K. S. Venkatesh, Department of Electrical Engineering and Prof. Amit Mitra, Department of Mathematics and Statistics

Department of Electrical Engineering Indian Institute of Technology Kanpur May 6, 2014

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

1 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

Contents

Overview of the thesis Methodology used (SNMSR) Approach-I and its limitations Approach-II (Monotonic non-negative matrix factorization (NNMF)) Comparison of Approach-I and Approach-II

Randomized Monotonic NNMF Mid-point Monotonic NNMF Monotonic converging matrix series representation Conclusion Future work

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

2 / 49

The Why: Diode Lifespan Diminution in OLED Displays

Horizontal lines (Rows)

Vertical lines (Columns)

Figure: Schematic diagram of an OLED display

Intensity of (m, n)th pixel: η Driving (m, n)th pixel: Ground mth row for t time and supply l current at nth column, such that l×t=η Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

3 / 49

The What: Entire Frame Image Display

Figure: Illustration: Entire Frame Image Display

Representation of a non-negative matrix I in terms of W1 × H1 + . . . + WK × HK is termed as Separable Non-negative Matrix Series Representation (SNMSR) of I. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

4 / 49

The How: NNMF and SNMSR

k ← 0

≤ ⃪ ⃪ ⃪





Figure: Sub-frame computation - “Approach-I” Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

5 / 49

Notations

k th partial sum Pk =

k X

Iir

i=1

k th residue Jk = I − Pk Note: J0 = I is the initial (zeroth ) residue.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

6 / 49

NNMF NNMF: Approximation of a non-negative matrix IM ×N as W × H WM ×p and Hp×N both are of rank p ≤ min{M, N }. Problem Formulation: Minimize mean square error according to the following convex optimization problem ([Lee et. al, 1999]) [W, H] = argmin ||I − W × H||2F subject to W ≥ 0, H ≥ 0 The Frobenius norm ||AP ×Q ||F of matrix A is defined as v u P Q uX X ||A||F = t |aij |2 i=1 j=1

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

7 / 49

NNMF NNMF: Approximation of a non-negative matrix IM ×N as W × H WM ×p and Hp×N both are of rank p ≤ min{M, N }. Problem Formulation: Minimize mean square error according to the following convex optimization problem ([Lee et. al, 1999]) [W, H] = argmin ||I − W × H||2F subject to W ≥ 0, H ≥ 0 The Frobenius norm ||AP ×Q ||F of matrix A is defined as v u P Q uX X ||A||F = t |aij |2 i=1 j=1

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

7 / 49

Alternating Least Square-NNMF (ALS-NNMF)

ALS-NNMF ([Berry et. al, 2007]) Initialize W as random matrix of size M × p for i = 1 to iter do Solve H from W T W H = W T I Set all negative elements in H to 0 Solve W from HH T W T = HI T Set all negative elements in W to 0 end for

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

8 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33     w1 a11 a12 a13  I1 = w2  × h1 h2 h3 = a21 a22 a23  w3 a31 a32 a33 Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33     w1 a11 a12 a13  I1 = w2  × h1 h2 h3 = a21 a22 a23  w3 a31 a32 a33 Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33    w1 a11 a12 a13  I1 = w2  × h1 h2 h3 = a21 a22 a23  0      a32 a33 a31 w3  

Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33    w1 a 11 a12 a13   0  a22 a23  a21 I1 = w2  × h1 h2 h3 =  0      a33 a31 a32 w3  

Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33     a13 w1 a a12 11    0 0   a21 a a23  I1 = w2  × h1 h2 h3 =  22 0      a33 a32 a31 w3  

Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Overshoots Removal: Reduction Process (Step-2)

Example: 

 i11 i12 i13 I = i21 i22 i23  i31 i32 i33     a13 w1 a a12 11    0 0   a21 a a23  I1 = w2  × h1 h2 h3 =  22 0      a33 a32 a31 w3  

Problem: A lot of superfluous reduction process takes place. Solution: Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

9 / 49

Monotonic NNMF

Problem Formulation: Given a non-negative matrix IM ×N , find two matrices WM ×1 and H1×N , that approximate I to W × H as closely as possible, subject to the following constraints on W and H: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , M }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , M } & ∀ s = {1, . . . , N }. Third constraints are monotonic constraints. Initialization: Choose h1 ∈ [0, i11 ] randomly.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

10 / 49

Monotonic NNMF

Problem Formulation: Given a non-negative matrix IM ×N , find two matrices WM ×1 and H1×N , that approximate I to W × H as closely as possible, subject to the following constraints on W and H: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , M }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , M } & ∀ s = {1, . . . , N }. Third constraints are monotonic constraints. Initialization: Choose h1 ∈ [0, i11 ] randomly.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

10 / 49

Monotonic NNMF

Problem Formulation: Given a non-negative matrix IM ×N , find two matrices WM ×1 and H1×N , that approximate I to W × H as closely as possible, subject to the following constraints on W and H: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , M }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , M } & ∀ s = {1, . . . , N }. Third constraints are monotonic constraints. Initialization: Choose h1 ∈ [0, i11 ] randomly.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

