Proposed  Sampling  and  Analysis  Plan  for  Sediment  and  Soil  Characterization  at   Fletcher’s  Cove  along  the  Potomac  River  

    I.    Introduction         Fletcher’s   Cove   is   located   on   the   Potomac   River   about   2.5   miles   upstream   of   Theodore   Roosevelt   Island   in   Washington,   DC.     The   cove   area   is   part   of   the   C&O   Canal   National   Historical  Park  and  a  recreational  portion  for  river  enthusiasts  throughout  the  region.    While   natural   sedimentation   in   the   cove   has   likely   been   a   continuous   process   for   hundreds   of   years,   the  deposited  sediment  has  been  subjected  to  scour  during  higher  flow  events  on  a  periodic   basis   up   to   the   1960s,   based   on   the   bank   elevations   just   upstream   of   the   cove.     This   scour   has   kept   the   cove   from   filling   with   sediment.     In   the   1960s,   the   area   upstream   of   the   cove   was   used   for   the   placement   of   fill   from   a   construction   project   (8-­‐10   feet   deep   along   a   3-­‐acre   portion)   along   the   upstream   shoreline   that   redirected   the   high   flows   and   prevented   the   periodic  scour  of  the  cove.    A  smaller  area  at  the  southern  end  of  the  cove  was  also  filled  as   part   of   the   change   in   the   shoreline.     Subsequently,   the   annual   deposition   of   sediment   increased   dramatically   and   the   depth   of   the   cove   has   been   adversely   impacted,   requiring   dredging  on  two  separate  occasions  to  remediate  the  sediment  accumulation,  restore  access   to  the  cove,  and  restore  the  recreation  uses  (Figure  1).      

Fletcher’s Cove Comparison on 1955 and 2007 Aerial Photographs Extent of Siltation is Clearly Visible

195The Point 1955

2007

Dock

 

 

Dock

Filled areas 2007

Figure   1.     Comparison   of   Fletcher’s   Cove   before   and   after   the   fill   placed   in   the   area   upstream   of   the   cove.     The   area   in   the   1955   photo   shown   in   “yellow”   was   overtopped   during  high-­‐flow  events  and  scoured  previously  deposited  sediment  from  the  river.  

1  

 

  II.    Problem  Characterization     Currently,   there   are   two   issues   that   require   additional   data   for   decision-­‐making.     First,   the   sedimentation   at   the   cove   has   progressed   to   the   point   of   interfering   with   the   intended   uses   for   river   access   and   recreation.     This   will   require   a   short-­‐term   dredging   solution   while   longer   term   plans   are   formulated   and   discussed   among   the   stakeholders.     The   sediment   present   in   the   cove   requires  sampling  and  analysis  of  physical  and  chemical  characteristics  to  assess  potential  disposal   locations  for  the  dredged  material.         Second,   in   order   to   address   potential   alternatives   to   the   periodic   dredging,   the   physical   and   chemical  composition  of  the  fill  area  that  has  resulted  in  the  excess  sedimentation  and  need  for   periodic   dredging   also   requires   characterization.     While   it   is   not   anticipated   that   the   fill   area   is   contaminated   with   hazardous   substances,   the   characterization   is   a   necessary   part   of   the   initial   scoping  activity  for  alternatives  to  periodic  dredging.    For  example,  one  alternative  would  involve   the   removal   of   the   fill   and   river   shoreline   restoration   to   permit   high-­‐flow   cove   scouring   to   maintain  the  intended  uses,  without  the  need  for  periodic  dredging.    The  characterization  of  the   fill   will   allow   conceptual   discussions   of   alternatives   to   proceed   on   a   more   defined   path.     If   the   characterization  determines  the  presence  of  hazardous  substances  in  the  fill,  the  alternatives  will   be  more  complicated,  expensive,  and  difficult  to  implement.    This  would  be  a  different  pathway   than   that   with   an   uncontaminated   fill   that   only   requires,   in   simple   terms,   the   movement   of   material   from   the   immediate   portion   of   the   shoreline   that   has   resulted   in   the   siltation   problem   at   the   cove.     Both   pathways   are   more   complicated   as   the   restoration   would   require   an   analysis   of   sediment   transport   and   predicted   sedimentation   for   any   proposed   alternative   for   restoring   the   cove.         A   part   of   the   preliminary   characterization   of   the   two   environments,   the   fill   soils   and   the   cove   sediments,  this  proposal  provides  a  strategy  for  filling  important  data  gaps  that  will  lead  to  more   focused  planning  and  analysis  of  alternatives  for  the  future.     III.    Proposed  Sampling  Strategy  for  Sediment  Characterization  at  the  Cove     Analysis   of   dredging   for   the   cove   typically   requires   a   consideration   of   the   sediment   removal   process,   releases   of   any   contaminants,   dredged   material   disposal,   and   a   host   of   other   concerns   such   as   public   safety,   completion   time,   impacts   of   sediment   resuspension   on   downstream   environmental   resources,   transport   of   dredged   material,   and   equipment   access.     Since   dredging   has   been   utilized   in   the   past   to   restore   access   to   the   cove,   although   for   a   limited   time,   the   feasibility   as   part   of   an   initial   evaluation   is   not   necessary.     The   chemical   and   physical   characterization  of  the  sediment  is  needed,  however,  to  address  data  gaps.    The  sampling  program   is  designed  to  address  the  horizontal  and  vertical  extent  of  the  deposited  sediments  in  the  cove.     The  physical  analysis  of  particle  sizes  and  the  chemical  analysis  will  address  any  concerns  related   to  disposal  locations  for  the  dredged  material.      The  sampling  and  analysis  program  will  collect  a   variety   of   information   to   proceed   to   the   next   decision   point   for   the   dredging   project,   namely,   a   more   detailed   description   of   the   dredging   environment,   including   items   such   as   the   extent,   disposal,  and  access  issues.    If  contaminated  sediments  are  present  in  the  cove  above  acceptable    

