MA6451 โ€“ RANDOM PROCESSES PART-A 1.The mean and variance of the binomial distribution are 4 and 3 respectively. Find p(X=0) Solution: Let x be a binomial random variable with parameters n and p. P(X=x)=n๐ถ๐‘ฅ ๐‘ ๐‘ฅ ๐‘ž ๐‘›โˆ’๐‘ฅ ๐‘ฅ = 0,1,2, โ€ฆn Mean=np, variance=npq Given mean=4 and variance=3 np=4โ†’ (1), ๐‘›๐‘๐‘ž = 3 โ†’ (2) (2) ๐‘›๐‘๐‘ž 3 โ†’ = (1) ๐‘›๐‘ 4 3 3 1 ๐‘ž = ,๐‘ = 1 โˆ’ ๐‘ž = 1 โˆ’ = 4 4 4 4 4 n =๐‘ = 1 = 16 4

1 ๐‘ฅ

3 16โˆ’๐‘ฅ,

P(X=x)=16๐ถ๐‘ฅ (4) (4)

๐‘ฅ = 0,1,2, โ€ฆ 16

3 16

P(X=0)=๐‘ž16 = (4)

______________________________________________________________________________ 2.If the probability that a target isdestroyed on any one short is0.5.What is the probability that it would be destroyed on the 6th attempt Solution: Here destruction is success. First Success is on the 6th attempt. Let the random variable X denote the number of trails required for the first success. Given p=0.5 so q=0.5 and x=6 1

So, X follows geometric distribution with parameter p=0.5=2

Therefore the geometric distribution is P(X=x)=๐‘ž ๐‘ฅโˆ’1 ๐‘, ๐‘ฅ = 1,2, โ€ฆ 1 ๐‘ฅโˆ’1 1

=(2)

1 ๐‘ฅ

.2

=(2) , ๐‘ฅ = 1,2, โ€ฆ 1 6

Therefore P(X=6) =(2)

=0.0156 ______________________________________________________________________________

3.The CDF of a continuous random variable is given by F(x)= {

๐ŸŽ,

๐’™<๐ŸŽ

Find the ๐Ÿ โˆ’ ๐’† ,๐ŸŽ โ‰ค ๐’™ < โˆž โˆ’๐’™ ๐Ÿ“

PDF and mean of x Solution: Given the CDF of the Continuous random variable X is โˆ’๐‘ฅ

F(x)={1 โˆ’ ๐‘’ 5 , ๐‘ฅ โ‰ฅ 0 0, ๐‘ฅ < 0 The PDF of X is f(x)=๐น1 (๐‘ฅ) 1

={

โˆ’๐‘ฅ

๐‘’ 5 ,๐‘ฅ โ‰ฅ 0 5

0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ โˆž

โˆž๐‘ฅ

Mean of X =E(X)=โˆซโˆ’โˆž ๐‘ฅ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = โˆซ0 โˆ’๐‘ฅ

1

= 5 [๐‘ฅ

๐‘’5

โˆ’1 5

โˆ’๐‘ฅ 5

โˆ’๐‘ฅ

โˆ’ 1.

๐‘’5 (

=-[๐‘’ (๐‘ฅ + 5)]

โˆ’1 2 ) 5

โˆž

โˆž

โˆ’๐‘ฅ

๐‘’ 5 ๐‘‘๐‘ฅ 5

] 0

0

=-[๐‘’ โˆ’โˆž โˆ’ ๐‘’ 0 . 5] =5

______________________________________________________________________________ 4. Establish the memory less property of the exponential distribution If X is exponentially distributed with parameter ๏ฌ , then for any two positive integers โ€˜sโ€™ and โ€˜tโ€™P[X>s+t/X>s] = P[x>t] โˆ’๏ฌ x ,x โ‰ฅ 0 Proof: The PDF of X is f(x)={ ๏ฌ e 0, ๐‘‚๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Now P[X>k] =โˆซ๐‘˜ ๏ฌ eโˆ’ ๏ฌ x โˆž

๏‚ฅ

๏ƒฉ e ๏€ญ ๏ฌx ๏ƒน = ๏ƒช ๏ƒบ ๏ƒซ ๏€ญ ๏ฌ ๏ƒปk

=eโˆ’ ๏ฌ k Consider for s,tโ‰ฅ0, P[X>s+t/X>s] = = =

๐‘ƒ[๐‘‹>๐‘ +๐‘กโˆฉ๐‘‹>๐‘ ] ๐‘ƒ[๐‘‹>๐‘ ] ๐‘ƒ[๐‘‹>๐‘ +๐‘ก] ๐‘ƒ[๐‘‹>๐‘ ] ๐‘’ โˆ’ ๏ฌ (s+t) eโˆ’ ๏ฌ s

= eโˆ’ ๏ฌ t =P[X>t] Thus P[X>s+t/X>s] = P[x>t] โˆ€ ๐‘ , ๐‘ก โ‰ฅ 0 ______________________________________________________________________________ 5. If y=x2,where X is a Normal random variable with zero mean and variance ๐ˆ๐Ÿ ,find the PDF of therandom variable Y. โˆ’๐‘ฅ2

1

Solution:Given fx(x)=๐œŽโˆš2๐œ‹ ๐‘’ 2๐œŽ2 โˆ’ โˆž < ๐‘ฅ < โˆž Fy(y) = P[Yโ‰คy]=P[X2โ‰คy] = p[โˆ’โˆš๐‘ฆ โ‰ค ๐‘ฅ โ‰ค โˆš๐‘ฆ ] =Fx(โˆš๐‘ฆ )- Fx(-โˆš๐‘ฆ ) fy(y)=2

1

โˆš๐‘ฆ 1

=2

[๐‘“๐‘ฅ โˆš๐‘ฆ + ๐‘“๐‘ฅ (โˆ’โˆš๐‘ฆ)] โˆ’๐‘ฆ

1

โˆ’๐‘ฆ

1

[ ๐‘’ 2๐œŽ2 + ๐œŽโˆš2๐œ‹ ๐‘’ 2๐œŽ2 ] ๐‘ฆ ๐œŽโˆš2๐œ‹

โˆš 1

โˆ’๐‘ฆ

fy(y) =๐œŽโˆš2๐œ‹๐‘ฆ . ๐‘’ 2๐œŽ2 ,y>0 ______________________________________________________________________________ 6.Find the acute angle between two lines of regression. Solution : 1โˆ’ ๐‘Ÿ 2

If ๐œƒ is the angle between two regression lines , then ๐‘ก๐‘Ž๐‘›๐œƒ = (

๐‘Ÿ

)

๐œŽ๐‘ฅ ๐œŽ๐‘ฆ ๐œŽ๐‘ฅ 2 + ๐œŽ๐‘ฆ 2

.

