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Stochastic models of receptor oligomerization by bivalent ligand Toma´s Alarco´n* and Karen M. Page Bioinformatics Unit, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK In this paper, we develop stochastic models of receptor binding by a bivalent ligand. A detailed kinetic study allows us to analyse the role of cross-linking in cell activation by receptor oligomerization. We show how oligomer formation could act to buffer intracellular signalling against stochastic ﬂuctuations. In addition, we put forward the hypothesis that formation of long linear oligomers increases the range of ligand concentration to which the cell is responsive, whereas formation of closed oligomers increases ligand concentration speciﬁcity. Thus, different physiological functions requiring different degrees of speciﬁcity to ligand concentration would favour formation of oligomers with different lengths and geometries. Furthermore, provided that ligand concentration speciﬁcity is taken as a design principle, our model enables us to estimate parameters, such as the minimum proportion of receptors, that must engage in oligomer formation in order to trigger a cellular response. Keywords: receptor oligomerization; cross-linking; stochastic model



1. INTRODUCTION



cross-activate each other. Upon cross-activation, the phosphate groups attached to selected tyroresidues provide high-afﬁnity docking sites for several tyrosine kinases carrying the SH2 domain, most notably the src family of tyrosine kinases (Alberts et al. 2002). This process constitutes the early steps in cellular response to an extracellular signal. The literature on models of multivalent receptor/ multivalent ligand binding is extensive and we do not intend to produce a complete review only noting a few works focusing on receptor oligomerization. For an extensive review of early work on receptors, in general, we refer the reader to the monograph by Lauffenburger & Linderman (1993). Goldstein et al. (2004) review most recent developments in the ﬁeld, specially related to immune system receptors. Early theoretical work on formation of bivalent receptor aggregates by bivalent ligands was conducted by Perelson & DeLisi (1980). This work was later on extended by Posner et al. (1995). Perelson & DeLisi (1980) study the formation of linear aggregates of arbitrary length. Introducing the so-called equivalent site approximation (i.e. all binding sites have the same property regardless of the size of the aggregate to which they belong), they reduce an inﬁnite number of ordinary differential equations (ODEs) describing the formation of aggregates of arbitrary size to two equations (for the free and bound ligand concentration) and a conservation law. Moreover, Perelson & DeLisi (1980) show that the concentration of chains of any size can be expressed in terms of the three ligand state concentrations (free, one bound site and two bound sites). However, these results have been proved by Posner et al. (1995) to hold only if linear aggregates are



Cellular responses are frequently triggered by detection of extracellular signalling molecules (ligands) by specialized cell-surface proteins called receptors. Upon receptor binding, an intracellular signalling cascade takes place, eliciting a cellular response. There are several types of membrane-bound receptor. Broadly speaking, they can be divided in those that depend on oligomer formation for triggering a cellular response and those which do not (e.g. G protein-linked receptors; Helmreich 2001). Our focus in this study will be on the former class of receptors. Receptor tyrosine kinases (RTKs) bind to hormones, growth factors and cytokines. B cell and T receptors, which are antigen(epitope)-speciﬁc and play a fundamental role in triggering the immune response, are closely related to RTKs (Tamir & Cambier 1998). The basis of RTK binding and activation has been a major problem in cellular signalling. Unlike G protein-linked receptors, which are heptamers that cross the cell membrane several times, RTKs are single polypeptide chains that cross the membrane only once. The problem is how a receptor with such structure is activated upon ligand binding (Helmreich 2001). The answer is by oligomerization also commonly referred to as crosslinking in the biophysical literature. Hormones, growth factors, cytokines and antigens are usually multivalent ligands, i.e. they have more than one binding site and can engage several receptors (Lauffenburger & Linderman 1993). Following receptor oligomerization, the RTK domains within their cytoplasmic tails *Author for correspondence ([email protected]). Received 20 December 2005 Accepted 26 January 2006
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allowed. If rings can form, the equivalent site approximation fails and such general results cannot be obtained. Posner et al. (1995) show that if rings are allowed to form only up to a maximum size, k, the system of inﬁnite ODEs can be reduced to a system of 4k C 2 equations. Posner et al. (1995) also show that in this case it is not possible to ﬁnd an expression for the aggregate size distribution. McKeithan (1995) introduces the concept of kinetic proof-reading in the context of T cell receptor binding to explain how small afﬁnity differences between foreign and self-antigens could elicit T cell activation. Hlavacek et al. (2001) gives a more recent exploration of the relationship between cross-linking effects and kinetic proof-reading. Sulzer et al. (1996) reconsider the role of crosslinking in the context of the cellular response to a collection of bivalent ligands with different afﬁnities for the receptor as, for example, would be the case in a polyclonal anti-receptor serum. To analyse this system, they deﬁned a binding ﬁeld and a cross-linking ﬁeld. In terms of these quantities, they study the properties of the cross-linking curve and ﬁnd conditions for clonal expansion under stimulation with a mixture of different ligands. Further reﬁnement of the models of multivalent receptor/multivalent ligand binding was achieved by Hlavacek et al. (1999) when considering steric hindrance by introducing a steric hindrance factor, which accounted for the fraction of unbound ligand sites accessible to receptors and therefore available for binding. A detailed analysis of the relationship between receptor clustering and signalling in the particular case of cell-surface IgE-FceRI has been recently carried out by Posner et al. (2004). MacGabhann & Popel (2005) studied the system vascular endothelial growth factor (VEGF)/VEGF receptor 2/neuropilin-1. VEGF receptor 2 (VEGFR2) and neuropilin-1 (NRP1) are both found on the surface of endothelial cells. They do not interact directly but can be cross-linked by a VEGF isoform which has binding sites for both VEGFR2 and NRP1. In this paper, we show how oligomer formation could act to buffer intracellular signalling against stochastic ﬂuctuations when the number of receptors is smaller than in normal conditions. In addition, we put forward the hypothesis that the use of dimers, trimers and rings of cross-linked receptors could serve different physiological purposes requiring the cells to respond to different ligand concentration ranges. Furthermore, if we accept ligand concentration speciﬁcity as a valid design principle for receptor function, we show how our model, given that we know other parameter values (mainly afﬁnities and number of receptors), could be used to estimate quantities, such as the minimal proportion of receptors, engaged in oligomer formation in order to trigger a cellular response. This article is organized as follows. In §2, we formulate our model for cell receptor cross-linking by bivalent ligands and present simulation results. In §3, we summarize and discuss the main results of this analysis and present our conclusions. J. R. Soc. Interface (2006)
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Figure 1. Schematic of the cross-linking model with (a) dimer formation, (b) trimer formation and (c) ring formation. The physical meaning of the parameter D is illustrated in (d ). B, X, X1 and Y are the number of oligomers of type (1), (2), (3) and (4), as shown in panel (e), respectively. In panels (d ) and (e), red colour indicates diffusible ligand, whereas black colour denotes membrane-bound receptor.