2  

limits,  then  the  next  phase  of  the  analysis  of  dredging  may  be  more  complicated.    Regardless,  the   sediments  must  be  characterized.    Information  to  be  collected  or  considered  during  the  sediment   sampling  includes:       • Sample  locations  and  contingency  locations.   • Sample  coordinates,  compatible  with  GPS  navigation  systems.   • Positioning  method  and  accuracy  (vertical  and  horizontal).   • Method  of  establishing  water  surface  elevation  during  sampling.   • Method  of  establishing  depth  of  water  to  mudline  during  sampling.   • Number  of  samples.   • Sampling  method  (cores  or  grab  samples)  and  equipment.   • Method  to  establish  elevation  of  mud  line  during  sampling.   • Sample  containers  and  preservation.   • Depth  and/or  length  of  samples.   • Decontamination  procedures.   • Compositing  intervals  and  method.   • Packaging,  labeling,  shipping  and  handling,  and  chain  of  custody.   • Chemical  analytes.   • Physical  and  engineering  properties  to  be  tested.   • Analytical  procedures,  sample  cleanup,  extraction  methods,  holding  times,  and  required   detection  limits.   • Applicable  environmental  criteria  (for  determination  of  DL  requirements  and  comparison   of  resulting  data).   • Data  analysis  and  reporting.   • Management  and  disposal  of  samples.     At   present,   the   occurrence   of   contaminants   in   the   bulk   sediment   is   unknown.     Consequently,   a   more  broad  approach  is  needed  to  assess  the  potential  presence  of  “problem  contaminants”  that   would   require   the   next   level   of   management   actions.     The   broad   approach   requires   analytical   testing   using   several   methods   to   characterize   the   sediments   for   metals,   volatile   organic   compounds,  semi-­‐volatile  organic  contaminants,  pesticides,  total  petroleum  hydrocarbons  (TPH),   PCBs,  and  dioxins/furans.    The  success  of  this  step  rests  heavily  on  a  broad  analysis  of  a  spectrum   of   chemicals   at   environmentally   relevant   concentrations.     The   determination   of   so-­‐called   “bulk   sediment  chemistry,”  the  concentration  of  contaminants  in  the  sediments  on  a  dry-­‐weight  basis  or   on  an  organic-­‐carbon  normalized  basis,  are  important  components  for  determining  how  dredged   sediment  may  need  to  be  managed.    This  point  in  the  sediment  characterization  requires  only  that   sediment   chemistry   be   addressed   along   with   physical   characteristics   and   not   the   more   complicated   issues   such   as   contaminants   in   biota   and   factors   that   might   affect   contaminant   mobility,   or   other   relevant   environmental   concerns.     Obviously,   if   contaminants   are   detected   at   concentrations   that   are   of   environmental   concern,   then   more   comprehensive   characterization   may  be  required.         The   outcome   of   this   sediment   characterization   should   define   the   nature   of   any   sediment   contamination  and  a  list  of  contaminants-­‐of-­‐concern  (COC),  if  they  are  present,  and  whether  they    