10 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, h1 ≥ 0 and w1 h1 ≤ i11 . From above equation we get, w1 = Yogesh Kumar Soniwal (IIT Kanpur)

i11 . h1

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, h1 ≥ 0 and w1 h1 ≤ i11 . From above equation we get, w1 = Yogesh Kumar Soniwal (IIT Kanpur)

i11 . h1

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, h1 ≥ 0, h2 ≥ 0, w1 h1 ≤ i11 and w1 h2 ≤ i12 . Here, the new variable is h2 . From monotonic constraints of h2 corresponding to this block matrix we get, h2 = Yogesh Kumar Soniwal (IIT Kanpur)

i12 . w1

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, h1 ≥ 0, h2 ≥ 0, w1 h1 ≤ i11 and w1 h2 ≤ i12 . Here, the new variable is h2 . From monotonic constraints of h2 corresponding to this block matrix we get, h2 = Yogesh Kumar Soniwal (IIT Kanpur)

i12 . w1

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, w2 ≥ 0, h1 ≥ 0, h2 ≥ 0, w1 h1 ≤ i11 , w1 h2 ≤ i12 , w2 h1 ≤ i21 and w2 h2 ≤ i22 . Here, the new variable is w2 . From monotonic constraints of w2 corresponding to this block matrix we get,   i21 i22 , . w2 = min h1 h2 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, w2 ≥ 0, h1 ≥ 0, h2 ≥ 0, w1 h1 ≤ i11 , w1 h2 ≤ i12 , w2 h1 ≤ i21 and w2 h2 ≤ i22 . Here, the new variable is w2 . From monotonic constraints of w2 corresponding to this block matrix we get,   i21 i22 , . w2 = min h1 h2 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, w2 ≥ 0, h1 ≥ 0, h2 ≥ 0, h3 ≥ 0, w1 h1 ≤ i11 , w1 h2 ≤ i12 , w1 h3 ≤ i13 , w2 h1 ≤ i21 , w2 h2 ≤ i22 and w2 h3 ≤ i23 . Here, the new variable is h3 . From monotonic constraints of h3 corresponding to this block matrix we get,   i13 i23 h3 = min , . w1 w2 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, w2 ≥ 0, h1 ≥ 0, h2 ≥ 0, h3 ≥ 0, w1 h1 ≤ i11 , w1 h2 ≤ i12 , w1 h3 ≤ i13 , w2 h1 ≤ i21 , w2 h2 ≤ i22 and w2 h3 ≤ i23 . Here, the new variable is h3 . From monotonic constraints of h3 corresponding to this block matrix we get,   i13 i23 h3 = min , . w1 w2 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm 

i13 i23 i33 .. .

··· ··· ··· .. .

i1N i2N i3N .. .

iM 1 iM 2 iM 3

···

iM N

i11  i21   i31   ..  .

i12 i22 i32 .. .

      

Local constraints corresponding to the block matrix are: w1 ≥ 0, w2 ≥ 0, h1 ≥ 0, h2 ≥ 0, h3 ≥ 0, w1 h1 ≤ i11 , w1 h2 ≤ i12 , w1 h3 ≤ i13 , w2 h1 ≤ i21 , w2 h2 ≤ i22 and w2 h3 ≤ i23 . Here, the new variable is h3 . From monotonic constraints of h3 corresponding to this block matrix we get,   i13 i23 h3 = min , . w1 w2 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

11 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , k}, ∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , k}, ∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , k}, ∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , k}, ∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Here, the new variable is wk . From monotonic constraints of wk corresponding to this block matrix we get,   ik1 ikk wk = min ,..., . h1 hk Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 1. Vertical Traversal  i11 ··· i1k i1,k+1  .. . .. . .. ..  . .  ik−1,1 · · · ik−1,k ik−1,k+1   ik1 ··· ikk ik,k+1   ik+1,1 · · · ik+1,k ik+1,k+1   .. .. .. ..  . . . . iM 1 ··· iM k iM,k+1

··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Here, the new variable is wk . From monotonic constraints of wk corresponding to this block matrix we get,   ik1 ikk wk = min ,..., . h1 hk Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

12 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0

∀ r = {1, . . . , k − 1},

hs ≥ 0

∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k − 1} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0

∀ r = {1, . . . , k − 1},

hs ≥ 0

∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k − 1} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0

∀ r = {1, . . . , k − 1},

hs ≥ 0

∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k − 1} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Local constraints corresponding to the block matrix are: wr ≥ 0

∀ r = {1, . . . , k − 1},

hs ≥ 0

∀ s = {1, . . . , k} and

wr hs ≤ irs ∀ r = {1, . . . , k − 1} & ∀ s = {1, . . . , k}. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Here, the new variable is hk . From monotonic constraints of hk corresponding to this block matrix we get,   ik−1,k i1k hk = min ,..., . w1 wk−1