2. MODELS OF RECEPTOR CROSS-LINKING BY BIVALENT LIGANDS In §1, we have reviewed some mathematical models of immune-receptors and the different issues they address. Many of them are formulated in terms of nonlinear ODEs using the law of mass action (LMA; Murray 2001). This approximation is known to be valid for large, homogeneous systems. When either of these two assumptions fail to hold, new phenomena arise that the LMA fails to predict or explain (Durrett & Levin 1994; Togashi & Kaneko 2001; Louzon et al. 2003; Schnell & Turner 2004). In this section, we investigate a spatially homogeneous distribution of receptors on the cell surface. However, in our study of the behaviour of oligomerized receptors, we allow the total number of receptors to be small. The purpose of this is to determine what the impact would be of reducing the expression of receptors on signalling. This might be a relevant issue, for example, to assess the inﬂuence of reducing mIg on the treatment efﬁcacy in lymphoma B cells under certain types of immunotherapy (Vitetta & Uhr 1994; Page & Uhr 2005), in which an anti-idiotypic antibody is used either passively or stimulated by a vaccine. In particular, we formulate a stochastic model of receptor binding and oligomerization by bivalent ligands. Stochastic models of reacting systems can be formulated as Markov processes in terms of a Master equation (Gardiner 1983). For a general chemical
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Table 1. Reaction probability per unit time (in non-dimensional form), am ; mZ 1; .; 4, for the four elementary reaction steps involved in Model 1 schematically shown in ﬁgure 1a. (A stands for the afﬁnity of ligand for its receptor, L is the concentration of ligand given in mol lK1 and Ax for the afﬁnity of a bound receptor for an unbound one to be referred to as cross-linking afﬁnity (see table 4).) reaction rate



ri



reaction



a1 Z ALNu a2 Z Nb a3 Z Ax N pD2 rub a4 Z 2Nx



r1u ZK1; r1b Z 1; r1x Z 0 r2u Z 1; r2b ZK1; r2x Z 0 r3u ZK1; r3b ZK1; r3x Z 1 r4u Z 1; r4b Z 1; r4x ZK1
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Figure 2. Simulation results from a single realization for (a) NZ10 000, (b) NZ1000, (c) NZ100, (d) NZ50. Black lines correspond to x, red lines to b, and green lines to u. LZ 10K7 mol lK1. See appendix A for details of the simulation procedure.



system, the corresponding Master equation reads: vPðX; tÞ X Z ðW ðX C r i ; r i ; tÞPðX C r i ; tÞ vt i KW ðX; r i ; tÞPðX; tÞÞ; ð2:1Þ where X is a vector whose components are the number of the different molecules involved in the reaction, the components of the vector r i are the corresponding increments in the number of molecules after reaction i has occurred, W ðX; r; tÞ are the reaction probabilities per unit time and PðX; tÞ is the probability density of ﬁnding the system in a given conﬁguration X at time t (Kubo et al. 1973). The formulation in terms of a Master equation is mathematically very elegant, but its J. R. Soc. Interface (2006)



analytical treatment for multi-dimensional systems becomes extremely difﬁcult1 (Gillespie 1977). In chemical systems, the reaction probabilities per unit time satisfy (Kubo et al. 1973; Gillespie 1977) W ðX; r i ; tÞ Z Nwðx; r i ; tÞ C OðN 0 Þ;