3  

are   found   above   disposal   requirements   or   are   sufficiently   bioavailable   as   to   preclude   in-­‐water   disposal   or   shoreline   use   of   dredged   material   for   fill.     The   proper   identification   of   COCs   is   necessary   for   an   accurate   assessment   of   potential   impacts   and   management   alternatives.     The   contaminants   found   in   the   sediment   samples   will   be   carefully   considered   as   part   of   the   overall   strategy  for  dredging  the  cove.     Sample  Locations.    The  cove  has  been  sectioned  using  a  grid  approach  with  samples  on  100-­‐foot   centers,   as   shown   in   Figure   2.     At   each   grid   point   location,   sediment   will   be   collected   from   the   full   depth   of   the   sediment   (6-­‐10   feet,   or   deeper),   examined   for   physical   changes   in   the   deposition   appearance,   and   divided   into   two-­‐foot   sections.     Each   of   these   sections   will   be   sub-­‐sampled   to   prepare  a  composite  samples  at  each  location.      Each  of  these  sections  will  be  saved  for  potential   future  analysis  based  on  the  results  of  a  composite  sampled  at  each  point.    A  composite  sample   will  be  prepared  representing  each  of  the  rows  of  the  E-­‐W  Transects  (6  total  samples  –  S1A,  S1S2B,   S1S2C,  S1S2D,  S1S2E,  S2F).     Chemical   Analysis.     Chemical   analysis   of   sediment   will   include   a   variety   of   chemical   analysis   methods   to   assess   the   concentrations   of   a   broad   list   (TCL-­‐toxic   compound   list)   of   potential   contaminants,  including       • Metals:  Arsenic,  Barium,  Cadmium,  Chromium,  Copper,  Lead,  Nickel,  Selenium,   Silver  and  Zinc   • Mercury   • Volatile  Organic  Compounds  (VOCs)   • Semi-­‐Volatile  Organic  Compounds  (SVOCs)   • Pesticides   • Polychlorinated  Biphenyls  (PCBs)   • Dioxins/Furans  (2  samples)   • Total  Petroleum  Hydrocarbons  –  Diesel  Range  Organics  (TPH-­‐DRO)   • Total  Organic  Carbon   • Total  Solids         Samples   will   be   analyzed   for   the   total   concentrations   and   leachability   using   the   Toxicity   Characteristic   Leaching   Procedure   (TCLP)   test   for   TCLP   listed   metals,   VOCs,   and   SVOCs   only   (See   attached  quotation  for  both  sediments  and  soil  analyses  in  Appendix  A).     Physical   Analysis.     Physical   analysis   will   be   conducted   and   include   grain   size   distribution   and   percent  clay-­‐silt-­‐sand  for  assessing  potential  disposal.      

 

 

4  

3/24/15, 10:17 AM

Fletcher’s*Cove*Location*Map* and*Proposed*Soil*Boring*and*Sediment*Sample*Locations* * N-S Transects in North Fill Area ~150 ft. spacing except T2A and T4B (75 ft N-S) T1 T2 T3 T4 T5 A

C

0*

N-S Sediment Transects 100 ft. spacing

S1

D

S2 A

B

E E-W Transects ~100 ft. spacing

E-W Transects in North Fill Area

B

N-S Transect in South Fill Area

T6

C

D

E

F

Fletcher’s Cove G

*

* Legend* Fill Area Soil Boring Grid Sediment Sampling Grid Sample Location

  Figure  2.    Locations  for  the  collection  of  sediment  and  soil  samples  at  Fletcher’s  Cove.    