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm A general step: 2. Horizontal Traversal  i11 ··· i1,k−1 i1k i1,k+1  .. . . .. . .. .. ..  . .  ik−1,1 · · · ik−1,k−1 ik−1,k ik−1,k+1   ik1 ··· ik,k−1 ikk ik,k+1   .. . . .. . .. .. ..  . . iM 1 ··· iM,k−1 iM k iM,k+1

··· .. . ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ..  .  iM N

Here, the new variable is hk . From monotonic constraints of hk corresponding to this block matrix we get,   ik−1,k i1k hk = min ,..., . w1 wk−1

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

13 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm

Example:  i11 i21  i31 i41

i12 i22 i32 i42

i13 i23 i33 i43

Yogesh Kumar Soniwal (IIT Kanpur)

 i14 i24   i34  i44



i11 i21  i31 i41

 i12   i22   i11 i12 i13 i14 i32  i21 i22 i23 i24 i42

Monotonic NNMF & SNMSR

May 6, 2014

14 / 49

Monotonic NNMF Algorithm The last step in a square matrix  i11 ···  .. ..  . .  iN −1,1 · · · iN 1 ···

i1N .. .



   iN −1,N  iN N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , N }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , N } & ∀ s = {1, . . . , N }.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

15 / 49

Monotonic NNMF Algorithm The last step in a square matrix  i11 ···  .. ..  . .  iN −1,1 · · · iN 1 ···

i1N .. .



   iN −1,N  iN N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , N }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , N } & ∀ s = {1, . . . , N }.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

15 / 49

Monotonic NNMF Algorithm The last step in a square matrix  i11 ···  .. ..  . .  iN −1,1 · · · iN 1 ···

i1N .. .



   iN −1,N  iN N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , N }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , N } & ∀ s = {1, . . . , N }.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

15 / 49

Monotonic NNMF Algorithm The last step in a square matrix  i11 ···  .. ..  . .  iN −1,1 · · · iN 1 ···

i1N .. .



   iN −1,N  iN N

Local constraints corresponding to the block matrix are: wr ≥ 0 hs ≥ 0

∀ r = {1, . . . , N }, ∀ s = {1, . . . , N } and

wr hs ≤ irs ∀ r = {1, . . . , N } & ∀ s = {1, . . . , N }.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

15 / 49

Monotonic NNMF Algorithm

Horizontal only traversal step in a fat matrix:  i11 · · · i1,k−1 i1k i1,k+1 · · ·  .. .. .. .. .. ..  . . . . . . iM 1 · · · iM,k−1 iM k iM,k+1 · · ·

 i1N ..  .  iM N

Similar to a horizontal traversal, we get   iM k i1k ,..., . hk = min w1 wM

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

16 / 49

Monotonic NNMF Algorithm

Horizontal only traversal step in a fat matrix:  i11 · · · i1,k−1 i1k i1,k+1 · · ·  .. .. .. .. .. ..  . . . . . . iM 1 · · · iM,k−1 iM k iM,k+1 · · ·

 i1N ..  .  iM N

Similar to a horizontal traversal, we get   iM k i1k hk = min ,..., . w1 wM

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

16 / 49

Monotonic NNMF Algorithm

Horizontal only traversal step in a fat matrix:  i11 · · · i1,k−1 i1k i1,k+1 · · ·  .. .. .. .. .. ..  . . . . . . iM 1 · · · iM,k−1 iM k iM,k+1 · · ·

 i1N ..  .  iM N

Similar to a horizontal traversal, we get   iM k i1k hk = min ,..., . w1 wM

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

16 / 49

Monotonic NNMF Algorithm

Horizontal only traversal step in a fat matrix:  i11 · · · i1,k−1 i1k i1,k+1 · · ·  .. .. .. .. .. ..  . . . . . . iM 1 · · · iM,k−1 iM k iM,k+1 · · ·

 i1N ..  .  iM N

Similar to a horizontal traversal, we get   iM k i1k hk = min ,..., . w1 wM

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

16 / 49

Monotonic NNMF Algorithm

Horizontal only traversal step in a fat matrix:  i11 · · · i1,k−1 i1k i1,k+1 · · ·  .. .. .. .. .. ..  . . . . . . iM 1 · · · iM,k−1 iM k iM,k+1 · · ·

 i1N ..  .  iM N

Similar to a horizontal traversal, we get   i1k iM k hk = min ,..., . w1 wM

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

16 / 49

Monotonic NNMF Algorithm Vertical only traversal step in a  i11  ..  .  ik−1,1   ik1   ik+1,1   ..  . iM 1

fat matrix: ··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Similar to a vertical traversal, we get   ik1 ikN wk = min ,..., . h1 hN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