______________________________________________________________________________ 7.The joint p.df of the two dimensional random variable (X,Y) is given by 8๐‘ฅ๐‘ฆ

๐‘“(๐‘ฅ, ๐‘ฆ) = {

(i) (ii)

9 1 โ‰ค ๐‘ฅ โ‰ค ๐‘ฆ โ‰ค 2. Find 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ Marginal densities of X and Y The conditional density functions ๐‘“(๐‘ฅ/๐‘ฆ) and ๐‘“(๐‘ฆ/๐‘ฅ)

Solution : (i)

The Marginal density functions of X and Y are given by 2

๐‘“๐‘‹ (๐‘ฅ) = โˆซ๐‘ฅ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ 2 8๐‘ฅ๐‘ฆ

โˆซ๐‘ฅ

9

๐‘‘๐‘ฆ

8 ๐‘ฅ๐‘ฆ 2

= โŒŠ 9

2

โŒ‹

2 ๐‘ฅ

= =

8๐‘ฅ

โŒŠ

9

4๐‘ฅ

4 โˆ’ ๐‘ฅ2 2

โŒ‹

โŒŠ4 โˆ’ ๐‘ฅ 2 โŒ‹ ,

9

1โ‰ค๐‘ฅโ‰ค2

๐‘ฆ

๐‘“๐‘Œ (๐‘ฆ) = โˆซ1 ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ ๐‘ฆ 8๐‘ฅ๐‘ฆ

โˆซ1

9

๐‘‘๐‘ฅ

8 ๐‘ฆ๐‘ฅ 2

= โŒŠ = = (ii)

โŒ‹

9

2

8๐‘ฆ

๐‘ฆ2

โŒŠ

9

4๐‘ฆ 9

๐‘ฆ

1 โˆ’1

2

โŒ‹

(๐‘ฆ 2 โˆ’ 1) ,

1โ‰ค๐‘ฆโ‰ค2

The conditional density functions are given by ๐‘“(๐‘ฅ/๐‘ฆ) = =

๐‘“(๐‘ฅ,๐‘ฆ) ๐‘“๐‘‹ (๐‘ฅ) 4๐‘ฅ 9

8๐‘ฅ๐‘ฆ 9

โŒŠ4โˆ’ ๐‘ฅ2 โŒ‹ 2๐‘ฆ

1โ‰ค๐‘ฅโ‰ค๐‘ฆโ‰ค2

= (๐‘ฆ 2 โˆ’ 1) ๐‘“(๐‘ฆ/๐‘ฅ) = =

๐‘“(๐‘ฅ,๐‘ฆ) ๐‘“๐‘Œ (๐‘ฆ)

8๐‘ฅ๐‘ฆ 9

4๐‘ฆ 2 (๐‘ฆ โˆ’ 1) 9

2๐‘ฅ

1โ‰ค๐‘ฅโ‰ค๐‘ฆโ‰ค2

= โŒŠ4โˆ’ ๐‘ฅ 2 โŒ‹

______________________________________________________________________________ 8.If X has mean 4 and variance 9 , while Y has mean -2 and variance 5 , and the two are independent, find (a) E(XY) (b) E(X๐‘Œ 2 ) Solution: Given E(X) = 4 , V(X) = 9, E(Y) = -2, V(Y) = 5 X and Y are independent โ‡’ ๐ธ(๐‘‹๐‘Œ) = ๐ธ(๐‘‹). ๐ธ(๐‘Œ) = 4 ร— โˆ’2 = E(X๐‘Œ 2 ) = ๐ธ(๐‘‹).E(๐‘Œ 2 ) =4ร—9

8

= 36 ______________________________________________________________________________ 9.. Let X and Y be two discrete random variables with joint probability mass function ๐‘ƒ(๐‘‹ = 1

๐‘ฅ, ๐‘Œ = ๐‘ฆ) = {8

(๐‘ฅ + ๐‘ฆ), ๐‘ฅ = 1,2 ๐‘Ž๐‘›๐‘‘ ๐‘ฆ = 0,1 0 , ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’

Find the marginal probability mass functions of X and Y.

Sol:

The PMF is X Y 1 2 P(y)

0

1 0.125 0.25 0.375

0.25 0.375 0.625

P(x) 0.375 0.625 1

______________________________________________________________________________ 10.Define Wide sense stationary process A random process {X(t)} is called Wide sense stationary if its mean is constant and autocorrelation function depends only on the time difference i.e (i) E(X(t)) is always a constant (ii)E(X(t)X(t+๐œ))= Rxx(๐œ) ______________________________________________________________________________ 11.If {X(t)} is a normal process with ยต(t)=10 and C(t1,t2)=16 ๐’†โˆ’|๐’•๐Ÿ โˆ’๐’•๐Ÿ| find the variance of X(10)X(6) Solution: Since {X(t)} is a Normal process, any member of {X(t)} is a normal random variable By definition C(t1,t2)= R(t1,t2)-E[X(t1)].E[X(t2)] C(t1,t2)= Var(X(t1)) C(t1,t2)= Var {X(t)} Now X (10) is a normal random variable with mean ยต(10)=10 and variance C(10,10) =16 Var(U)= Var[X(10)-X(6)] =Var[X(10)]+Var[X(6)]-2Cov[X910,X(6)] =Cov(10,10)+Cov(6,6)-2Cov(10,6) =16 ๐‘’ โˆ’|10โˆ’10| + 16๐‘’ โˆ’|6โˆ’6| โˆ’ 2 ร— 16๐‘’ โˆ’|10โˆ’6| =16+16-2 16e-4

= 31.4139 ๐œŽ๐‘ข=โˆš31.4139 =5.6048 ______________________________________________________________________________ 12.Prove that a first order stationary process has a constant mean Solution: Let X(t) be a first orderStationary process Therefore the first order density function is unaffected by shift in time origin fx(x,t)= fx(x,t+๐›ฟ) for any โ†’ (1) โˆž

Now E[X(t)]=โˆซโˆ’โˆž ๐‘ฅ๐‘“๐‘ฅ (๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ โˆž

And E[X(t+ ๐›ฟ)] = โˆซโˆ’โˆž ๐‘ฅ๐‘“๐‘ฅ (๐‘ฅ, ๐‘ก + ๐›ฟ)๐‘‘๐‘ฅ โˆž

=โˆซโˆ’โˆž ๐‘ฅ๐‘“๐‘ฅ (๐‘ฅ, ๐‘ก)๐‘‘๐‘ฅ = ๐ธ[๐‘‹(๐‘ก)]๐‘ข๐‘ ๐‘–๐‘›๐‘” (1) Therefore E[X(t)]=E[X(t+ ๐›ฟ)] ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐›ฟ Hence E[X(t)] is aconstant. Hence mean is constant ______________________________________________________________________________ 13.State the postulates of a Poisson process If X(t) represents the number of occurrences of a certain event in (0,t) then the discrete random process {X(t)} is called the Poisson Process,Provided the following Posulates are satisfied. (i) P(1 Occurrence in (t,t+โˆ†๐‘ก))= ๏ฌ โˆ†๐‘ก + 0(โˆ†๐‘ก) (ii)P (0 Occurrence in (t,t+โˆ†๐‘ก))=1- ๏ฌ โˆ†๐‘ก + 0(โˆ†๐‘ก) (iii)P(2 or more Occurrence in (t,t+โˆ†๐‘ก)) = 0(โˆ†๐‘ก) (iv) X(t) is independent of the number of occurrences of the event in any interval before and after interval (0,t) ______________________________________________________________________________ 14.Define ergodic random process A random process X(t) is said to be ergodic if its ensemble averages are equal to its appropriate time averages

15. Find the autocorrelation function of a stationary process, whose power spectral densityfunction is 2 ๏ƒฌ ๏ƒฏ๏ท , ๏ท ๏‚ฃ 1 ๏ƒฏ ๏ƒฎ 0, ๏ท ๏€พ 1.

given by S (๏ท ) ๏€ฝ ๏ƒญ Sol:

R(๏ด ) ๏€ฝ ๏€ฝ ๏€ฝ

1 2๏ฐ 1 2๏ฐ 1 2๏ฐ

๏‚ฅ

๏ƒฒ

S (๏ท ) ei๏ด๏ท d ๏ท ๏€ฝ

๏€ญ๏‚ฅ 1

๏ƒฒ๏ท

2

1

1 ๏ท 2 ei๏ด๏ท d๏ท ๏ƒฒ 2๏ฐ ๏€ญ1

(cos ๏ท๏ด ๏€ซ sin ๏ท๏ด ) d๏ท

๏€ญ1 1

2 ๏ƒฒ ๏ท cos ๏ท๏ด d๏ท ๏€ฝ

๏€ญ1

1

1

๏ท ๏ฐ๏ƒฒ

2

cos ๏ท๏ด d๏ท

0

1 ๏ƒฆ ๏ท sin ๏ท๏ด 2๏ท cos ๏ท๏ด ๏€ฝ ๏ƒง ๏€ซ ๏ฐ๏ƒจ ๏ด ๏ด2 1 ๏ƒฆ sin ๏ด 2 cos ๏ด 2sin ๏ด ๏€ฝ ๏ƒง ๏€ซ ๏€ญ ๏ฐ๏ƒจ ๏ด ๏ด2 ๏ด3 2

1

2sin ๏ท๏ด ๏ƒถ ๏€ญ ๏ƒท ๏ด 3 ๏ƒธ0 ๏ƒถ ๏ƒท. ๏ƒธ

_____________________________________________________________________________________ 15. Given that the autocorrelation function for a stationary ergodic process with no periodic components is Rxx ๏€จ๏ด ๏€ฉ ๏€ฝ 25 ๏€ซ

4 . Find the mean and the variance of the process ๏ป X (t )๏ฝ . 1 ๏€ซ 6๏ด 2

Sol: By the property of autocorrelation function,

๏ญ x2 ๏€ฝ lim Rxx (๏ด ) ๏ด ๏‚ฎ๏‚ฅ

๏€ฝ 25

๏œ

๏ญx ๏€ฝ 5 . E ๏ป X 2 (t )๏ฝ ๏€ฝ Rxx (0) ๏€ฝ 25 ๏€ซ 4 ๏€ฝ 29

๏œ

Var ๏ป X (t )๏ฝ ๏€ฝ E ๏ป X 2 (t )๏ฝ ๏€ญ ๏€จ E ๏ป X (t )๏ฝ๏€ฉ ๏€ฝ 29 ๏€ญ 25 ๏€ฝ 4. 2

_____________________________________________________________________________________ 16. Show that Spectral density function of a real random process is even function. Sol : By definition S (๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒ R(๏ด ) e

๏€ญ๏‚ฅ

๏€ญ i๏ท๏ด

d๏ด

๏œ

S (๏€ญ๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒ R(๏ด ) e

i๏ท๏ด

d๏ด

๏€ญ๏‚ฅ

Putting ๏ด ๏€ฝ ๏€ญu ,

S (๏€ญ๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒ R(๏€ญu) e

๏€ญ i๏ทu

du

๏€ญ๏‚ฅ ๏‚ฅ

๏€ฝ

๏ƒฒ R(u) e

๏€ญ i๏ทu

du

[since R(๏ด ) is an even function]

๏€ญ๏‚ฅ

๏€ฝ S (๏ท ). Therefore, S (๏ท ) is an even function of ๏ท _____________________________________________________________________________________ 17. Define Cross Correlation function and state any two of its properties. Sol: The cross correlation of two processes X(t) and Y(t) is denoted by

RXY (t1 , t 2 ) ๏€ฝ E[ X (t1 )Y (t 2 )] for any t1 and t 2 If X(t) and Y(t) are jointly WSS, then RXY (t , t ๏€ซ ๏ด ) ๏€ฝ R XY (๏ด ) Properties (i) RXY (๏ด ) ๏€ฝ RYX (๏€ญ๏ด ) (ii) R XY (๏ด ) ๏‚ฃ

R XX (0) RYY (0)

_____________________________________________________________________________________ 18. Define Cross-Spectral density. Sol: Let X(t) any Y(t) be two jointly stationary processes with cross correlation function R XX (๏ด ) . Then the cross power spectrum of X(t) and Y(t) is S XY (๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒR

XY

(๏ด )e ๏€ญi๏ท ๏ด d๏ด

๏€ญ๏‚ฅ

_____________________________________________________________________________________ 19. Define a System. When is it called a linear system? Sol: A system is a functional relation between input x(t ) and output y (t ). A System y(t ) ๏€ฝ f [ x(t )] given by the function f is said to be linear if for any two inputs x1 (t ) and x 2 (t ) the output

f [a1 x1 (t ) ๏€ซ a2 x2 (t )] = a1 f [ x1 (t )] ๏€ซ a2 f [ x2 (t )] for any constants a1 and a 2 . i.e., the system is linear if the principle of superposition holds good. Otherwise, the system is said to be non-linear.

_____________________________________________________________________________________

20. Define Band-Limited white noise. Sol: Noise having a non-zero and constant power spectral density over a finite frequency band and zero elsewhere is called band-limited white noise. ๏œ The PSD of the band-limited white noise is given by

๏ƒฌ N0 ๏ƒฏ S NN (๏ท ) ๏€ฝ ๏ƒญ 2 ๏ƒฏ ๏ƒฎ 0

, for ๏ท ๏‚ฃ WB , elsewhere

_____________________________________________________________________________________ 21. Define White noise process. Sol: A sample function X(t) of a WSS noise random process {X(t)} is called white noise if the power spectral density of {X(t)} is a constant at all frequencies. We denote the power spectral density of white noise w(t) as S w ( f ) ๏€ฝ

N0 2

_____________________________________________________________________________________ 22. Define Linear time invariant system. Sol: A linear system given by y(t ) ๏€ฝ f [ x(t )] is said to be time-invariant if y(t ๏€ซ h) ๏€ฝ f [ x(t ๏€ซ h)] for any

h ๏ƒŽ (๏€ญ๏‚ฅ, ๏‚ฅ) i.e., any time shift h in the input results in the same shift in time of the output. _____________________________________________________________________________________

23. .State the Convolution form of the output of a linear time invariant system. Sol: If X (t ) is the input and h(t ) be the system weighting function and Y (t ) is the output, then ๏‚ฅ

Y (t ) ๏€ฝ X (t ) * h(t ) ๏ƒฒ h(u ) X (t ๏€ญ u )du ๏€ฝ๏‚ฅ

_____________________________________________________________________________________ 24.

PART B 1. (A) The density function of random variable X is given by f(x)={

๐‘ฒ๐’™(๐Ÿ โˆ’ ๐’™), ๐ŸŽ โ‰ค ๐’™ โ‰ค ๐Ÿ ๐ŸŽ, ๐’†๐’๐’”๐’†๐’˜๐’‰๐’†๐’“๐’†

Find the value of K, the mean, variance and rth moment ๐พ๐‘ฅ(2 โˆ’ ๐‘ฅ), 0 โ‰ค ๐‘ฅ โ‰ค 2 Solution: Given the pdf of Continuous random variable X is f(x)={ 0, ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ โˆž

โˆซ f(x)dx = 1 โˆ’โˆž 2

โˆซ ๐‘˜๐‘ฅ(2 โˆ’ ๐‘ฅ)๐‘‘๐‘ฅ = 1 0 2

๐‘˜ โˆซ(2๐‘ฅ โˆ’ ๐‘ฅ 2 )๐‘‘๐‘ฅ = 1 0 2

2๐‘ฅ 2 ๐‘ฅ 3 ๐‘˜[ โˆ’ ] =1 2 3 0 23 ๐‘˜ [2 โˆ’ ] = 1 3 2

4๐‘˜ =1 3 3 =๐พ 4 3/4๐‘ฅ(2 โˆ’ ๐‘ฅ), 0 โ‰ค ๐‘ฅ โ‰ค 2 f(x)={ 0, ๐‘’๐‘™๐‘ ๐‘’๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ โˆž

