

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Value categories

v6

Every C++14 expression belongs to exactly one of the following classifications, known as value categories: lvalue, xvalue, prvalue. There's an overlap between these, so a higher level of classification can be thought of as just rvalues and glvalues (generalized lvalues). Knowing the value category of an expression will allow you to make informed decisions about the lifetime of the expression, thus preventing common pitfalls which introduce undefined behavior and compilation errors. expression / \ / glvalue / \ / lvalue

\

/ xvalue

\ rvalue / \ \ prvalue

PRvalues prvalues are rvalues which are "pure," meaning they've never been bound to a name. They're often just called temporaries and are the result of any function which returns a nonreference value type, as well as most literals. prvalues can have their lifetime prolonged by binding to another reference type. The lifetime of a prvalue is the extent of the full expression.

42 // prvalue true // prvalue

All literals, aside from string literals, are prvalues. String literals are lvalues. valid

int foo(); foo(); // prvalue valid

int a{}, b{}; // both lvalues a + b; // prvalue valid

int a{}; // lvalue &a; // prvalue

Any function call returning a non-reference value type, including pointers, yields a prvalue. In the call expression, the value has not been given a name, which makes it pure.

Like any function returning a non-reference value type, the result of arithmetic, when not using compound operators such as +=, is a prvalue.

The address of any lvalue, is prvalue. Note that you can't take the address of prvalues. valid

int a{}; // lvalue static_cast(a); // prvalue valid

The result of casting an lvalue to a non-reference type is a prvalue. This is no different with non-trivial types, too.

[](int const a) { return a * a; }; // prvalue Anonymous functions, regardless of their capture, are prvalues like other literals.

int a{}; // lvalue [&]{ return a * a; }; // prvalue valid

int a{}; // lvalue a++; // prvalue valid

double{}; // prvalue std::vector{}; // prvalue valid

void foo(std::string const &s); foo("kitty"); // argument is a prvalue foo(std::string{ "kitty" }); // same

Postfix operators return a copy of the old value, which is a non-reference value type, so it's a prvalue.

The construction of any type, using uniform initialization, which isn't a variable or member definition, is a prvalue. This is the same for both trivial and non-trivial types.

Arguments passed to functions, including constructors, which are implicitly converted, are prvalues. This is commonly seen with std::string and various smart pointer types. valid

int &a{ 42 }; // invalid

An rvalue cannot be bound to an lvalue reference-to-non-const. invalid

Lvalues lvalues are glvalues which are bound to a name; typically, they appear on the left hand side of expressions (such as a = 5). lvalues may exist as a local, global, parameter, member, etc. The lifetime of an lvalue is the extent of the current scope.

"Meow!" // lvalue valid

Unlike all other literals, the string literal is an lvalue. This originated in C, since string literals are arrays and arrays in C can only exist in expressions as lvalues.

int a{}; // lvalue int& get() { return a; }

A function call is an lvalue if the function returns a reference to an object, const or nonconst.

get(); // lvalue valid

int a{}; // lvalue ++a; // lvalue

Prefix operators return a reference to the object, which is an lvalue. valid

std::cout << 42; // lvalue valid

int a{}; // lvalue int *p{ &a }; // lvalue (p + 1); // prvalue *(p + 1); // lvalue

Even though the insertion operator is taking the prvalue 42, the operator returns a reference to the ostream, so it's an lvalue.

While pointer arithmetic yields a prvalue, the indirection operator on a pointer results in an lvalue. valid

int a[4]{}; // lvalue a[2]; // lvalue

Subscript operation on an lvalue array results in an lvalue. valid

int foo(); int &&a{ foo() }; // lvalue valid

Though a is an rvalue reference, it's named, so it's an lvalue. In order to get it back to an rvalue, in an expression, std::move or similar will be needed.

struct foo { int a; }; A non-static data member of an lvalue is also an lvalue.

foo f; // lvalue f.a; // lvalue valid

int &&a{ 77 }; // lvalue int &b{ a }; // lvalue valid

int a{ -7 }; // lvalue int &&b{ a }; // invalid

Though a is initialized with a prvalue, it becomes an lvalue. Since it's an lvalue, a normal lvalue reference can be taken from it.