ð2:2Þ



where N is the total number of molecules in the system and x Z X=N . This allows us to rewrite the Master 1 Other approaches in terms of Markov chains may be formulated (see ch. 4 of Lauffenburger & Linderman (1993) and references therein). Nevertheless, as with the Master equation formulation, this approach becomes very difﬁcult to handle analytically for multi-dimensional systems.
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equation (2.1) as   1 vPðx; tÞ X   r r  Z w x C i ; r; t P x C i ; t N vt N N r  ð2:3Þ Kwðx; r i ; tÞPðx; tÞ : If N [ 1, then a Wentzel–Kramer–Brillouin (WKB) ansatz is used to obtain the solution of equation (2.3) (see Kubo et al. 1973). However, since we are interested in studying this system for small values of N, such approximate solutions are not too interesting. Instead, we perform numerical simulations of the reaction mechanism shown in ﬁgure 1 using Gillespie’s exact stochastic simulation algorithm (ESSA; see appendix A and Gillespie (1977)), which is equivalent to the Master equation. We start by formulating a model in which only dimers of receptors can be formed (as would be the case for many growth factors (Alberts et al. 2002), in which bivalent ligand binds monovalent receptors). Hereafter this model will be referred to as Model 1. Afterwards we will formulate models allowing the formation of larger oligomers in the form of linear (to be referred to as Model 2) or closed chains (to be referred to as Model 3). Let U be the number of unbound receptors and u h U =N . Similarly, we deﬁne B and b, and X and x as the number and proportion of bound receptors and cross-linked receptors, respectively. Hence, the state vector X will be given by X Z ðU ; B; XÞ and, correspondingly, x Z ðu; b; xÞ. The only information we need to specify our Markov model is ai h W ðX; r i ; tÞ, ci According to ﬁgure 1a, there are four elementary reaction steps (i.e. receptor binding and unbinding and dimer formation and dissociation) characterized by a vector r i Z ðriu ; rib ; rix Þ iZ1; .; 4, where riu , rib , and rix are the increments in the number of unbound receptors, bound receptors and dimers, respectively, corresponding to the elementary transition i. Note that, due to conservation of the total number of receptors the components of r i must satisfy riu C rib C 2rix Z 0, ci. The reaction probabilities per unit time (transition rates) ai are given in table 1. In appendix A, we give full details of how they have been obtained. The transition rate corresponding to reaction r 3 needs further clariﬁcation. The transition rate for this reaction corresponds to the formation of a dimer. It is obtained as the product of two factors, namely, the rate of binding between an unbound receptor and a ligand– receptor heterodimer and the probability of ﬁnding another receptor within a distance D (see ﬁgure 1 for its physical meaning) of the ligand–receptor heterodimer. The later is given by pD2 r, with rZ N =4pR2 being the surface density of receptors on the cell surface and R, the average radius of a B cell. Our ﬁrst simulation results, shown in ﬁgures 2 and 3, show the effect of reducing the total number of surface receptors. We have done simulations with N Z 104 , 103 , 102 and 50. Figure 2 shows particular realizations of the time evolution of the system. Figure 3 shows the stationary probability density for different values of N, averaged over a number of realizations (see caption of ﬁgure 3 for details). J. R. Soc. Interface (2006)
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Figure 3. Probability density corresponding to Model 1. (a) NZ1000, average over 300 realizations. (b) NZ100, average over 700 realizations. (c) NZ50, average over 700 realizations. LZ 10K7 mol lK1. See appendix A for details of the simulation procedure.



The results shown in ﬁgure 2 show how decreasing the number of receptors has a strong effect on the behaviour of the system. For N Z 104 (ﬁgure 2a), ﬂuctuations are hardly noticeable. In fact, the stationary probability density is strongly peaked around the average stationary state, exhibiting a Dirac’s delta-like behaviour: the variance around the average stationary state is very small. As the total number of receptors decreases, we obtain a different picture: as expected (Kubo et al. 1973), the effects of ﬂuctuations become more important. For N Z 103 (ﬁgure 2a), the behaviour of the system is Gaussian-like. The effects of ﬂuctuations become more dramatic if the number of receptors is reduced further. As shown in ﬁgures 2c and 3b and 2d and 3c, decreasing further the number of receptors yields a transition between the Gaussian-like
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Table 2. Reaction probability per unit time (in non-dimensional form), am ; mZ 1; .; 10, for Model 2 schematically shown in ﬁgure 1b. reaction rate



ri



reaction



a1 Z ALNu a2 Z Nb a3 Z Ax N pD2 rub a4 Z ALNx a5 Z Ax N pD2 rux1 a6 Z 2Nx a7 Z Ax N pD2 rxb a8 Z 2Ny a9 Z Nx1 a10 Z Ax N pD2 rbx1



r1u ZK1; r1b Z 1; r1x Z 0; r1x1 Z 0; r1y Z 0 r2u Z 1; r2b ZK1; r2x Z 0; r2x1 Z 0; r2y Z 0 r3u ZK1; r3b ZK1; r3x Z 1; r3x1 Z 0; r3y Z 0 r4u Z 0; r4b Z 0; r4x ZK1; r4x1 Z 1; r4y Z 0; r4z Z 0 r5u ZK1; r5b Z 0; r5x Z 0; r5x1 ZK1; r5y Z 1 r6u Z 1; r6b Z 1; r6x ZK1; r6x1 Z 0; r6y Z 0 r7u Z 0; r7b ZK1; r7x ZK1; r7x1 Z 0; r7y Z 1 r8u Z 0; r8b Z 1; r8x Z 1; r8x1 Z 0; r8y ZK1 r9u Z 0; r9b Z 0; r9x Z 1; r9x1 ZK1; r9y Z 0 r10u Z 0; r10b ZK1; r10x Z 0; r10x1 ZK1; r10y Z 1



receptor binding receptor–ligand dissociation dimer formation see ﬁgure 1 see ﬁgure 1 dimer dissociation trimer formation trimer dissociation see ﬁgure 1 see ﬁgure 1