๐œ‡๐‘Ÿ1

= ๐ธ(๐‘‹

๐‘Ÿ)

= โˆซ ๐‘ฅ ๐‘Ÿ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ โˆ’โˆž

2

3 = โˆซ ๐‘ฅ ๐‘Ÿ ๐‘ฅ(2 โˆ’ ๐‘ฅ)๐‘‘๐‘ฅ 4 0

2

3

= 4 โˆซ0 (2๐‘ฅ ๐‘Ÿ+1 โˆ’ ๐‘ฅ ๐‘Ÿ+2 )๐‘‘๐‘ฅ 2

3 ๐‘ฅ ๐‘Ÿ+2 ๐‘ฅ ๐‘Ÿ+3 = [2 โˆ’ ] 4 ๐‘Ÿ+2 ๐‘Ÿ+3 0 2 2.2๐‘Ÿ+2

= 3[ =

๐‘Ÿ+2

โˆ’

2๐‘Ÿ+3 ๐‘Ÿ+3

]

3 ๐‘Ÿ+3 ๐‘Ÿ + 3 โˆ’ (๐‘Ÿ + 2) 2 [ ] (๐‘Ÿ + 2)(๐‘Ÿ + 3) 4

3 2๐‘Ÿ+3 โ†’ (1) 4 (๐‘Ÿ + 2)(๐‘Ÿ + 3)

๐œ‡๐‘Ÿ1 = Substituting r=1, 2 in (1) ๐œ‡11

3 24 3 25 6 1 = = 1, ๐œ‡2 = = 4 3.4 4 4.5 5 6

1

Mean of X is E(X) =๐œ‡11 = 1 and Var(X)=๐œ‡21 โˆ’ (๐œ‡11 )2= 5 โˆ’ 1 = 5 1. (B) X is distributing normally, with mean 16 and standard deviation 3. Find(i)P(Xโ‰ฅ19),(ii)P(12.5
Put Z= (i)

๐œŽ

=

๐‘‹โˆ’16 3

19โˆ’16

When X=19, Z=

3

=1

P(Xโ‰ฅ19)=P(Zโ‰ฅ1) =05-P(0
P((12.5
When X=12.5,Z=

3 19โˆ’16

When X=19 ,Z=

(iii)

3

= โˆ’1.16

=1

Therefore P(12.5
When X=10,Z=

3 25โˆ’16

When X=10,Z=

3

= โˆ’2 =3

P(10X<25)=P(-21/2. Solution: (i)โˆ‘7๐‘ฅ=0 ๐‘(๐‘ฅ) = 1 K+2K+2K+3K+K2+2k2+7k2+K=1 10k2+9K-1=0

4 3k

5 K2

6 2k2

7 7k2+k

5 1 100

6 2 100

7 17 100

1

K=10 or K=-1 But since P(x) cannot de negative ,K=-1 is rejected 1

Hence K=10 X

0 0

1 2 1 2 P(x) 10 10 (ii) P(X<6)=P(X=0)+P(X=1)+โ€ฆ.+P(X=5) 1

2

2

3

1

3 2 10

4 3 10

81

=10+10 + 10 + 10 + 100 = 100 81

19

P(Xโ‰ฅ6)=1-P(X<6)=1-100=100 P(0
(iii) P(Xโ‰ค3)= 2

8

8 10

1

P(Xโ‰ค4) =10 > 2 ______________________________________________________________________________ 3. If the p.d.f of a two dimensional random variable (X,Y) is given by ๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ฅ + ๐‘ฆ , 0 โ‰ค ๐‘ฅ, ๐‘ฆ โ‰ค 1. Find the p.d.f of U=XY. ๐‘ข

Solution: ๐‘ข = ๐‘ฅ๐‘ฆ , ๐‘ฃ = ๐‘ฆ. Hence ๐‘ฅ = ๐‘ฃ and ๐‘ฆ = ๐‘ฃ. ๐ฝ=

๐œ•๐‘ฅ

๐œ•๐‘ง

|๐œ•๐‘ข ๐œ•๐‘ฆ

๐œ•๐‘ฃ | ๐œ•๐‘ฆ

๐œ•๐‘ข

๐œ•๐‘ฃ

1 ๐‘ฃ = |โˆ’๐‘ข ๐‘ฃ2

0 |= 1

1 ๐‘ฃ

The joint p.d.f. of ๐‘ข and ๐‘ฃ is given by ๐‘”(๐‘ข, ๐‘ฃ) = ๐‘“(๐‘ฅ, ๐‘ฆ)|๐ฝ| = (๐‘ฅ + ๐‘ฆ)

1 ๐‘ข 1 ๐‘ข ๐‘ข = ( + ๐‘ฃ) = 2 + 1 = 1 + 2 ๐‘ฃ ๐‘ฃ ๐‘ฃ ๐‘ฃ ๐‘ฃ

Since , 0 โ‰ค ๐‘ฆ โ‰ค 1 , 0 โ‰ค ๐‘ฃ โ‰ค 1, , 0 โ‰ค ๐‘ฅ โ‰ค 1 โ‡’ , 0 โ‰ค ๐‘ข โ‰ค ๐‘ฃ ๐‘ฃ varies from ๐‘ฃ = ๐‘ข to ๐‘ฃ = 1. Hence the p.d.f of U is given by โˆž

๐‘“(๐‘ข) = โˆซ ๐‘”(๐‘ข, ๐‘ฃ)๐‘‘๐‘ฃ 1

โˆ’โˆž

๐‘ข ] ๐‘‘๐‘ฃ ๐‘ฃ2 ๐‘ข ๐‘ข1 = [๐‘ฃ]1๐‘ข โˆ’ [ ] = 1 โˆ’ ๐‘ข โˆ’ ๐‘ข + 1 ๐‘ฃ ๐‘ข = โˆซ [1 +

๐‘“(๐‘ข) = 2(1 โˆ’ ๐‘ข), 0 โ‰ค ๐‘ฅ โ‰ค 1. ______________________________________________________________________________

4.

The Probability distribution of the process{X(t)} is given by (๐’‚๐’•)๐’โˆ’๐Ÿ , ๐’ = ๐Ÿ, ๐Ÿ, โ€ฆ ๐’+๐Ÿ ๐‘ท(๐‘ฟ(๐’•) = ๐’) (๐Ÿ + ๐’‚๐’•) ๐’‚๐’• ๐’=๐ŸŽ { ๐Ÿ + ๐’‚๐’• , Show that {X(t)} is not stationary. Solution: Given

X(t)=n P{X(t)}=p(xn)

0

1

๐‘Ž๐‘ก 1 + ๐‘Ž๐‘ก

1 (1 + ๐‘Ž๐‘ก)2

2

๐‘Ž๐‘ก (1 + ๐‘Ž๐‘ก)3

Mean E{X(t)}=โˆ‘โˆž ๐‘›=0 ๐‘›๐‘(๐‘ฅ๐‘› ) ๐‘Ž๐‘ก

1

(๐‘Ž๐‘ก)2

๐‘Ž๐‘ก

=0.1+๐‘Ž๐‘ก +1.(1+๐‘Ž๐‘ก)2 +2.(1+๐‘Ž๐‘ก)3 + 3. (1+๐‘Ž๐‘ก)4 + โ‹ฏ 1

๐‘Ž๐‘ก

๐‘Ž๐‘ก

2

=(1+๐‘Ž๐‘ก)2 [1 + 2. 1+๐‘Ž๐‘ก + 3. (1+๐‘Ž๐‘ก) + โ‹ฏ ]

3

(๐‘Ž๐‘ก)2 (1 + ๐‘Ž๐‘ก)4

... ...