5  

 

IV.    Proposed  Sampling  of  the  Soils  in  the  Fill  Area     Analysis   of   the   fill   area   for   excavation   and   disposal   typically   requires   a   consideration   of   the   excavation  process,  releases  of  any  contaminants  to  the  river,  excavated  material  disposal,  and  a   host  of  other  concerning  such  as  public  safety,  completion  time,  impacts  of  runoff  on  downstream   environmental   resources,   transport   of   soils,   and   equipment   access.     The   chemical   and   physical   characterization  of  the  soil  is  needed  to  address  an  important  data  gap.    The  sampling  program  is   designed  to  address  the  horizontal  and  vertical  extent  of  the  deposited  fill.    The  physical  analysis  of   particle   sizes   and   the   chemical   analysis   will   address   any   concerns   related   to   feasibility   of   the   removal  alternative  and  disposal  locations  for  these  soils.      The  sampling  and  analysis  program  will   collect   a   variety   of   information   to   proceed   to   the   next   decision   point   for   the   project,   namely,   a   more   detailed   description   of   the   soils   environment,   including   items   such   as   the   extent   of   contamination,  disposal,  and  access  issues.    If  contaminated  soils  are  present  in  the  fill  area  above   acceptable  limits,  then  the  next  phase  of  the  analysis  of  Fletcher’s  Cove  restoration  may  be  more   complicated.     Regardless,   the   soils   must   be   characterized.     Information   to   be   collected   or   considered  during  the  soil  sampling  includes:       • Sample  locations  and  contingency  locations.   • Sample  coordinates,  compatible  with  GPS  navigation  systems.   • Positioning  method  and  accuracy  (vertical  and  horizontal).   • Number  of  samples.   • Sampling  method  (cores  or  grab  samples)  and  equipment.   • Sample  containers  and  preservation.   • Depth  and/or  length  of  samples.   • Decontamination  procedures.   • Compositing  intervals  and  method.   • Packaging,  labeling,  shipping  and  handling,  and  chain  of  custody.   • Chemical  analytes.   • Physical  and  engineering  properties  to  be  tested.   • Analytical  procedures,  sample  clean-­‐up,  extraction  methods,  holding  times,  and  required   detection  limits.   • Applicable  environmental  criteria  (for  determination  of  DL  requirements  and  comparison   of  resulting  data).   • Data  analysis  and  reporting.   • Management  and  disposal  of  samples.     At   present,   the   presence   of   contaminants   in   the   bulk   soils   is   unknown.     Consequently,   a   more   broad  approach  is  needed  to  assess  the  potential  presence  of  “problem  contaminants”  that  would   require   the   next   level   of   management   actions.     The   broad   approach   requires   analytical   testing   using   several   methods   to   characterize   the   soils   for   metals,   volatile   organic   compounds,   semi-­‐ volatile  organic  contaminants,  TPH,  pesticides,  PCBs,  and  dioxins/furans.    The  success  of  this  step   rests   heavily   on   a   broad   analysis   of   a   spectrum   of   chemicals   at   environmental   relevant   concentrations.     The   determination   of   so-­‐called   “bulk   soil   chemistry,”   the   concentration   of   contaminants   in   the   soils   on   a   dry-­‐weight   basis   or   on   an   organic-­‐carbon   normalized   basis,   are    