Table 3. Reaction probability per unit time (in non-dimensional form), am ; mZ 1; .; 12, for the four elementary reaction steps involved in Model 3 schematically shown in ﬁgure 1c. reaction rate



ri



reaction



a1 Z ALNu a2 Z Nb a3 Z Ax N pD2 rub a4 Z ALNx a5 Z Ax N pD2 rux1 a6 Z 2Nx a7 Z Ax N pD2 rxb a8 Z 2Ny a9 Z Ax Ny a10 Z Nr a11 Z Nx1 a12 Z Ax N pD2 rbx1



r1u ZK1; r1b Z 1; r1x Z 0; r1x1 Z 0; r1y Z 0; r1r Z 0 r2u Z 1; r2b ZK1; r2x Z 0; r2x1 Z 0; r2y Z 0; r2r Z 0 r3u ZK1; r3b ZK1; r3x Z 1; r3x1 Z 0; r3y Z 0; r3z Z 0 r4u Z 0; r4b Z 0; r4x ZK1; r4x1 Z 1; r4y Z 0; r4z Z 0; r3r Z 0 r5u ZK1; r5b Z 0; r5x Z 0; r5x1 ZK1; r5y Z 1; r3r Z 0 r6u Z 1; r6b Z 1; r6x ZK1; r6x1 Z 0; r6y Z 0; r6r Z 0 r7u Z 0; r7b ZK1; r7x ZK1; r7x1 Z 0; r7y Z 1; r7r Z 0 r8u Z 0; r8b Z 1; r8x Z 1; r8x1 Z 0; r8y ZK1; r8r Z 0 r9u Z 0; r9b Z 0; r9x Z 0; r9x1 Z 0; r9y ZK1; r9r Z 1 r10u Z 0; r10b Z 0; r10x Z 0; r10x1 Z 0; r10y Z 1; r10r ZK1 r11u Z 0; r11b Z 0; r11x Z 1; r11x1 ZK1; r11y Z 0 r12u Z 0; r12b ZK1; r12x Z 0; r12x1 ZK1; r12y Z 1



receptor binding receptor–ligand dissociation dimer formation see ﬁgure 1 see ﬁgure 1 dimer dissociation trimer formation trimer dissociation ring formation ring dissociation see ﬁgure 1 see ﬁgure 1



behaviour exhibited for larger receptor numbers and a multi-stable behaviour.2 This transition is a type of noise-induced transition (Hormsthemke & Lefever 1984), as the corresponding (LMA) deterministic system does not exhibit such a transition. Its nature is similar to the discreteness-induced transition observed by Togashi & Kaneko (2001) in a model for small autocatalytic systems. These simulations show that reducing the number of receptors yields a diluted system, in which the predictions of LMA fail to capture some of the essential characteristics of the system. Hence if we want to investigate the response of a B cell to a bivalent antigen as the number of B-cell receptors (BCRs) decreases, the stochastic formulation seems to be more appropriate.



2.1. Dynamics of the binding and unbinding process: importance of kinetic proof-reading One of the aims of the present study is to assess, in a more general setting, whether kinetic proof-reading (McKeithan 1995) explains the importance of receptor 2 This means that the probability distribution goes from exhibiting a single maximum (Gaussian-like behaviour) to presenting several maxima, giving rise to multiple stable states and (random) transitions between them.
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cross-linking for building up an appropriate cellular response. In fact, it has been already suggested that in other immune-receptors there may be ways to escape kinetic proof-reading (Hlavacek et al. 2001). Kinetic proof-reading is wielded as a reason why cross-linking is necessary for an efﬁcient response of B cells (and in fact many other receptor binding-mediated cellular responses): the receptor needs to be bound to its ligand for long enough for the activation process of the proteins (usually kinases) and/or second messengers mediating the response to be completed and the signalling pathways initiated (McKeithan 1995). Let us assume that Q is the threshold number of crosslinks that need to be formed in order to produce signalling within the cell (Sulzer et al. 1996). If we assume that ligation of a single receptor can also produce signalling, the threshold number of bound receptors needed for signalling can be assumed to be 2Q. In order to estimate whether oligomers are, on average, more stable than bound ligands, we proceed as follows. Let k KE be the rate of dissociation of a ‘typical’ Src protein tyrosine kinase (PTK) from a bound receptor. Its inverse is a measure of the average time a Src PTK remains bound to a bound/cross-linked receptor. Since RTKs and immune receptors depend on PTKs to relay the signal (Tamir & Cambier 1998; Alberts et al. 2002; Goldsby et al. 2003), they cannot trigger any signalling pathways, unless they
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Figure 4. Simulation results for Model 1 showing (a) Qb ðTÞ and (b) Qx ðTÞ for as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. Blue lines correspond to NZ108 and Q=N Z 0:45, red lines to NZ1080 and Q=N Z 0:045 and black lines to NZ10 800 and Q=N Z 0:0045. In each case, we have averaged over 100 realizations.