1

๐‘Ž๐‘ก

= (1+๐‘Ž๐‘ก)2 [1 โˆ’ 1+๐‘Ž๐‘ก] 1

= (1+๐‘Ž๐‘ก)2 ร— [ 1

โˆ’2

1+๐‘Ž๐‘กโˆ’๐‘Ž๐‘ก โˆ’2 1+๐‘Ž๐‘ก 1

]

=(1+๐‘Ž๐‘ก)2 ร— (1+๐‘Ž๐‘ก)โˆ’2 1

= (1+๐‘Ž๐‘ก)2 (1 + ๐‘Ž๐‘ก)2 =1, which is a constant Now 2 E(X2(t)) =โˆ‘โˆž ๐‘›=0 ๐‘› ๐‘(๐‘ฅ๐‘› ) = โˆ‘โˆž ๐‘›=0[๐‘›(๐‘› + 1) โˆ’ ๐‘›]๐‘(๐‘ฅ๐‘› ) โˆž =โˆ‘โˆž ๐‘›=0 ๐‘›(๐‘› + 1)๐‘(๐‘ฅ๐‘› ) โˆ’ โˆ‘๐‘›=0 ๐‘›๐‘(๐‘ฅ๐‘› ) 1

(๐‘Ž๐‘ก)2

๐‘Ž๐‘ก

={0 + 1.2 (1+๐‘Ž๐‘ก)2 + 2.3 (1+๐‘Ž๐‘ก)3 + 3.4 (1+๐‘Ž๐‘ก)4 + โ‹ฏ }-E{X(t)} 2

๐‘Ž๐‘ก

๐‘Ž๐‘ก

2

=(1+๐‘Ž๐‘ก)2 {1 + 3. (1+๐‘Ž๐‘ก) + 6. (1+๐‘Ž๐‘ก) + โ‹ฏ } โˆ’ 1 2

๐‘Ž๐‘ก

=(1+๐‘Ž๐‘ก)2 [1 โˆ’ 1+๐‘Ž๐‘ก] =

2 (1+๐‘Ž๐‘ก)2

โˆ’3

โˆ’1

. (1 + ๐‘Ž๐‘ก)3 โˆ’ 1

=2(1+at)-1 = 2+2at-1 =1+2at Var{X(t)}= E(X2(t))-[E(x(t))]2 =1+2at-1 =2at Which is dependent on t {x(t)} is not stationary ______________________________________________________________________________ 5. (A) If the Wss process {X(t)} is given by X(t)=10cos(100t+๐œฝ),where ๐œฝ is uniformly distributed over (-ฯ€,ฯ€).Prove that {X(t)} is correlation ergodic Solution: We Know that Rxx(๐œ)= E(X(t).X(t+ ๐œ)) =E(100cos(100t+๐œƒ)cos(100t+100 ๐œ + ๐œƒ)) =100E(cos(100t+๐œƒ+100t+100 ๐œ + ๐œƒ)+cos(100t+๐œƒ-100t-100 ๐œ โˆ’ ๐œƒ)) 100

=

2

E(cos(200t+2๐œƒ+100 ๐œ) +cos(-100 ๐œ))

50 E(cos(200t+2๐œƒ+100 ๐œ) +cos100 ๐œ) = 50cos100 ๐œ+50E(cos(200t+2๐œƒ+100 ๐œ)) โ†’ (1) 1

๐œ‹

Now E(cos(200t+2๐œƒ+100 ๐œ)) =2๐œ‹ โˆซโˆ’๐œ‹ cos(200t + 2๐œƒ + 100 ๐œ)๐‘‘๐œƒ 1

๐œ‹

= ๐œ‹ โˆซ0 cos(200t + 2๐œƒ + 100 ๐œ)๐‘‘๐œƒ

๐‘ ๐‘–๐‘›(200t + 2๐œƒ + 100 ๐œ) ๐œ‹ =[ ] 2 0 1

= 2๐œ‹ [ ๐‘ ๐‘–๐‘›(200t + 2๐œ‹ + 100 ๐œ)- ๐‘ ๐‘–๐‘›(200t + 100 ๐œ)] =0 Substituting in Equation (1),we have E(X(t).X(t+ ๐œ))=50cos100 ๐œ โ†’ (2) 1

๐‘‡

Therefore ZT= 2๐‘‡ โˆซโˆ’๐‘‡ ๐‘‹(๐‘ก). ๐‘‹(๐‘ก + ๐œ)๐‘‘๐‘ก 1

๐‘‡

50

๐‘‡

25

๐‘‡

=2๐‘‡ โˆซโˆ’๐‘‡ 100 cos(100๐‘ก + ๐œƒ) cos(100๐‘ก + 100๐œ + ๐œƒ) ๐‘‘๐‘ก =2๐‘‡ โˆซโˆ’๐‘‡[๐ถ๐‘๐‘œ๐‘ (200๐‘ก + 2๐œƒ + 100๐œ) + cos(โˆ’100๐œ) ๐‘‘๐‘ก = ๐‘‡ โˆซโˆ’๐‘‡ cos(100๐œ) ๐‘‘๐‘ก + 25

๐‘‡

25 ๐‘‡

๐‘‡

โˆซ๐‘‡ ๐ถ๐‘œ๐‘ (200๐‘ก + 100๐œ + 2๐œƒ)๐‘‘๐‘ก

=50cos(100 ๐œ)+ ๐‘‡ โˆซ๐‘‡ ๐ถ๐‘œ๐‘ (200๐‘ก + 100๐œ + 2๐œƒ)๐‘‘๐‘ก 25

1

= 50cos(100 ๐œ)+ ๐‘‡ [200 (sin(200๐‘ก + 2๐œƒ + 100๐œ) โˆ’ (๐‘ ๐‘–๐‘›200๐‘ก + 2๐œƒ))] 1

=50cos(100 ๐œ)+4๐‘‡ [sin(200๐‘ก + 2๐œƒ + 100๐œ) โˆ’ (๐‘ ๐‘–๐‘›200๐‘ก + 2๐œƒ)] Now lim (๐‘๐‘‡ ) = 50cos(100 ๐œ) ๐‘‡โ†’โˆž

=R(๐œ) Therefore {X(t)} is correlation ergodic ______________________________________________________________________________ 5. (B) If customers arrive at a counter in accordance with poisson process with a mean rate of 2 per minute, find the probability that the interval between 2 consecutive arrivals is (a)more than 1 minute (b) between 1 minute and 2 minute and (c) 4 minute or less Solution: Let T be the random variable denoting inter arrival time. By Property (3) fT(t)= ๏ฌe ๏€ญ ๏ฌt and P(T>t)= e ๏€ญ ๏ฌt Here ๏ฌ =2/minute Therefore fT(t)=2 e

๏€ญ2 t

โˆž

(a) P(T>1)=โˆซ1 2๐‘’ โˆ’2๐‘ก ๐‘‘๐‘ก = 0.1353 2

(b) P(1โ‰คTโ‰ค2)=โˆซ1 2๐‘’ โˆ’2๐‘ก ๐‘‘๐‘ก = 0.117 4

(c) P(Tโ‰ค4) =โˆซ0 2๐‘’ โˆ’2๐‘ก ๐‘‘๐‘ก = 0.99967

6. State and prove Wiener-Khintchine theorem Statement: Let X(t) be a real WSS process with power density spectrum S XX (๏ท ) . Let X T (t ) be a portion of the