17 / 49

Monotonic NNMF Algorithm Vertical only traversal step in a  i11  ..  .  ik−1,1   ik1   ik+1,1   ..  . iM 1

fat matrix: ··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Similar to a vertical traversal, we get   ik1 ikN wk = min ,..., . h1 hN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

17 / 49

Monotonic NNMF Algorithm Vertical only traversal step in a  i11  ..  .  ik−1,1   ik1   ik+1,1   ..  . iM 1

fat matrix: ··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Similar to a vertical traversal, we get   ik1 ikN wk = min ,..., . h1 hN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

17 / 49

Monotonic NNMF Algorithm Vertical only traversal step in a  i11  ..  .  ik−1,1   ik1   ik+1,1   ..  . iM 1

fat matrix: ··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Similar to a vertical traversal, we get   ik1 ikN wk = min ,..., . h1 hN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

17 / 49

Monotonic NNMF Algorithm Vertical only traversal step in a  i11  ..  .  ik−1,1   ik1   ik+1,1   ..  . iM 1

fat matrix: ··· .. . ··· ··· ··· .. . ···

 i1N ..  .   ik−1,N   ikN   ik+1,N   ..  .  iM N

Similar to a vertical traversal, we get   ik1 ikN wk = min ,..., . h1 hN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

17 / 49

Computational Complexity of ALS-NNMF

ALS-NNMF: Computational Complexity Calculate H from W T W H = W T I WT I → O MN WTW → O M





 (W T W )−1 → O 1   Overall (in calculating H): O M N + O M + O   Overall (in calculating W ): O N M + O N + O

  1 ∼ O MN   1 ∼ O MN  Computational complexity of ALS-NNMF: O 2 × iter × M N

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

18 / 49

Computational Complexity of Monotonic NNMF

Square Matrix # of division operations in computing wk : k, ∀k = {1, . . . , N } # of division operations in computing hk : k − 1, ∀k = {1, . . . , N } Hence total # of operations: N X k=1

Yogesh Kumar Soniwal (IIT Kanpur)

k+

N X (k − 1) = N 2 k=1

Monotonic NNMF & SNMSR

May 6, 2014

19 / 49

Computational Complexity of Monotonic NNMF Tall Matrix # of division operations in computing hk : k − 1, ∀k = {1, . . . , N } # of division operations in computing wk : k, ∀k = {1, . . . , N } # of division operations in computing wk : N , ∀k = {N + 1, . . . , M } Hence total # of operations: N X k=1

(k − 1) +

N X

k + N (M − N ) = M N

k=1

Fat Matrix From symmetry, total operations: M N (by interchanging M and N )

Computational Complexity of Monotonic NNMF Hence computational complexity of Monotonic NNMF is O M N Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR



May 6, 2014

20 / 49

Time Elapsed Comparison of ALS and Monotonic NNMF Time elapsed comparison of ALS−NNMF and Monotonic NNMF (Excluding reduction process) 0.09 ALS−NNMF Monotonic−NNMF 0.08

0.07

Time(sec.)

0.06

0.05

0.04

0.03

0.02

0.01

100

200

300

400

500 600 Matrix Size (n)

700

800

900

1000

Figure: Time elapsed comparison for ALS-NNMF and Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

21 / 49

Approach-II of Sub-frame Computation

k ← 0





Figure: Sub-frame computation - “Approach-II (Monotonic NNMF)”

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

22 / 49

Time Elapsed in One Sub-frame Computation Time elapsed comparison of Approach−I and Approach−II for SNMSR computation 0.02 1

0.018

0.016

0

10

0.014

0.012

−1

10

0.01 −2

0.008

10

0.006 −3

10

0.004

Approach−II (Monotonic NNMF) − Time(sec.)

Approach−I (ALS−NNMF followed by reduction) − Time(sec.)

10

0.002 −4

10

0

100

200

300

400

500 600 Matrix Size (n)

700

800

900

0 1000

Figure: Time elapsed in one sub-frame computation for Approach-I and Approach-II

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

23 / 49

RMSE Comparison of Approach-I And Approach-II

RMSE RMSE in first sub-frame (I1 = W × H) computation is defined as s ||I − W H||2F RMSE = MN

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

24 / 49

RMSE Comparison of Approach-I and Approach-II RMSE in first sub−frame computation for Approach−I and Approach−II 150

Approach−I (ALS−NNMF followed by reduction) Approach−II (Monotonic NNMF)

RMSE

100

50

0

0

100

200

300

400

500 Matrix Size (n)

600

700

800

900

1000

Figure: RMSE in first sub-frame computation Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

25 / 49

SNMSR Employing Monotonic NNMF Example: 