6  

important   components   for   determining   how   excavated   soils   may   need   to   be   managed.     This   point   in   the   soils   characterization   requires   only   that   soils   chemistry   be   addressed   along   with   physical   characteristics  and  not  the  more  complicated  issues  such  as  contaminants  in  terrestrial  biota  and   factors   that   might   affect   contaminant   mobility,   or   other   relevant   environmental   concerns.     Obviously,  if  contaminants  are  detected  at  concentrations  that  are  of  environmental  concern,  then   more  comprehensive  characterization  may  be  required.         The  outcome  of  this  soils  characterization  should  define  the  nature  of  any  soil  contamination  and  a   list   of   contaminants-­‐of-­‐concern   (COC),   if   they   are   present   and   whether   they   are   found   above   disposal   requirements   or   are   sufficiently   bioavailable   as   to   require   more   complicated   excavation   and  disposal  methods.    The  proper  identification  of  COCs  is  necessary  for  an  accurate  assessment   of  potential  impacts  and  management  alternatives.    The  contaminants  found  in  the  soil  samples   will  be  carefully  considered  as  part  of  the  overall  strategy  for  restoring  the  cove.     Sample  Locations.    The  North  Fill  Area  has  been  sectioned  using  a  grid  approach  with  samples  on   mostly   150-­‐foot   centers,   as   shown   in   Figure   2,   while   the   South   Fill   Area   has   a   single   transect   roughly  north-­‐south  with  100-­‐foot  sample  spacing.    At  each  sample  location,  soils  will  be  collected   from  the  full  depth  of  the  fill  (6-­‐12  feet),  examined  for  physical  changes  in  the  fill  appearance,  and   divided   into   two-­‐foot   sections.     Several   locations   are   outside   of   the   suspected   fill   area   and   are   collected   to   provide   an   indication   of   concentrations   in   natural   soils   and   the   transition   between   fill   and  natural  soils.    Each  of  these  sections  will  be  sub-­‐sampled  to  prepare  a  composite  samples  at   each   location.       Each   of   these   sections   will   be   saved   for   potential   future   analysis   based   on   the   results   of   a   composite   sampled   at   each   point.     A   depth-­‐composite   sample   will   be   prepared   representing  each  of  the  points  along  the  N-­‐S  and  E-­‐W  Transects  (12  total  samples  in  the  North  Fill   Area   –   T1A,   T2A,   T1A,   T2B,   T3B,   T4B,   T2C,   T3C,   T4C,   T3D,   T4D,   and   T4E;   4   total   samples   in   the   South  Fill  Area  –  T6D,  T6E,  T6F,  and  T6G  ).     Chemical   Analysis.     Chemical   analysis   of   sediment   will   include   a   variety   of   chemical   analysis   methods   to   assess   the   concentrations   of   a   broad   list   (TCL-­‐toxic   compound   list)   of   potential   contaminants,  including       • Metals:  Arsenic,  Barium,  Cadmium,  Chromium,  Copper,  Lead,  Nickel,  Selenium,   Silver  and  Zinc   • Mercury   • Volatile  Organic  Compounds  (VOCs)   • Semi-­‐Volatile  Organic  Compounds  (SVOCs)   • Pesticides   • Polychlorinated  Biphenyls  (PCBs  –  3  samples)   • Dioxins/Furans  (3  samples)   • Total  Petroleum  Hydrocarbons  –  Diesel  Range  Organics  (TPH-­‐DRO)   • Total  Organic  Carbon   • Total  Solids        

 

7  

The   samples   will   be   analyzed   for   the   total   concentrations   and   the   8   samples   (selected   in   the   field)   will  be  analyzed  for  leachability  using  the  Toxicity  Characteristic  Leaching  Procedure  (TCLP)  test  for   TCLP  listed  metals,  VOCs,  and  SVOCs  only.     Physical   Analysis.     Physical  analysis  will  be  conducted  by  the  geotechnical  subcontractor  for  the   project   and   include   grain   size   distribution   and   percent   clay-­‐silt-­‐sand   for   assessing   potential   disposal.     V.    Data  Analysis  and  Report  Production     Results   of   the   sampling   will   be   used   to   provide   needed   data   to   evaluate   potential   dredging   and   excavation  of  fill,  including  the  COCs,  if  any,  naturally  occurring  substances  that  may  be  harmful  to   biota,  urban  and  agricultural  runoff  chemicals,  spills  of  oil,  or  other  chemicals.    Other  information   may  be  used,  if  available,  to  further  examine  potential  problems,  including:     1. Results   of   prior   physical,   chemical,   and   biological   tests   and   monitoring   of   Potomac   River   sediments.   2. Information   describing   the   source   of   the   fill   material   to   be   excavated   which   would   be   relevant  to  the  identification  of  potential  COC.   3. Existing   data   contained   in   files   of   agencies   such   as   EPA   or   USACE   or   otherwise   available   from  public  or  private  sources.  Examples  of  sources  from  which  relevant  information  might   be  obtained  include:     • Selected  Chemical  Spill  Listing  (EPA)   • Pesticide  Spill  Reporting  System  (EPA)   • Pollution  Incident  Reporting  System  (United  States  Coast  Guard)   • Identification  of  In-­‐Place  Pollutants  and  Priorities  for  Removal  (EPA)   • Hazardous  waste  sites  and  management  facilities  reports  (EPA)   • USACE  studies  of  sediment  pollution  and  sediments   • Federal  STORET,  BIOS,  CETIS,  and  ODES  databases  (EPA)   • Water  and  sediment  data  on  major  tributaries  (Geological  Survey)   • National  Pollutant  Discharge  Elimination  System  (NPDES)  permit  records   • Agencies  with  COC  or  related  information,  for  instance,  Fish  and  Wildlife  Service   (FWS),  National  Oceanic  and  Atmospheric  Administration  (NOAA),  regional  planning   commissions,  state  resource/survey  agencies   • CWA  404(b)(1)  evaluations   • Pertinent  and  applicable  research  reports   • Port  and  marina  authorities   • Colleges/Universities   • Records  of  State  agencies,  (e.g.,  environmental,  water  survey,  transportation,   health)   • Published  scientific  literature    