๏ƒฌ X (t ) ,๏€ญT ๏€ผ t ๏€ผ T X T (t ) ๏€ฝ ๏ƒญ , elsewhere ๏ƒฎ 0 process X(t) in time interval โ€“T to T. i.e.,

Let X T (๏ท ) be the Fourier

transform of X T (t ) , then

S XX (๏ท ) ๏€ฝ

lim

1

T ๏‚ฎ ๏‚ฅ 2T

๏ป

E X T (๏ท )

2

๏ฝ

Proof: Given X T (๏ท ) is the Fourier transform of X T (t )

๏œ X T (๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒX

T

(t )e ๏€ญi๏ทt dt

๏€ญ๏‚ฅ T

๏€ฝ

๏ƒฒX

T

(t )e ๏€ญi๏ทt dt

๏€ญT T

๏€ฝ

๏ƒฒ X (t )e

๏€ญi๏ทt

dt

๏€ญT

X T (๏ท ) ๏€ฝ X T* (๏ท ) X T (๏ท ) [where * denotes complex conjugate] 2

T

T

๏€ญT

๏€ญT

i๏ทt ๏€ญi๏ทt ๏ƒฒ X (t )e dt. ๏ƒฒ X (t )e dt

๏€ฝ

[๏‘ X (t ) is real]

T T i๏ทt ๏€ญ i๏ทt 2 dt ๏€ฝ ๏ƒฒ X (t )e 1 dt . ๏ƒฒ X (t )e 1 1 2 2 ๏€ญT ๏€ญT T T

๏€ฝ

๏ƒฒ ๏ƒฒ X (t ) X (t 1

2

)e ๏€ญi๏ท ( t2 ๏€ญt2 ) dt1dt 2

๏€ญT ๏€ญT

T T

๏œ

lim T ๏‚ฎ๏‚ฅ

๏›

E X T (๏ท )

2

๏ ๏€ฝ T ๏‚ฎ ๏‚ฅ 2T lim

1

๏ƒฒ ๏ƒฒ X (t ) X (t 1

2

)e ๏€ญi๏ท ( t2 ๏€ญt2 ) dt1dt 2

๏€ญT ๏€ญT

But E๏›X ((t1 )(t 2 )๏ ๏€ฝ RXX (t1 , t 2 ) if ๏€ญ T ๏€ผ t1 , t 2 ๏€ผ T T T

๏œ

lim T ๏‚ฎ๏‚ฅ

๏›

E X T (๏ท )

2

๏ ๏€ฝ T ๏‚ฎ ๏‚ฅ 2T lim

1

๏ƒฒ ๏ƒฒR

๏€ญT ๏€ญT

XX

(t1 , t 2 )e ๏€ญi๏ท ( t2 ๏€ญt2 ) dt1dt 2

We shall now make a change of variables as below Put t1 ๏€ฝ t and t 2 ๏€ญ t1 ๏€ฝ ๏ด ๏ƒž t 2 ๏€ฝ ๏ด ๏€ซ t ๏œ the jacobian of transformation is

๏‚ถt1 J ๏€ฝ ๏‚ถt ๏‚ถt 2 ๏‚ถt

1 0 ๏‚ถt1 ๏€ฝ ๏€ฝ1 1 1 ๏‚ถ๏ด ๏‚ถt 2 ๏‚ถ๏ด

๏‘ dt1dt 2 ๏€ฝ J dtd๏ด The limits of t and โ€“T and T When t 2 ๏€ฝ ๏€ญT ,๏ด ๏€ฝ ๏€ญT ๏€ญ t and t 2 ๏€ฝ T ,๏ด ๏€ฝ T ๏€ญ t

๏œ

lim

1

T ๏‚ฎ ๏‚ฅ 2T

๏›

E X T (๏ท )

2

1 ๏ ๏€ฝ T lim ๏‚ฎ ๏‚ฅ 2T

T ๏€ญt

T

๏ƒฒ ๏ƒฒR

XX

(t , t ๏€ซ ๏ด )e ๏€ญi๏ท ๏ด dtd๏ด

XX

(๏ด )e ๏€ญi๏ท ๏ด dtd๏ด

๏€ญT ๏€ญt ๏€ญT

Since X(t) is WSS Process, RXX (t , t ๏€ซ ๏ด ) ๏€ฝ RXX (๏ด )

๏œ

lim

1

T ๏‚ฎ ๏‚ฅ 2T

๏›

E X T (๏ท )

2

1 ๏ ๏€ฝ T lim ๏‚ฎ ๏‚ฅ 2T

T ๏€ญt

T

๏ƒฒ ๏ƒฒR

๏€ญT ๏€ญt ๏€ญT

๏€ฝ

๏€ฝ

lim

1

T ๏€ญt

T

๏€ญT ๏€ญt

๏€ญT

T ๏‚ฎ ๏‚ฅ 2T

lim

๏€ญi๏ท ๏ด ๏ƒฒ RXX (๏ด )e d๏ด . ๏ƒฒ dt

1

T ๏€ญt

T ๏‚ฎ ๏‚ฅ 2T

๏ƒฒR

XX

(๏ด )e ๏€ญi๏ท ๏ด d๏ด .2T

๏€ญT ๏€ญt

๏€ฝ

lim T ๏‚ฎ๏‚ฅ

T ๏€ญt

๏ƒฒR

XX

(๏ด )e ๏€ญi๏ท ๏ด d๏ด

๏€ญT ๏€ญt

๏‚ฅ

๏€ฝ

๏ƒฒR

XX

(๏ด )e ๏€ญi๏ท ๏ด d๏ด ๏€ฝ S XX (๏ท )

๏€ญ๏‚ฅ

๏›

๏œ S XX (๏ท ) ๏€ฝ lim E X T (๏ท ) T ๏‚ฎ๏‚ฅ 2T

2

๏

, by definition.

Hence proved. _____________________________________________________________________________________

7. If X(t) is the input voltage to a circuit (system) and Y(t) is the output voltage.{X(t)} is a stationary process with ๏ญ x ๏€ฝ 0 and Rxx (๏ด ) ๏€ฝ e function is H (๏ท ) ๏€ฝ

๏€ญ๏ก ๏ด

. Find ๏ญ y , S yy and Ryy (๏ด ) , if the power transfer

R . R ๏€ซ iL๏ท ๏‚ฅ

๏ƒฒ h(u) X (t ๏€ญ u)du

Y (t ) ๏€ฝ Sol: (i) We know that

๏œ E๏›Y (t )๏ ๏€ฝ

๏€ญ๏‚ฅ

๏‚ฅ

๏ƒฒ h(u) E[ X (t ๏€ญ u)]du

๏€ญ๏‚ฅ

Since X(t) is stationary with mean 0, E[ X (t )] ๏€ฝ 0 for all t ๏œ E[ X (t ๏€ญ u)] ๏€ฝ 0 ๏œ E[Y (t )] ๏€ฝ 0