An lvalue cannot be bound to an rvalue reference without the usage of std::move. invalid

Xvalues xvalues are rvalues which are also glvalues, such as lvalues which have been casted to an rvalue reference. xvalues cannnot have their life prolonged by binding to another reference. You cannot take the address of an xvalue. The lifetime of an xvalue is the extent of the full expression.

bool b{ true }; // lvalue std::move(b); // xvalue static_cast(b); // xvalue

An lvalue that's moved will yield an xvalue. The same can be achieved by casting. valid

int&& foo(); foo(); // xvalue

A function call which returns an rvalue reference yields an xvalue. valid

int &&a{ 5 }; // lvalue std::move(a); // xvalue int &&b{ std::move(a) }; // lvalue int const &c{ std::move(b) }; // lvalue

Like prvalues, xvalues can be bound to rvalue references and lvalue references-to-const. They cannot, however, have their lifetime prolonged. valid

struct foo { int a; }; A non-static data member of any rvalue is an xvalue.

foo f; // lvalue std::move(f).a; // xvalue foo{}.a; // xvalue valid

int a[4]{}; // lvalue std::move(a); // xvalue std::move(a)[2]; // xvalue

Subscript operation on an rvalue array results in an xvalue.

using arr = int[2]; arr{}; // prvalue arr{}[0]; // xvalue valid

Lifetime extension prvalues can have their lifetime prolonged to be the lifetime of a reference to which they're bound. glvalues, meaning both lvalues and xvalues, don't have this same benefit, though it is still possible to bind them to other references.

struct T{}; T foo();

A prvalue can be bound to an lvalue reference-to-const, which will prolong its lifetime to be the lifetime of the reference.

T const &ref{ foo() }; // lvalue valid

struct T{}; T foo();

A prvalue can be bound to an rvalue reference, which will prolong its lifetime to be the lifetime of the reference.

T &&ref{ foo() }; // lvalue valid

struct T{}; T foo();

Moving a prvalue yields an xvalue. While that can be bound to an rvalue reference or an lvalue reference-to-const, both cases are undefined behavior, since neither will prolong the lifetime of an xvalue.

T &&ref{ std::move(foo()) }; // lvalue T const &ref{ std::move(foo()) }; // lvalue undefined-behavior

int &&a{ 5 }; // lvalue int const &b{ std::move(a) }; // lvalue valid

While it's well-defined to bind an xvalue to an lvalue reference-to-const, no lifetimes will be prolonged, so it must be done with care.

Common patterns and mistakes Returning reference to const local

int foo() { int ret{}; // lvalue return ret; // rvalue }

int const& foo() { int ret{}; // lvalue return ret; // rvalue }

undefined-behavior

§12.8 (32): When the criteria for elision of a copy operation are met or would be met save for the fact that the source object is a function parameter, and the object to be copied is designated by an lvalue, overload resolution to select the constructor for the copy is first performed as if the object were designated by an rvalue. valid

Returning reference to const parameter

template T get(std::string const &key, T const &fallback) { auto const &found(find(key)); // lvalue if(found) // lvalue { return *found; } // lvalue return fallback; // lvalue }

template T const& get(std::string const &key, T const &fallback) { auto const &found(find(key)); // lvalue if(found) // lvalue { return *found; } // lvalue return fallback; // lvalue }

int a{}; // lvalue get("meow", a); // prvalue get("meow", 0); // prvalue int const b{ get("meow", 0) }; // lvalue int const &c{ get("meow", 0) }; // lvalue

int a{}; // lvalue get("meow", a); // lvalue, well-defined int const b{ get("meow", 0) }; // lvalue, well-defined int const &c{ get("meow", 0) }; // lvalue, undefined

undefined-behavior Moving an object properly

An lvalue reference-to-const parameter may be bound to an outside lvalue, or it may be prolonging the lifetime of a prvalue. The lifetime of the prvalue to which the parameter is potentially bound is within the scope of the full expression. That means that it's not welldefined to return an lvalue reference-to-const and bind it to an lvalue reference-to-const (the same applies when binding to an rvalue reference): the original prvalue's lifetime cannot be extended further. In this case, return a non-reference type. valid

{

std::vector a{ calculate_things() }; // done with a, so move it use_results(std::move(a)); // move gives an xvalue

}

You should use std::move to tag objects as xvalues so that they can be transferred optimally.