 

8  

This  information  will  be  compiled  and  combined  with  the  sampling  results  to  provide  and   indication  of  the  potential  issues  related  to  dredging  or  excavation  of  the  fill  area.    The  Final   Report  will  be  prepared  within  2  months  of  receipt  of  the  sampling  results.     VI.    Cost  Estimate  by  Task     The  project  includes  five  tasks:     • Field  Sampling  Plan  and  Access  Preparation   • Sediment  Sampling     • Soil  Borings  and  Sampling   • Sample  Analytical  Testing   • Final  Report  Preparation                   Background  Reading     United  States  Environmental  Protection  Agency,  1995.    QA/QC  Guidance  for  Sampling  and  Analysis   of   Sediments,   Water,   and   Tissues   for   Dredged   Material   Evaluations,   Chemical   Evaluations,   Prepared  by  EPA  and  USACE,  EPA  823-­‐B-­‐95-­‐001,  April.       U.S.   Army   Corps   of   Engineers,   2003.     Evaluation   of   Dredged   Material   Proposed   for   Disposal   at   Island,   Nearshore,   or   Upland   Confined   Disposal   Facilities   —   Testing   Manual,   U.S.   Army   Engineer   Research   and   Development   Center,   3909   Halls   Ferry   Road,   Vicksburg,   MS   39180-­‐6199,   Final   report,  ERDC/EL  TR-­‐03-­‐1,  January.     United   States   Environmental   Protection   Agency,   2004.   Evaluating   Environmental   Effects   Of   Dredged   Material   Management   Alternatives   -­‐-­‐   A   Technical   Framework,   Office   of   Water   and   Department   of   The   Army,   U.S.   Army   Corps   of   Engineers   (USACE),   EPA842-­‐B-­‐92-­‐008   Revised   May   2004.       United   States   Environmental   Protection   Agency,   2007.     Identifying,   Planning,   and   Financing   Beneficial  Use  Projects  Using  Dredged  Material  Beneficial  Use  Planning  Manual,  EPA  and  USACE,   October  2007.     U.S.   Army   Engineer   Research   and   Development   Center,   2008.     Technical   Guidelines   for   Environmental   Dredging   of   Contaminated   Sediments,   Michael   R.   Palermo,   Paul   R.   Schroeder,   Trudy  J.  Estes,  and  Norman  R.  Francingues,  Environmental  Laboratory,  3909  Halls  Ferry  Road   Vicksburg,  MS  39180-­‐6199  ERDC/EL  TR-­‐08-­‐29,  September.    

9  

General-Fletchers Cove Sampling Plan-150721.pdf

requires sampling and analysis of physical and chemical characteristics to assess ... variety of information to proceed to the next decision point for the dredging ...

8MB Sizes 1 Downloads 144 Views

Recommend Documents

Green Cove Hotel
Complimentary Wi-Fi. ○ Cablevision, Telephone, Air Conditioning, Room Service, Valet Service, Cab. Service & Laundry. ○ Outdoor Pool connecting hotel buildings. ○ Organic/Green Shop in Hotel includes Cleaning supplies and other items. The factors tha

1105 yakima street cedar cove
Book 1105 yakima street cedar cove pdf free download

1022 evergreen place cedar cove
Book 1022 evergreen place cedar cove pdf free download

Book christmas comes to cedar cove a cedar cove christmas pdf free download
Book christmas comes to cedar cove a cedar cove christmas pdf free download