S XX (๏ท ) ๏€ฝ

๏‚ฅ

๏ƒฒR

XX

(๏ด )e ๏€ญi๏ท ๏ด d๏ด

๏€ญ๏‚ฅ

(ii)We know that

๏‚ฅ

๏€ฝ

๏ƒฒe

๏€ญ๏ก ๏ด

e ๏€ญi๏ท ๏ด d๏ด

๏€ญ๏‚ฅ

๏‚ฅ

0

๏€ฝ ๏ƒฒ e๏ก๏ด e ๏€ญi๏ท ๏ด d๏ด ๏€ซ ๏ƒฒ e ๏€ญ๏ก๏ด e ๏€ญi๏ท ๏ด d๏ด ๏€ญ๏‚ฅ

0 ๏‚ฅ

0

๏€ฝ ๏ƒฒ e (๏ก ๏€ญi๏ท )๏ด d๏ด ๏€ซ ๏ƒฒ e (๏ก ๏€ซi๏ท )๏ด d๏ด ๏€ญ๏‚ฅ

0 0

๏‚ฅ

๏ƒฉ e (๏ก ๏€ญi๏ท )๏ด ๏ƒน ๏ƒฉ e ๏€ญ (๏ก ๏€ซi๏ท )๏ด ๏ƒน ๏€ฝ๏ƒช ๏€ซ ๏ƒบ ๏ƒช ๏ƒบ ๏ƒซ ๏ก ๏€ญ i๏ท ๏ƒป ๏€ญ๏‚ฅ ๏ƒซ ๏€ญ (๏ก ๏€ซ i๏ท ) ๏ƒป 0 1 1 ๏€ฝ [1 ๏€ญ 0] ๏€ญ [0 ๏€ญ 1] ๏ก ๏€ญ i๏ท ๏ก ๏€ซ i๏ท 1 1 2๏ก ๏ก ๏€ซ i๏ท ๏€ซ ๏ก ๏€ญ i๏ท ๏€ฝ ๏€ซ ๏€ฝ 2 ๏€ฝ ๏ก ๏€ญ i๏ท ๏ก ๏€ซ i๏ท (๏ก ๏€ญ i๏ท )(๏ก ๏€ซ i๏ท ) ๏ก ๏€ซ ๏ท 2 Given H (๏ท ) ๏€ฝ

R . R ๏€ซ iL๏ท

We know that S yy (๏ท ) ๏€ฝ H (๏ท ) S xx (๏ท ) 2

2

R2 2๏ก ๏€ฝ 2 R ๏€ซ iL ๏ท ๏ก ๏€ซ ๏ท 2

๏€ฝ

R2 2๏ก . 2 2 2 2 R ๏€ซ L ๏ท ๏ก ๏€ซ๏ท2

(iii) The autocorrelation function of Y(t) is

RYY (๏ด ) ๏€ฝ

1 2๏ฐ

1 ๏€ฝ 2๏ฐ ๏€ฝ

๏‚ฅ

๏ƒฒS

YY

(๏ท )e i๏ท ๏ด d๏ท

๏€ญ๏‚ฅ ๏‚ฅ

2๏กR 2 e i๏ท ๏ด ๏ƒฒ 2 2 2 . 2 2 d๏ท ๏€ญ๏‚ฅ ( R ๏€ซ L ๏ท ) ๏ก ๏€ซ ๏ท

๏กR 2 ๏ฐ

๏‚ฅ

1 e i๏ท ๏ด . ๏ƒฒ๏€ญ๏‚ฅ ( R 2 ๏€ซ L2๏ท 2 ) ๏ก 2 ๏€ซ ๏ท 2 d๏ท

1 2 2 First we shall write ( R ๏€ซ L ๏ท )(๏ก ๏€ซ ๏ท ) as partial fraction, treating 2

2

2

ฯ‰2 as u. We shall write the special partial fraction as

1 A B ๏€ฝ 2 ๏€ซ 2 2 2 2 2 ( R ๏€ซ L ๏ท )(๏ก ๏€ซ ๏ท ) R ๏€ซ L ๏ท ๏ก ๏€ซ๏ท2 2

2

2

R2 L2 we get A ๏€ฝ L2 ๏ก 2 L2 ๏€ญ R 2 1 Put u ๏€ฝ ๏€ญ๏ก 2 we get B ๏€ฝ 2 R ๏€ญ L2๏ก 2 L2 1 2 2 2 2 1 ๏ก L ๏€ญ R ๏€ซ R ๏€ญ L2๏ก 2 ๏œ 2 ๏€ฝ ( R ๏€ซ L2๏ท 2 )(๏ก 2 ๏€ซ ๏ท 2 ) R 2 ๏€ซ L2๏ท 2 ๏ก 2 ๏€ซ๏ท2 Put u ๏€ฝ ๏€ญ

L2 1 1 1 ๏€ซ 2 2 2 2 2 2 2 2 2 2 ๏ก L ๏€ญR R ๏€ซL๏ท R ๏€ญ L ๏ก ๏ก ๏€ซ๏ท2

๏€ฝ

๏‚ฅ ๏‚ฅ ๏กR 2 L2 1 ๏กR 2 1 i๏ด๏ท ๏œ RYY (๏ด ) ๏€ฝ .e d๏ท ๏€ญ .e i๏ด๏ท d๏ท 2 2 2 2 2 2 2 2 2 2 ๏ƒฒ ๏ƒฒ ๏ฐ (๏ก L ๏€ญ R ) ๏€ญ๏‚ฅ ( R ๏€ซ L ๏ท ) ๏ฐ (๏ก L ๏€ญ R ) ๏€ญ๏‚ฅ๏ก ๏€ซ ๏ท 2

๏€ฝ

๏กR 2 L2 1 2 2 2 ๏ฐ (๏ก L ๏€ญ R ) L2

๏‚ฅ

1

๏ƒฒ

๏€ญ๏‚ฅ

2

(

R ๏€ซ๏ท2) 2 L

By Contour integration, we know that ๏‚ฅ

e imz ๏ฐ ๏€ญma ๏ƒฒ๏€ญ๏‚ฅ z 2 ๏€ซ a 2 dz ๏€ฝ a e , m ๏€พ 0

.e i๏ด๏ท d๏ท ๏€ญ

๏‚ฅ

๏กR 2 ๏ฐ (๏ก L ๏€ญ R 2

2

2

) ๏ƒฒ๏ก ๏€ญ๏‚ฅ

2

1 .e i๏ด๏ท d๏ท 2 ๏€ซ๏ท

๏œ RYY (๏ด ) ๏€ฝ

๏กR 2 L2 ๏ฐ ๏€ญ๏ด ๏กR 2 ๏ฐ ๏€ญ๏ก ๏ด e ๏€ญ e 2 2 2 2 2 2 ๏ฐ (๏ก L ๏€ญ R ) ๏ƒฆ R ๏ƒถ ๏ฐ (๏ก L ๏€ญ R ) ๏ก ๏ƒง ๏ƒท ๏ƒจL๏ƒธ

๏€ฝ

๏€ฝ

๏กLR ๏ก 2 L2 ๏€ญ R 2

e

๏€ญ๏ด

๏กLR R2 L2 (๏ก 2 ๏€ญ 2 ) L

e

R2 ๏ƒฆR๏ƒถ ๏€ญ๏ก ๏ด e ๏ƒง ๏ƒท๏€ญ 2 2 2 L ๏ก L ๏€ญ R ๏ƒจ ๏ƒธ ๏€ญ๏ด

๏ƒฆR๏ƒถ ๏ƒง ๏ƒท๏€ญ ๏ƒจL๏ƒธ

R2 R2 L2 (๏ก 2 ๏€ญ 2 ) L

e

๏€ญ๏ก ๏ด

2

๏ƒฆR๏ƒถ ๏ƒฆR๏ƒถ ๏ƒง ๏ƒท ๏€ญ๏ก ๏ด ๏ƒจ L ๏ƒธ e๏€ญ ๏ด ๏ƒฆ R ๏ƒถ ๏€ญ ๏ƒจ L ๏ƒธ ๏€ฝ e ๏ƒง ๏ƒท 2 2 ๏ƒจL๏ƒธ ๏ƒฆR๏ƒถ ๏ƒฆR๏ƒถ ๏ก2 ๏€ญ๏ƒง ๏ƒท ๏ก2 ๏€ญ๏ƒง ๏ƒท ๏ƒจL๏ƒธ ๏ƒจL๏ƒธ