2.2. Models with formation of longer oligomers In this section, we extend our previous model to include the formation of longer oligomers, in particular trimers (Model 2). The number of trimers is denoted by Y and their concentration4 y h Y =N . The number 3



Here, we understand by ‘stability’ that either the number of crosslinked receptors or the number of bound receptors remain above a certain thershold long enough to trigger receptor binding-induced signalling. 4 Hereafter, when the term ‘concentration’ refers to the variables of our models it is to be understood as the corresponding proportion with respect to the total number of receptors. When referred to the ligand, its meaning must be understood to be the usual one.
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remain bound/cross-linked for long enough (longer than 1 kK KE ). Hence, we use the quantities Qx ðTÞ h PðX R Q; sx C TÞ and Qb ðTÞ h PðB R 2Q; sb C TÞ, i.e. the (steady-state, which in this context means that the moments of the probability density do not change in time) probabilities that at time sx C T X remains RQ and at time sbCT B remainsR2Q, respectively, with sx (sb ) deﬁned as the time of the ﬁrst occurrence of the event 1 X R Q (BR 2Q). In our case, we take T Z kK KE . Hlavacek et al. (2001) have estimated that, for FceRI receptors, 1 k KE is 2.5 times smaller than k off . We will use T Z 10kK off . See appendix A for full details of how Qx ðTÞ and Qb ðTÞ are computed. The results shown in ﬁgure 4 demonstrate that dimers are not intrinsically more stable than monomers.3 They simply appear to be stable at different ranges of ligand concentration. Hence, kinetic proof-reading does not seem to be an important factor in explaining oligomer formation in the kind of system under examination here. A reason for this might be that, in T cell receptors, the differences in afﬁnity between self- and foreign antigens are typically very small, hence the necessity for kinetic proof-reading (McKeithan 1995). The receptors we are looking at have high afﬁnities for their ligands and therefore kinetic proof-reading might not be an issue.
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Figure 5. Simulation results for Model 1 showing Qx ðTÞ for 1 T Z 10kK off as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. Black lines correspond to NZ10 800, red lines to NZ1080 and blue lines to NZ108. Q=N Z 0:45. In each case, we have averaged over 100 realizations.



of dimers bound to two molecules of ligand is denoted by X1 and their concentration x1 h X1 =N (see ﬁgure 1). Hence, in this case the state vector X will be given by X Z ðU ; B; X; X1 ; Y Þ and, correspondingly, x Z ðu; b; x; x1 ; yÞ. The reaction probabilities per unit time for this model are given in table 2 and have been obtained following the procedure detailed in appendix A. It has also been observed that trimers can be present as linear (open) chains or can form rings (closed chains) (Lauffenburger & Linderman 1993). In this case, we will consider only formation of chains of up to three crosslinked receptors that then can form rings (Model 3). The state vector X will be given by X Z ðU ; B; X; X1 ; Y ; RÞ, where Y is the number of linear trimers and R is the number of rings-like trimers. Correspondingly, x Z ðu; b; x; x1 ; y; rÞ, where y h Y =N and r h R=N . The
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Figure 6. Simulation results from a single realization corresponding to Model 2. We have taken (a) NZ1080, (b) NZ540, (c) NZ108, (d) NZ54. Black lines correspond to x, orange lines to x1 , red lines to b, green lines to u and blue lines to y. LZ 10K7 mol lK1. See appendix A for details of the simulation procedure.
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Figure 7. Probability densities for Model 2 for NZ54, 108 and 1080. In all of the different cases, we have averaged over realizations. LZ10K7 mol lK1. See appendix A for details of the simulation procedure. J. R. Soc. Interface (2006)
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1 Figure 8. Simulation results for Model 2 showing (a) Qb ðTÞ and (b) Qx ðTÞ for T Z 10kK off as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. Black lines correspond to NZ10 800 and Q=N Z 0:0045, red lines to NZ1080 and Q=N Z 0:045 and blue lines to NZ108 and Q=N Z 0:45. In each case, we have averaged over 100 realizations.
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reaction probabilities per unit time for the model with linear trimers forming rings are given in table 3 (see appendix A for details how they have been obtained). These simulation results seem to indicate one possible role of cross-linking. Comparing the results shown in ﬁgures 2–6 and 10, we can see that forming long oligomers (longer than dimers) reduces the effects of the ﬂuctuations. Hence, it might be argued that cross-linking acts like a noise-suppressor mechanism. It is also interesting to observe that the size of the ﬂuctuations is smaller in Model 3 than in Model 2, even when rings are formed by three cross-linked receptors. This result seems to indicate that not only the number of receptors within a cluster, but also the topology of the cluster appears to be important for noise-suppression (ﬁgures 7–11). On the other hand, from ﬁgures 8 and 12, we can reach the same conclusions regarding kinetic proofreading as in the previous case. From the results shown in ﬁgure 14, we observe that the width of the bell-shaped curves corresponding Qx ðTÞ is bigger for Model 2 (ﬁgure 8) than for Model 1. Interestingly, the width of Qx ðTÞ for Model 3 is smaller than the width for Qx ðTÞ for Model 2. Moreover, comparing ﬁgure 14a–c shows that Qx ðTÞ for Model 1 is biased towards smaller ligand concentrations than Qx ðTÞ for Model 3. These observations might shed some light on the physiological roles of receptors forming oligomers of different lengths and geometries (linear or closed). According to our results, monovalent receptors binding a bivalent ligand (only dimer formation is allowed in such under these conditions) might be used for response to signal which are present in a speciﬁc, rather low, range of concentration (see ﬁgure 14, dimer, Q=N Z 0:45). This is the case, for example, for growth factor receptors, in which our prediction seems to be supported by the fact that growth factors are usually present only at very low concentrations (10K11 –10K9 M according to Alberts
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Figure 9. Simulation results for Model 2 showing Qx(T ) for 1 T Z 10kK off as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. These results correspond to varying the threshold value of BCRs engaged in cross-linking necessary for building-up a signal. Black corresponds to NZ10 800, red to NZ1080 and blue to NZ108. Q=N Z 0:45. In each case, we have averaged over 100 realizations.