 130 31 12 102 46 230  I=  19 61 240 61 106 125 11.4 2.72 1.05  11.4 130 31 12  8.95   102 24.3 9.4  I1 = W1 × H1 =  1.67 19 4.5 1.8  5.35 61 14.5 5.6   0 0 0 0 21.7 220.6  ⇒ J1 = I − I1 =  0 56.5 238.2 0 91.5 119.4 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 130 31 12 102 46 230  I=  19 61 240 61 106 125 11.4 2.72 1.05  11.4 130 31 12  8.95   102 24.3 9.4  I1 = W1 × H1 =  1.67 19 4.5 1.8  5.35 61 14.5 5.6   0 0 0 0 21.7 220.6  ⇒ J1 = I − I1 =  0 56.5 238.2 0 91.5 119.4 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 130 31 12 102 46 230  I=  19 61 240 61 106 125 11.4 2.72 1.05  11.4 130 31 12  8.95   102 24.3 9.4  I1 = W1 × H1 =  1.67 19 4.5 1.8  5.35 61 14.5 5.6   0 0 0 0 21.7 220.6  ⇒ J1 = I − I1 =  0 56.5 238.2 0 91.5 119.4 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 21.7 220.6  J1 =  0 56.5 238.2 0 91.5 119.4 0 0 0 24.62  0  I2 = W2 × H2 = 26.6  0 13.32 0 

0.88 8.96  0 0 21.7 220.6   23.4 238.2  11.7 119.4  0 0 0 0 0 0  ⇒ J 2 = I − I1 − I2 =  0 33.1 0 0 79.8 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 21.7 220.6  J1 =  0 56.5 238.2 0 91.5 119.4 0 0 0 24.62  0  I2 = W2 × H2 = 26.6  0 13.32 0 

0.88 8.96  0 0 21.7 220.6   23.4 238.2  11.7 119.4  0 0 0 0 0 0  ⇒ J 2 = I − I1 − I2 =  0 33.1 0 0 79.8 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 21.7 220.6  J1 =  0 56.5 238.2 0 91.5 119.4 0 0 0 24.62  0  I2 = W2 × H2 = 26.6  0 13.32 0 

0.88 8.96  0 0 21.7 220.6   23.4 238.2  11.7 119.4  0 0 0 0 0 0  ⇒ J 2 = I − I1 − I2 =  0 33.1 0 0 79.8 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 0 0  J2 =  0 33.1 0 0 79.8 0 0 0 0 0  0 I3 = W3 × H3 = 1.59  0 3.84 0

20.77 0 0 33.1 79.8  0 0 0 0 ⇒ J3 = I − I1 − I2 − I3 =  0 0 0 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

0  0 0  0 0  0 0  0 0 May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 0 0  J2 =  0 33.1 0 0 79.8 0 0 0 0 0  0 I3 = W3 × H3 = 1.59  0 3.84 0

20.77 0 0 33.1 79.8  0 0 0 0 ⇒ J3 = I − I1 − I2 − I3 =  0 0 0 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

0  0 0  0 0  0 0  0 0 May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example: 

 0 0 0 0 0 0  J2 =  0 33.1 0 0 79.8 0 0 0 0 0  0 I3 = W3 × H3 = 1.59  0 3.84 0

20.77 0 0 33.1 79.8  0 0 0 0 ⇒ J3 = I − I1 − I2 − I3 =  0 0 0 0 

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

0  0 0  0 0  0 0  0 0 May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF Example:

  130 31 12 102 46 230  I=  19 61 240 = 61 106 125 0 0.88 0 0 0 24.62  0 21.7  26.6  0 23.4 13.32 0 11.7 

Yogesh Kumar Soniwal (IIT Kanpur)

11.4 2.72 1.05  11.4 130 31 12  8.95   102 24.3 9.4  + 1.67  19 4.5 1.8  5.35 61 14.5 5.6 

8.96  0 220.6  + 238.2  119.4

0 0 0 0  0 1.59  0 3.84 0

Monotonic NNMF & SNMSR



20.77 0  0 0 0 0  33.1 0  79.8 0

May 6, 2014

26 / 49

SNMSR Employing Monotonic NNMF

Figure: Images used for simulation

These images are taken from the [USC-SIPI] image database. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

27 / 49

Simulation Results of SNMSR Employing Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

28 / 49

Simulation Results of SNMSR Employing Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

29 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s irs ir,s−1 ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Randomized Monotonic NNMF

  ···  ···  ···  ···  ··· 

.. .

.. .

ir−2,s−2 ir−1,s−2 ir,s−2 ir+1,s−2 ir+2,s−2 .. .



.. .

ir−2,s−1 ir−2,s ir−1,s−1 ir−1,s ir,s−1 irs ir+1,s−1 ir+1,s ir+2,s−1 ir+2,s .. .. . .

ir,s

ir,s−2

.. .