๏ก๏ƒง ๏ƒท

๏ƒฆR๏ƒถ ๏ƒง ๏ƒท ๏ƒจL๏ƒธ ๏€ฝ 2 ๏ƒฆR๏ƒถ 2 ๏ก ๏€ญ๏ƒง ๏ƒท ๏ƒจL๏ƒธ

๏ƒฉ ๏€ญ๏ƒฆ๏ƒง R ๏ƒถ๏ƒท ๏ด ๏ƒฆ R ๏ƒถ ๏€ญ๏ก ๏ด ๏ƒช๏กe ๏ƒจ L ๏ƒธ ๏€ญ ๏ƒง ๏ƒทe ๏ƒจL๏ƒธ ๏ƒช๏ƒซ

๏ƒน ๏ƒบ ๏ƒบ๏ƒป

_____________________________________________________________________________________

RP PART A & B WITH ANS.pdf

RP PART A & B WITH ANS.pdf. RP PART A & B WITH ANS.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying RP PART A & B WITH ANS.pdf. Page 1ย ...

694KB Sizes 2 Downloads 190 Views

Recommend Documents

PART A PART B
On the blank World Map provided, do the following: 1. create a Legend that includes a coloured symbol for each of the following: รขย—ย‹ health risk. รขย—ย‹ political instability. รขย—ย‹ natural disaster. 2. locate and place on the map each of the 6 risks you

CS2254 Part B with Ans.pdf
www.5starnotes.com. 12)Explain what semaphores are, their usage, implementation given to avoid. busy waiting and binary semaphores. Semaphore definition.

GeometryFinalReview Part A and B shorted GeometryFinalReview2 ...
GeometryFinalReview Part A and B shorted GeometryFinalReview2 JR.pdf. GeometryFinalReview Part A and B shorted GeometryFinalReview2 JR.pdf. Open.

WR330 Part B
Water Resources Act 1991 (as amended by the Water Act 2003), Environment Act 1995,. The Water Resources (Abstraction and Impounding) Regulations 2006. Introduction. Please read through this application form and the ... The Data Protection Act 1998. C

Part B: Reinforcements and matrices
market. Thus both matrix types will be studied. Moulding compounds will be briefly overviewed. For MMCs and CMCs, processing methods, types of materials, ...... A major application is garden decks (USA), picture frames and the ...... Primary processi

Part B: Reinforcements and matrices
Polymeric Matrix Composites (PMCs), Metal Matrix Composites (MMCs) and Ceramic. Matrix Composites (CMCs) will be discussed. For PMCs, synthetic and natural fibres as well as mineral particulate reinforcements will be studied. Polymeric matrices both,

PART B รขย€ยPHAS
reasoning or constraint satisfaction. Efficient .... algorithm to a larger class of constraint satisfaction problems. .... Computational science: Can get satisfaction.

Part B-1.pdf
Page 1 of 22. 1. Creating the E-Business, Part B- E-Business Strategy &Components by Rafat Abushaban. Creating the E-Business. Part B- Strategy and Components. Page 1 of 22. Page 2 of 22. 2. Creating the E-Business, Part B- E-Business Strategy &Compo

B = B , A B , A \ B = AA, B U (A [ B) C = AC \ BC (A \ B) C ...
0 2 0. 0 รขย‡ยข 0. 0 2 10l. 0 รขย‡ยข 10l. A [ B = B , A รขย‡ยข B , A \ B = A. A, B รขย‡ยข U. (A [ B)C = AC \ BC. (A \ B)C = AC [ BC. P Q R. U. A B C. U. P. Q R. P Q. R. A B C. A \ BC รขย‡ยข C. AC [ BC รขย‡ยข C. AC [ B รขย‡ยข CC. AC รขย‡ยข BC [ C. A รขย‡ยข BC [ CC. B < A = 1x ;

RP Capital Budgeting.pdf
pasti, seperti Payback Period, Net Present Value, Profitability Index dan Internal Rate of Return. Selain itu juga dikenalkan keberadaan resiko dalam suatuย ...

TLM4ALL@10TH-HINDI-PART-B-STUDY MATERIAL.pdf
Page 1 of 22. S.S.C. HINDI. STUDY MATERIAL. PART-B. Prepared by : D. Harsha Vardan M.A., H.P.T. TGT , Hindi.,. A.P. MODEL SCHOOL,. Punganur , Chittoor DT. www.tlm4all.com. Page 1 of 22ย ...

Systems, Man and Cybernetics, Part B, IEEE Transactions ... - CiteSeerX
Imaging Science Division, Imaging Research and Advanced Development,. Eastman Kodak Company ...... Abstractรขย€ย”In this paper, an alternative training approach to the EEM- ... through an obstacle course from an initial configuration to a goal.

awes Chemistry (PGT) [Part 'B'].pdf
electrons involved per chromium atom is. (A) 2 (B) 3. (C) 4 (D) 1. 7. Which alloy contains Cu, Sn and Zn? (A) Gun metal (B) solder. (C) Type metal (D) Bronze. 8.

RP SIP PDF.pdf
Sign in. Page. 1. /. 21. Loadingรขย€ยฆ Page 1 of 21. Page 1 of 21. Page 2 of 21. Page 2 of 21. Page 3 of 21. Page 3 of 21. RP SIP PDF.pdf. RP SIP PDF.pdf. Open.

OBST 520 RP - Scripted Genius
Dec 8, 2013 - รขย€ยœcan seem like listening to one side of a phone conversation or reading an e-mail ... รขย€ยœunderstanding the relevant aspects of the social atmosphere as the authors and the audience of .... how the translation best fits. ... William D.

STATUS: ORIGINAL SUBMISSION Part B, Dispute ...
Nov 1, 2009 - OFFICE OF SPECIAL EDUCATION. PROGRAMS. FORM EXPIRES: 08/31/2009. STATE: GUAM. Each cell should be -9 or another number.

Science II M6 Part B(2nd Term).pdf
2' tu .%kaรƒย“h u.ska i %djh lrk fydafudakh. l=ulao@. 3' tu fydafudakh u.ska bgqjk ld3รขยย„4hh. l=ulao@. 4' fuys 'B' jHqyh jeo.;a jkafka ixfiapkhgh'. ixfiapkh hkq l=ulao@.

Systems, Man and Cybernetics, Part B, IEEE ...
contact movements, a virtual trajectory is also modified to reduce control error. The method ... Computer simulations show that a smooth transition from free to contact .... on the end-effector of the manipulator; and m is the number of degrees ofย ..

modern digital electronics-RP JAIN.pdf
Page 3 of 159. modern digital electronics-RP JAIN.pdf. modern digital electronics-RP JAIN.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying modernย ...

PART B Module-I ANIMAL DIVERSITY 1 ... Accounts
Divisions(1)Agnatha.General character e.g.Petromyzon(2)Gnathostomata-General characters ..... Renewable and non-renewable resources.Natural resources ... energy.Water conservation-Rain water harvesting and water shed management.

PART B (5 รƒย— 16 = 80 marks)
Write a SIC code to copy an 11 byte character string to another. 3. What is program relocation? 4. How literal differs ... What are the tasks involved in document editing process? 10. What is the use of tracing? PART B รขย”ย€ (5 ... b) i) Differentiate