et al. 2002). In this scenario, receptors forming longer linear chains would be used to detect signals present in broader range of concentrations, whereas ring formation would be used as a mechanism to recover ligand concentration speciﬁcity in cell response. Another interesting feature of the quantity Qx ðTÞ is observed when looking at ﬁgures 5, 9 and 13. As the total number of receptors increases the width of the curve Qx ðTÞ as a function of log(AL) changes. In the case of Model 1 it increases, indicating that the receptor is potentially responsive to a wider range of ligand concentration. On the contrary, for Models 2 and 3 the width of Qx ðTÞ as a function of log(AL) decreases as N grows.
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Figure 10. Simulation results from a single realization corresponding to Model 3. We have taken (a) NZ1080, (b) NZ540, (c) NZ108, (d ) NZ54. Black lines correspond to x, red lines to b, green lines to u, blue lines to y and brown lines to r. LZ 10K7 mol lK1. See appendix A for details of the simulation procedure.



When the total number of receptors is increased in Model 1, the range at which the cell is responsive shifts to higher values of the parameter AL (higher ligand concentrations).



2.3. Ligand concentration speciﬁcity as a design principle The models described in this paper might be useful to estimate parameter values. In particular, Q=N , i.e. the threshold proportion of receptors that need to be engaged in oligomer formation to produce a cellular response, and Ax , the cross-linking afﬁnity may be estimated. A further assumption is needed, namely, that ligand concentration speciﬁcity (i.e. the cell responds only to a narrow range of values of the ligand concentration) is a ‘receptor design principle’. Making this assumption, we can observe from ﬁgure 14 that for the models with trimer formation and ring formation, the value predicted by our model and the ligand concentration speciﬁcity design principle yields Q=N x0:45, which means that atleast 90% of the receptors are engaged in oligomer formation. Using this design principle, we might be able to say something about the value of Ax for Models 2 J. R. Soc. Interface (2006)



and 3. Concerning Model 2, the results in ﬁgure 15a show that values of 102 % Ax % 104 yield a reduced range of ligand concentration in which the cell is responsive to the signal, as compared to the results shown in ﬁgure 14b obtained with Ax Z 107 . As for Model 3, speciﬁcity is achieved for roughly the same range of values of Ax .



3. CONCLUSIONS AND DISCUSSION We have presented and analysed three models of ligand binding-induced oligomerization of cell surface receptors, accounting for the formation of oligomers of different lengths (dimers and trimers) and different topologies (linear trimers or rings). This approach has allowed us to dissect the effect on cellular signalling of the formation of each one of these three different structures under stimulation by bivalent ligand. The stochastic formulation of the model has been used to study the behaviour of these models as a function of the number of receptors. Not surprisingly, small numbers of receptors induce ﬂuctuations. However, the intensity of these ﬂuctuations depends on the size and topology of the oligomers formed by cross-linking. In fact, cross-linking appears to buffer the system against
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noise, as ﬂuctuations are smaller in Model 3, in which rings are allowed to form, than in Model 2 in which only linear trimer formation is considered. Noise intensity in Model 2, in turn, is smaller than in Model 1, where only dimer formation is allowed. The curves showing Qx ðTÞ as a function of ligand concentration can be interpreted as describing cell responses to extracellular stimulation. Cross-linking produces cellular response only in a bound interval of ligand concentration more or less centred around the J. R. Soc. Interface (2006)
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Figure 12. Simulation results for Model 1 showing (a) Qb ðTÞ 1 and (b) Qx ðTÞ for T Z 10kK off as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. Black lines correspond to NZ10 800 and Q=N Z 0:0045, red lines to NZ1080 and Q=N Z 0:045 and blue lines to NZ108 and Q=N Z 0:45. In each case, we have averaged over 100 realizations.



0.6



0



0 3.0 log(AL)