// a is now moved-from

// can be a non-reference parameter void use_results(std::vector v); // can explicitly require an rvalue, to // prevent accidental copies void use_results(std::vector &&v); valid Move in as rvalue, return as non-reference

std::vector add_some(std::vector &&v) // lvalue { v.push_back(42); return std::move(v); // xvalue } std::vector add_some(std::vector &&v) // lvalue { v.push_back(42); return v; // lvalue -- non-idiomatic } std::vector v; // lvalue v = add_some(std::move(v)); // sends in xvalue

std::vector v; // lvalue v = add_some(std::move(v)); // sends in xvalue

Parameters of a reference-type will not be automatically candidates for return value optimization, as they could be referring to objects outside the scope of the function. In order to avoid deep copying here, use std::move to coerce the parameter to an xvalue when returning.

non-idiomatic

Note, do not use this technique when returning non-reference parameters or objects local to the function's scope; they will automatically be returned as rvalues, if possible. valid

Hanging onto an xvalue member

struct foo { int a; }; foo get(); struct foo { int a; };

int const b{ get().a }; // copy the xvalue int const c{ std::move(get().a) }; // move the xvalue

foo get(); int const &b{ get().a }; // a is an xvalue

undefined-behavior

Members of rvalue objects are xvalues; xvalues cannot have their lifetime extended by binding to a reference-to-non-const or rvalue-reference, though the binding is valid and will compile. When pulling a member out of an rvalue object, prefer to copy or move the member. valid

Hanging onto an rvalue container element

std::vector get(); int const a{ get().at(0) }; // copy int const b{ std::move(get().at(0)) }; // move

std::vector get(); get().at(0); // lvalue int const &a{ get().at(0) }; // undefined

undefined-behavior

A container, returned as an rvalue, does not have its lifetime extended by binding a reference to one of its members or elements. At the end of the expression, the container will be destroyed and the reference will be dangling.

valid

Hanging onto an lvalue container element

std::vector const& get(); A container returned as an lvalue doesn't need its lifetime extended, so binding a member or element from it to an lvalue reference is well-defined.

get().at(0); // lvalue int const &a{ get().at(0) }; // lvalue valid Hanging onto an lvalue member of an rvalue

struct foo { int a{}; int const& get_a() // lvalue { return a; } };

struct foo { int a{}; int const& get_a() // lvalue { return a; } };

int const a{ foo{}.get_a() }; // copy

foo{}; // prvalue foo{}.get_a(); // lvalue int const &a{ foo{}.get_a() }; // undefined

undefined-behavior Binding an rvalue to a string_view

A function returning an lvalue reference always results in an lvalue reference, even when it's called on an rvalue object. In this case, foo{} is a prvalue, but calling get_a() on it yields an lvalue. As shown, just because a function returns an lvalue member doesn't make it safe to bind to another reference. valid

std::string s{ "meow" }; // lvalue boost::string_view s{ std::string{ "foo" } }; // undefined

std::string get(); std::string const &s{ get() }; // lvalue

std::string get(); boost::string_view s{ get() }; // undefined undefined-behavior

A string_view is like an lvalue reference to a std::string, or C string. It doesn't extend the string's lifetime and it should be thought of as just holding onto members of the string: begin and end. valid

Binding an rvalue to a string_view parameter

void foo(boost::string_view const &s) // s is an lvalue { }

Binding an rvalue string to a string_view isn't always undefined behavior. In the case of parameters, the rvalue will live as long as the full expression, which is the duration of the function call. In this manner, string_views can provide a type-agnostic way of serving std::string, C strings, and other string_views.

foo("meow"); // From lvalue literal foo(std::string{ "meow" }); // From prvalue valid