.. .



ir−2,s+1 ir−2,s+2 ir−1,s+1 ir−1,s+2 ir,s+1 ir,s+2 ir+1,s+1 ir+1,s+2 ir+2,s+1 ir+2,s+2 .. .. . .

ir,s+2

       ···  ··· 



ir+2,s ir+2,s−2 ir+2,s+2  ir−2,s ir−2,s−2 ir−2,s+2

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

30 / 49

Simulation Results of SNMSR Employing Randomized Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

31 / 49

Simulation Results of SNMSR Employing Randomized Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

32 / 49

Energy Covered vs Sub-frame Count Energy of an Image E(I) =

M X N X

i2mn

m=1 n=1

Energy of k th partial sum (Pk ) E(Pk ) =

M X N X

p2kmn

m=1 n=1

Percentage energy covered in k th partial sum E(Pk ) =

Yogesh Kumar Soniwal (IIT Kanpur)

E(Pk ) × 100 E(I)

Monotonic NNMF & SNMSR

May 6, 2014

33 / 49

Energy Covered vs Sub-frame Count For SNMSR Employing Monotonic NNMF Energy Covered With Each Partial Sum Using Monotonic NNMF

90 elaine lena baboon vegetables texture1 texture2 nature text

80

Percentage Energy Covered

70

60

50

40

30

20

10

50

100

150

200

250 300 Partial Sum Index

350

400

450

500

Figure: Energy covered in each partial sum for SNMSR using Monotonic NNMF Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

34 / 49

Energy Covered vs Sub-frame Count For SNMSR Employing Randomized Monotonic NNMF Energy Covered With Each Partial Sum Using Randomized Monotonic NNMF

90

80

Percentage Energy Covered

70

elaine lena baboon vegetables texture1 texture2 nature text

60

50

40

30

20

10

50

100

150 Partial Sum Index

200

250

Figure: Energy covered in each partial sum for SNMSR using Randomized Monotonic NNMF Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

35 / 49

Sub-frames Required for convergence vs Matrix Size Number of sub−frames required for convergence of SNMSR vs Matrix Size

900

800

Monotonic NNMF Randomized Monotonic NNMF Linear approximation of first 100 values of Randomized Monotonic NNMF curve

Sub−frames Required

700

600

500

400

300

200

100

100

200

300

400

500 Matrix Size (n)

600

700

800

900

Figure: Number of sub-frames required for convergence of SNMSR vs matrix size Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

36 / 49

Reason for Improvement in Sub-frame Count After Randomization Number of elements exactly factorized in each sub−frame for lena image of size 512 × 512

1400

SNMSR using Monotonic NNMF SNMSR using Randomized Monotonic NNMF 2N−1 = 1023

Number of elements exactly factorized

1200

1000

800

600

400

200

0

0

100

200

300 Sub−frame count

400

500

600

Figure: Number of elements exactly factorized in each sub-frame for lena image of size 512 × 512 for SNMSR using Monotonic and Randomized Monotonic NNMF Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

37 / 49

Driving Time and DTR Driving Time Driving time of a display is defined as the time required to drive the entire display ([Eisenbrand et. al, 2009]). [Driving Time]Traditional ∝

M X

max imn

m=1

[Driving Time]Proposed ∝

K X

1≤n≤N

max akmn

1≤m≤M k=1 1≤n≤N

Driving Time Ratio We define the ratio of driving time of traditional approach and our approach as Driving Time Ratio (DTR). Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

38 / 49

Driving Time Example:

  130 31 12  102 46 230 = I=  19 61 240 61 106 125

11.4 2.72 11.4 130 31 8.95   102 24.3 1.67  19 4.5 5.35 61 14.5 

0 0.88 8.96   0 0 0 0  24.62   0 21.7 220.6  + 26.6  0 23.4 238.2  13.32 0 11.7 119.4

0  0 0 0  0 1.59  0 3.84 0

1.05  12 9.4  + 1.8  5.6 20.77 0 0 33.1 79.8

0  0 0  0 0

[Driving Time]Traditional = 130 + 230 + 240 + 125 = 725 units. [Driving Time]Proposed = 130 + 238.2 + 79.8 = 448 units. Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

39 / 49

Simulation Results of DTR Driving Time Ratio vs Matrix Size

3.2

3

Driving Time Ratio

2.8

Monotonic NNMF Randomized Monotonic NNMF

2.6

2.4

2.2

2

1.8

1.6 100

200

300

400

500 Matrix Size

600

700

800

900

Figure: DTR vs matrix size

Improvement of more than 50% in driving time for proposed scheme Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

40 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −1 i N +2, N i N +2, N −2 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −1 i N +2, N i N +2, N −2 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −1 i N +2, N i N +2, N −2 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −1 i N +2, N i N +2, N −2 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −1 i N +2, N i N +2, N −2 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −2 i N +2, N −1 i N +2, N 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −1 i N −2, N i N −2, N −2 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −2 i N +2, N −1 i N +2, N 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

A Variation of Monotonic NNMF: Mid-point Monotonic NNMF

  ···  ···   ···  ···   ··· 

.. .

.. .

.. .

i N −2, N −2 i N −2, N −1 i N −2, N 2 2 2 2 2 2 i N −1, N −2 i N −1, N −1 i N −1, N 2 2 2 2 2 2 i N , N −2 i N , N −1 iN ,N 2 2 2 2 2 2 i N +1, N −2 i N +1, N −1 i N +1, N 2 2 2 2 2 2 i N +2, N −2 i N +2, N −1 i N +2, N 2 2 2 2 2 2 .. .. .. . . .