OYSTER COVE CEILING FAN.pdf
Loading… Page 1. Whoops! There was a problem loading more pages. Retrying... OYSTER COVE CEILING FAN.pdf. OYSTER COVE CEILING FAN.pdf. Open.

pearl cove elizabeth lowell pdf
Page 1 of 1. File: Pearl cove elizabeth lowell pdf. Download now. Click here if your download doesn't start automatically. Page 1 of 1. pearl cove elizabeth lowell pdf. pearl cove elizabeth lowell pdf. Open. Extract. Open with. Sign In. Main menu. Di

Adaptive Sampling based Sampling Strategies for the ...
List of Figures. 1.1 Surrogate modeling philosophy. 1. 3.1 The function ( ). ( ) sin. y x x x. = and DACE. 3.1a The function ( ). ( ) sin. y x x x. = , Kriging predictor and .... ACRONYMS argmax. Argument that maximizes. CFD. Computational Fluid Dyna

News Release - Crystal Cove State Park
Jul 7, 2015 - Page 1. Facebook.com/CaliforniaStateParks www.parks.ca.gov ... (916) 366-4895. State Parks Implements New Water. Conservation Measures.

News Release - Crystal Cove State Park
July 7, 2015. Contact: Brian Ketterer [email protected]. (916) 366-4895. State Parks Implements New Water. Conservation Measures. Outdoor rinse ...

Sampling Instructions Navigating to a Sampling Site ...
Jul 1, 2010 - Use the steps below to navigate to a sampling site on Lake Attitash using the Garmin GPSMap 76CSx hand-held GPS. The unit used by the association has been pre-programmed with the coordinates of the sampling sites. To use a different Gar

OYSTER COVE CEILING FAN.pdf
service department at 1-800-643-0067, 8 a.m. - 6 p.m., EST, Monday .... ELECTRIC SHOCK HAZARD - To reduce the risk of electric shock, make sure electricity ...

Portable contaminant sampling system
Dec 12, 2007 - 8/1976 BrouWer. 4,092,845 A. 6/1978 Prodi et a1. .... an apple, or the surface of a machine or tool. At present, gas is sampled through the use ...

SAMPLING PRODUCTS.pdf
Sign in. Loading… Page 1. Whoops! There was a problem loading more pages. Retrying... SAMPLING PRODUCTS.pdf. SAMPLING PRODUCTS.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying SAMPLING PRODUCTS.pdf.

Cove Newsletter 1.2 (3).pdf
Grade Parent Night. Come learn more ... UH Clear Lake will be on campus during Mega. Lunch on Monday ... Cove Newsletter 1.2 (3).pdf. Cove Newsletter 1.2 ...

Minute on Cove Point-Patuxent.pdf
Page 1 of 2. Members of the Religious Society of Friends, better known. to most as “Quakers,” recognize “that of God” in every. human heart and throughout the natural system that sustains. all life, and we understand the moral imperative to b

2017 glen cove brackets.pdf
Safety Inspector (RCS). Tax Consultant (CES. Whoops! There was a problem loading this page. Retrying... Whoops! There was a problem loading this page. Retrying... 2017 glen cove brackets.pdf. 2017 glen cove brackets.pdf. Open. Extract. Open with. Sig

Sampling Methods
Solution 1: approximate integral by. ˆG = T. ∑ t=1 g(xt)p(xt)∆x, ... t=1 E[g(Xt)] = G. convergence: ... Solution 1: Probability integral transformation: If X ∼ F, then U ...

sampling theory pdf
Page 1 of 1. File: Sampling theory pdf. Download now. Click here if your download doesn't start automatically. Page 1 of 1. sampling theory pdf. sampling theory pdf. Open. Extract. Open with. Sign In. Main menu. Displaying sampling theory pdf. Page 1

Neural Block Sampling
enterprise of modern science can be viewed as constructing a sophisticated hierarchy of models of physical, mental, and ... However, computing exact Gibbs proposals for large blocks ..... generate grid BNs by sampling each CPT entry in the.

download Snowflake Bay (The Brides of Blueberry Cove)
... has left fast-paced Manhattan to move back home to peaceful Blueberry Cove. ... Donna Kauffman, Snowflake Bay (The Brides of Blueberry Cove) For android ...