receptor afﬁnity. This property has been previously observed in a number of experimental (Banu & Watanabe 1999; Yamazaki et al. 2002) and theoretical studies (Lauffenburger & Linderman 1993; Sulzer et al. 1996). However, its possible therapeutic relevance has been overlooked in some pathological situations, as for example in cancer. Two examples in the context of anti-tumour therapy, in which ligand/receptor binding dynamics appears to play an important role, are anti-angiogenic therapy in solid tumours and immunotherapy in B-cell lymphomas. Regarding the former, many of the current protocols under investigation involve drugs which would neutralize the several types of tumour-angiogenic factors, most notably VEGF (table 4). In other words, the aim is to reduce the concentration of ‘active’ growth factor. However, according to the results obtained with Model 1 (which would be applicable to most growth factor/growth factor receptor systems), an equally effective strategy would be to increase the levels of VEGF, in particular, if this is combined with
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Figure 13. Simulation results for Model 3 showing Qx ðTÞ for 1 T Z 10kK off as a function of the dimensionless quantity AL, where A is the afﬁnity and L the ligand concentration. These results correspond to varying the threshold value of BCRs engaged in cross-linking necessary for building-up a signal. Black corresponds to NZ10 800, red to NZ1080 and blue to NZ108. Q=N Z 0:45. In each case, wehave averagedover 100 realizations.
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an increase in the minimum number of receptors engaged in oligomer formation to trigger signalling, Q (see ﬁgure 14a). Lymphoma B cells carry on their surface an antibody with a unique idiotype. An antibody to this idiotype can discriminate lymphoma B cells from normal B cells and can be administered passively or produced by the immune system in response to a vaccine. In either case, the anti-idiotype binds the antibody on the surface of the lymphoma B cells, triggering a signalling cascade, which may decide the fate (i.e. apoptosis or quiescence) of these cells. Models 2 and 3 show how kinetic properties of the anti-idiotype/antibody binding process could help to increase or reduce the range of responsiveness of the lymphoma B cells to therapeutic antibody. The analysis of the feasibility of such approaches to cancer treatment as well as further investigation of the therapeutic implications of the biophysical properties of ligand/receptor binding and elaboration of these arguments will be the subject of future research. We have found that oligomers of different lengths and topologies yield different intervals of responsiveness to the external stimulus. Formation of longer (linear) oligomers appears to increase the range of ligand concentration to which the cell is responsive. However, inclusion of ring formation in the models produces a reduction of this responsiveness interval, i.e. formation of closed oligomers makes the cell response more speciﬁc to ligand concentration. We could argue that mechanisms in which the cell is responding to a wide range of ligand concentrations will depend upon receptors forming long linear oligomers, whereas response to stimuli in a more speciﬁc range of ligand concentrations will depend upon receptors forming shorter oligomers or rings.
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Furthermore, under the assumption that ligand concentration speciﬁcity is a design principle for receptor function, our model allows us to estimate the values of parameter that are not available in the literature, as for example Q=N and Ax , i.e. the threshold proportion of oligomerized receptors to produce signal and the cross-linking afﬁnity, respectively.
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Table 4. Parameter values used in our simulations. (Goldsby et al. (2003) report values of the afﬁnity for B cell mIg of 107 –1010 MK1 . Similar values are reported for some growth factor receptors (e.g. VEGF receptor; MacGabhann & Popel 2005). The value of k on follows from the values of the afﬁnity and k off .) parameter
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Figure 15. Sensitivity analysis for Ax . Simulation results are shown for Qx ðTÞ the model with trimer formation showing 1 with T Z 10kK off as a function of the quantity Ax . Q=N Z 0:22 and ALZ 103 (green line), ALZ1 (blackline), ALZ 10K4 (blue line) and ALZ 10K5 (red line). Circles correspond to results for Model 2 (a), squares to Model 3 (b). We have averaged over 100 realizations.
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Here we give a brief introduction to the stochastic formulation of chemical reactions and its implementation using the ESSA introduced by (Gillespie 1977).5 A schematic ﬂow chart of this algorithm is shown in ﬁgure 16. The rationale for a stochastic formulation of chemically reacting systems is simple (Gillespie 1977). The description yielded by the LMA assumes that the 5 Other algorithms, some of them more computationally efﬁcient, have been recently reviewed by Burrage et al. (2004).



Models of receptor oligomerization evolution of a chemical system is both continuous and deterministic. However, if we go to the molecular population level, the evolution is clearly discrete, since the number of molecules can only change by integer amounts. On the other hand, even if the system is described in terms of the laws of Classical Mechanics, it is not possible to predict the exact number of molecules of each species at a later time unless we take account of the precise position of each molecule in the phase space (position and momentum of all the molecules of the system). Hence, although the evolution of the system is deterministic in its phase space, it is non-deterministic in the sub-space of the population numbers. Hence, unless we are dealing with homogeneous systems containing huge numbers of molecules, the deterministic, continuous description provided by the LMA fails and a stochastic formulation is needed. The algorithm proposed by Gillespie (1977) basically aims to answer the following question: given that the state of the system, i.e. number of molecules of each reactant, at time t is X when will the next reaction occur and which one of the possible elementary reactions will actually occur? The two quantities associated to the answer of this question, i.e. the time until the next reaction, t, and which reaction will occur, j, are both random variables. Let Pðt; jÞdt be the probability that, conditioned to X at time t, the next reaction will occur within ðtC t; tC tC dtÞ and it will be a r j reaction. Pðt; jÞdt is given by product of the probability that no reaction occur within ðt; tC tÞ, P0 ðtÞ, and the probability that the r j reaction occur within ðtC t; tC tC dtÞ: Pðt; jÞdt Z P0 ðtÞaj dt: ðA 1Þ To obtain an expression for P0 ðtÞ, note that, in turn, P0 ðtC dtÞ can be expressed as the product of P0 ðtÞ and the probability that no reaction occur within ðtC t; tC tC dtÞ: ! X aj dt ; ðA 2Þ P0 ðt C dtÞ Z P0 ðtÞ 1K j



which, in the limit dt/ 0, yields the solution: " # X aj t ; P0 ðtÞ Z exp K



ðA 3Þ



j



and therefore



"