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

.. . i N −2, N +1 2 2 i N −1, N +1 2 2 i N , N +1 2 2 i N +1, N +1 2 2 i N +2, N +1 2 2 .. .

 ··· ··· ··· ··· ··· .. .

May 6, 2014

            

41 / 49

Simulation Results of SNMSR Employing Mid-point Monotonic NNMF

Figure: Simulation results of SNMSR employing Mid-point Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

42 / 49

Conclusion

Simulation results of SNMSR using Monotonic NNMF, Randomized Monotonic NNMF and Mid-point Monotonic NNMF indicate that SNMSR using Randomized Monotonic NNMF is likely to be converged in the least number of sub-frames among all such possibilities.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

43 / 49

Monotonic Converging Matrix Series Representation (MSR) Sign Matrix Approach We define SI as the sign matrix corresponding to I, whose (m, n)th elements smn is given by,  1 if imn ≥ 0 smn = −1 if imn < 0 We define another matrix AI corresponding to I, whose (m, n)th element amn is given by,  imn if imn ≥ 0 amn = |imn | if imn < 0 Note that, I = AI . ∗ SI , where (.∗) is element wise multiplication.

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

44 / 49

Monotonic Converging Matrix Series Representation (MSR)

MSR Using Sign Matrix AI =

K X

Ik

k=1

Since AI is a monotonic and converging series, this property also holds for AI . ∗ SI . Hence monotonic converging MSR for matrix I is given by, I=

K X

 Ik . ∗ SI

k=1

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

44 / 49

Monotonic Converging Matrix Series Representation (MSR)

Separate Series Approach We define two matrices AI and BI , corresponding to I, whose (m, n)th elements amn and bmn respectively are given by,  imn if imn ≥ 0 amn = 0 if imn < 0 and

 bmn =

Yogesh Kumar Soniwal (IIT Kanpur)

0 if imn ≥ 0 |imn | if imn < 0

Monotonic NNMF & SNMSR

May 6, 2014

45 / 49

Monotonic Converging Matrix Series Representation (MSR) MSR Using Separate Series Thus, we express I as I = AI − BI . Since AI and BI are both non-negative matrices, we obtain their SNMSRs using Monotonic NNMF:

AI =

K X

0

Ik , BI =

k=1

K X

0

Ik

k=1

∵ AI and BI are both monotonic converging series, monotonic converging MSR of I is given by, I = AI − BI =

K X

0

Ik −

k=1 Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

K X

0

Ik

k=1 May 6, 2014

45 / 49

Gains

Computationally less complex Monotonic NNMF Entire frame image display approach to drive the entire display using sub-frames Proposed approach is not restricted to certain specific class of images Significant improvement in driving time Significant improvement in lifespan of diodes (The exact quantum of improvement is not presented here)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

46 / 49

Gains

Computationally less complex Monotonic NNMF Entire frame image display approach to drive the entire display using sub-frames Proposed approach is not restricted to certain specific class of images Significant improvement in driving time Significant improvement in lifespan of diodes (The exact quantum of improvement is not presented here)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

46 / 49

Gains

Computationally less complex Monotonic NNMF Entire frame image display approach to drive the entire display using sub-frames Proposed approach is not restricted to certain specific class of images Significant improvement in driving time Significant improvement in lifespan of diodes (The exact quantum of improvement is not presented here)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

46 / 49

Gains

Computationally less complex Monotonic NNMF Entire frame image display approach to drive the entire display using sub-frames Proposed approach is not restricted to certain specific class of images Significant improvement in driving time Significant improvement in lifespan of diodes (The exact quantum of improvement is not presented here)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

46 / 49

Gains

Computationally less complex Monotonic NNMF Entire frame image display approach to drive the entire display using sub-frames Proposed approach is not restricted to certain specific class of images Significant improvement in driving time Significant improvement in lifespan of diodes (The exact quantum of improvement is not presented here)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

46 / 49

Future Work

Parallelization of Monotonic NNMF Higher rank Monotonic NNMF Use image correlation in Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

47 / 49

Future Work

Parallelization of Monotonic NNMF Higher rank Monotonic NNMF Use image correlation in Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

47 / 49

Future Work

Parallelization of Monotonic NNMF Higher rank Monotonic NNMF Use image correlation in Monotonic NNMF

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

47 / 49

References

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca and R. J. Plemmons (2007) Algorithms and applications for approximate nonnegative matrix factorization Computational Statistics & Data Analysis 52(1), 155 – 173. D. D. Lee and H. S. Seung (1999) Learning the parts of objects by non-negative matrix factorization Nature 401(6755), 788–791. F. Eisenbrand, A. Karrenbauer and C. Xu (2009) Algorithms for longer OLED lifetime Journal of Experimental Algorithmics (JEA) 14(3).

The USC-SIPI Image Database [Online]. Available: http://sipi.usc.edu/database

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

48 / 49

Thank you :)

Yogesh Kumar Soniwal (IIT Kanpur)

Monotonic NNMF & SNMSR

May 6, 2014

49 / 49

Entire Frame Image Display Employing Monotonic ...

May 6, 2014 - Notations kth partial sum. Pk = k. ∑ i=1. Ir i kth residue. Jk = I − Pk. Note: J0 = I is the initial (zeroth) residue. Yogesh Kumar Soniwal (IIT Kanpur). Monotonic NNMF & SNMSR. May 6, 2014. 6 / 49 ...

5MB Sizes 0 Downloads 139 Views

Recommend Documents

frame buffer design for image sensor array
Design of an optimal memory controller must consist of system-level .... The DRAMsim specific address trace file consists of three columns – memory address ...

Checklist - Employing People.pdf
Guide to Employing People ... Register for Data Protection or update your existing registration. Provide the new ... Displaying Checklist - Employing People.pdf.

Employing Engineering for STEM Learning -
Jun 9, 2012 - Opportunities for collaboration and outreach. • Insight on how engineering and technology integrate with the Common Core math and Next.

Checklist - Employing People.pdf
Register for Data Protection or update your existing registration. Provide the new employee with an induction programme to help them settle in and pass ...

Monotonic iterative algorithm for minimum-entropy autofocus
m,n. |zmn|2 ln |zmn|2 + ln Ez. (3) where the minimum-entropy phase estimate is defined as. ˆφ = arg min .... aircraft with a nose-mounted phased-array antenna.

Non-Monotonic Self-Adjusting Computation
Abstract. Self-adjusting computation is a language-based approach to writing programs that respond dynamically to input changes by main- taining a trace of the computation consistent with the input, thus also updating the output. For monotonic progra

RWW entire packet.pdf
This is the link: https://padlet.com/sandersonwis/summer2017 (password: read). SHARE. Draw pictures of the books you read: PRIMARY SCHOOL'S SUMMER READING PROGRAM 2017. Scan the QR. code to open. our Padlet. Password: read. Bring your pictures back t

Fur display
Fur Display makes invisible information visible. It not only delivers dynamic movements of appealing, bushy fur, but it is also a feathery, visual, tactile display that invites touch and interaction. Earlier versions of this concept often used rigid

(eLASCA) By Monotonic Point Transformation
Apr 2, 2008 - enhanced laser speckle contrast analysis (eLASCA) method to improve ..... by Otsu multi-threshold method[25] in ITK software[26](bin=256 and.

Entire Position Paper.pdf
Lower Cost For In State Energy Use. Attract Industry and Jobs. Stephen McElroy. 232 West Olive St. Bridgeport, WV 26330. 304-842-2602. UniteHere@outlook.

Entire Book 2014for Editing
a current Rabies vaccination Bordatella. (kennel cough) and a negative fecal check are recommended. 3. A LICENSED VETERINARIAN must vaccinate all dogs ...

Frame by Frame Language Identification in ... - Research at Google
May 20, 2014 - Google Services. Reported results .... Figure 1: DNN network topology. EM iterations .... eral Google speech recognition services such as Voice.

Fur display
Earlier versions of this concept often used rigid surfaces like tabletops, but Fur Display presents touchable fur with surprising dynamic movement. The device is ...

Emulsion products and imagery employing steganography
Nov 22, 2005 - AND DIGITAL SPACING OF ORIGINAL DIGITAL SIGNAL OR IMAGE ..... Bors et al., “Embedding Parametric Digital Signatures in. Images ...

Employing structural representation for symbol ...
Jun 2, 2010 - Some remarks. Part2: Content based (focused) retrieval. Experimentation. Conclusion. - 2. Plan. Part 1. Representation and recognition of graphics content in line drawing document images. Part 2. Unsupervised indexation and content base

Web application security frame
Feb 14, 2006 - tion environment to determine the application type, for example ... intelligence (AI) component that infers an action that a user ...... Files, paths,.

Frame Relay.pdf
LES TOPOLOGIE FRAME RELAY : • Maillage global : Chaque extrémité est reliée par l'intermédiaire d'un PVC distinct vers chaque autre. destination. • Maillage ...

Web application security frame
Feb 14, 2006 - web application security frame component can be applied to. Chen et a1' ...... attacker successfully gains access as a legitimate user or host,.

B.Com-IT-Entire-Part-II.pdf
Unit-I- Rectification of errors- Meaning , types of errors , rectification of errors ... Q-1 Problem on common Data 20 Marks. a) ... ''Human Resource Management.

Method and apparatus for driving the display device, display system ...
Feb 5, 1998 - 345/100. AND DATA PROCESSING DEVICE. 5,604,511 A ... Foreign Application Priority Data. It is an object to .... DATA DRIVER. I l. 'IIII'IIIII'I IJ.