# X Pðt; jÞ Z aj exp K aj t ;



ðA 4Þ



j



with 0% t%N and 1% j % M , where M is the total number of reactions. Once we have obtained this expression for Pðt; jÞd, the basic point of the algorithm is to generate two independent random numbers, p and q corresponding to t and the other  P P to j, respectively, distributedPaccording to PðtÞZ j aj exp K j aj t and PðjÞZ aj = j aj . Note that Pðt; jÞZ PðtÞPðjÞ. The actual details of the implementation of the algorithm are given in the ﬂow chart shown in ﬁgure 16. Obtaining the reaction probabilities per unit time. Here we give details of how we obtain the transition rates given in table 1. Our general discussion follows (Gillespie 1977). The fundamental assumption is that the average probability of a particular combination of J. R. Soc. Interface (2006)
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reactants necessary for reaction j to actually react within ðt; tC dtÞ is equal to cj dt. By average, it is simply meant that the probability of reaction j occurs within ðt; tC dtÞ is cj dt multiplied by the total number of combinations of reactants that can be formed out of the particular state of the system at time t, hj . Hence, aj is given by aj Z cj hj dt: ðA 5Þ The particular form of hj will depend on the nature of reaction j. If reaction j is of the type S1 C S2 / P,6 then hj Z X1 X2 , where X1 and X2 are the numbers of molecules of S1 and S2, respectively. If reaction j is of the type 2S1 / P, then hj Z X1 ðX1 K1Þ=2. There exists a close relationship between cj and the (macroscopic) reaction rate kj , which is the quantity usually measured in experiments. In fact, for a reaction of the type S1 C S2 / P, we have (Gillespie 1977) kj Z Ncj



hX1 X2 i ; hX1 ihX2 i



ðA 6Þ



where the brackets indicate average over an ensemble of identical systems. However, in the deterministic formulation of chemical kinetics correlations between species are ignored7 and, therefore, as long as the deterministic approximation is valid, hX1 X2 iZ hX1 ihX2 i. Thus, we obtain kj cj Z ; ðA 7Þ N and from equation (A 7), we obtain the following expression for the transition rates of reactions of the type S1 C S2 / P: kj aj Z X1 X2 Z Nkj x1 x2 ; ðA 8Þ N where xi Z Xi =N . Similarly, for ﬁrst-order kinetics S1 / P, we obtain cj Z kj ;



ðA 9Þ



aj Z kj X1 Z Nkj x1 ;



ðA 10Þ



and, therefore, for reactions of the type 2S1 / P, we have (Gillespie 1977) 2kj ; ðA 11Þ cj Z N and, accordingly,   1 aj Z cj X1 ðX1 K1Þ=2 Z Nkj x1 x1 K : ðA 12Þ N



A.2. Computation of the probability densities, Qb ðTÞ and Qx ðTÞ Using Gillespie’s algorithm, we can generate as many realizations of our model as it is computationally feasible and come up with average-over-realizations quantities that we expect are statistically signiﬁcant. 6 All the second-order reactions considered in our model are of this type. 7 The LMA is a mean ﬁeld approximation.
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Here we give details of how we have computed average quantities such as probability densities (ﬁgures 3 and 7), Qb ðTÞ and Qx ðTÞ. Computation of the probability densities. The results shown in ﬁgures 3 and 7 show the probability densities for the model with dimer and trimer formation, respectively. To calculate them we have proceeded as follows. For simplicity, we will focus here on the procedure to obtain the results for the model with dimer formation (ﬁgure 3). The corresponding procedure for the model with trimer formation (ﬁgure 7) is totally analogous. (i) The precision is ﬁxed to 1=N (N being the total number of receptors) for monomers (i.e. unbound receptors or bound receptors not engaged in oligomer formation), 2=N for dimers and 3=N for trimers. (ii) An array A[i][j] with 0% i% N=2 and 0% j% N, corresponding to the number of times out of R realizations that i% X % iC 1 and j % B% j C 1, is deﬁned. (iii) At each realization, the system is allowed to evolve for long enough for the system (on average) to settle in equilibrium. (iv) The values of B and X are checked. If the condition i! X % iC 1 and j % B% j C 1 is fulﬁlled, then the component A[i][j] of the array is incremented in one unit, so that A½i½j= N corresponds to the frequency with which i! X % iC 1 and j ! B% j C 1. If the number of realizations is large enough, this frequency is a good approximation to the probability of i! X% iC 1 and j ! B% j C 1. (v) This process is repeated R times, being R the number of realizations. Computation of Qb ðTÞ and Qx ðTÞ. The main results of this paper are given in terms of Qx ðTÞ, i.e. the probability that the total number of receptors engaged in oligomer formation (either dimer or linear trimer or ring), NO , exceeds a threshold, Q, for a time longer than T. The procedure to calculate Qx ðTÞ is as follows. (i) At each realization, the system is allowed to evolve for long enough for the system (on average) to settle on a stationary state. The reason for this is we want to be sure that Qx ðTÞ depends only on T and not, for example, on the time at which NO becomes bigger than Q. (ii) The time at which NO has crossed Q for the last time is registered. (iii) If, at the time of calculating Qx ðTÞ, the condition NO R Q has held for a time longer than T, then Qx ðTÞ is increased by 1=R, being R the total number of realizations. Note that Qx ðTÞ is independent of the time at which we are calculating it because the system is in a stationary state. (iv) This process is repeated R times. The actual value of NO varies from model to model, being NO Z X for the model with dimer J. R. Soc. Interface (2006)
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