[image: F# Cheatsheet - GitHub]
F# Cheatsheet - GitHub

[image: Paredit Cheatsheet - GitHub]
Paredit Cheatsheet - GitHub

[image: the accessibility cheatsheet - GitHub]
the accessibility cheatsheet - GitHub

[image: HotSpot JVM options cheatsheet - GitHub]
HotSpot JVM options cheatsheet - GitHub

[image: return x + value - GitHub]
return x + value - GitHub

[image: Python Debugger Cheatsheet]
Python Debugger Cheatsheet

[image: Grading Category: Progress Point Value: 15 points ...]
Grading Category: Progress Point Value: 15 points ...

[image: Grading Category: Progress Point Value: 15 points ...]
Grading Category: Progress Point Value: 15 points ...

[image: Grading Category: Progress Point Value: 30 points ...]
Grading Category: Progress Point Value: 30 points ...

[image: Grading Category: Progress Point Value: 15 points ...]
Grading Category: Progress Point Value: 15 points ...

[image: IOV: A Universal Value System - GitHub]
IOV: A Universal Value System - GitHub

[image: IOV: A Universal Value System - GitHub]
IOV: A Universal Value System - GitHub

[image: lecture 5: matrix diagonalization, singular value ... - GitHub]
lecture 5: matrix diagonalization, singular value ... - GitHub

[image: markdown-cheatsheet-online.pdf]
markdown-cheatsheet-online.pdf

[image: markdown-cheatsheet-online.pdf]
markdown-cheatsheet-online.pdf

[image: KNOWING) Category]
KNOWING) Category

[image: SC CATEGORY ST CATEGORY Government - deo-nellore]
SC CATEGORY ST CATEGORY Government - deo-nellore

[image: Masters cheatsheet - top 80.pdf]
Masters cheatsheet - top 80.pdf

[image: Diablo-3-cheatsheet-62-63.pdf]
Diablo-3-cheatsheet-62-63.pdf

[image: Category-specific effects in semantic memory: Category ...]
Category-specific effects in semantic memory: Category ...

[image: Category-Based Induction]
Category-Based Induction

[image: Category-Specific Deficits]
Category-Specific Deficits

[image: Open Category MBBS.pdf]
Open Category MBBS.pdf

[image: Diablo-3-cheatsheet-62-63.pdf]
Diablo-3-cheatsheet-62-63.pdf

Value category cheatsheet - GitHub

Any function call returning a non-reference value type, including pointers, yields a prvalue. ... A non-static data member of an lvalue is also an lvalue. int &&a{ 77 }; ...

 Download PDF

 70KB Sizes
 5 Downloads
 294 Views

 Report

Recommend Documents

[image: alt]

F# Cheatsheet - GitHub

Mutually recursive functions (those functions which call each other) are indicated by ... The same list [1; 3; 5; 7; 9] or array [| 1; 3; 5; 7; 9. |] can be generated in ...

[image: alt]

Paredit Cheatsheet - GitHub

Go to the start of current/previous defun, go to the start of next defun. Leader

[image: alt]

the accessibility cheatsheet - GitHub

Jun 2, 2015 - 2 - â€œOperableâ€� - User interface components and navigation must be ... Lay out your HTML the way the page is inteaded to be read and, where ...

[image: alt]

HotSpot JVM options cheatsheet - GitHub

G1 is not deterministic, so no guaranties for GC pause to satisfy this limit. -XX:G1ReservePercent=10 Percentage of heap to keep free. Reserved memory is used ...

[image: alt]

return x + value - GitHub

movl %esi, (%rdi) retq. __ZN4Plus6plusmeEi: ... static code and data auto plus = Plus(1); ... without garbage collection using object = std::map;.

[image: alt]

Python Debugger Cheatsheet

Author: Florian Preinstorfer () â€” version 1.1 â€” license cc-by-nc-sa 3.0. See https://github.com/nblock/pdb-cheatsheet for more information.

[image: alt]

Grading Category: Progress Point Value: 15 points ...

weakness of Telemachus' and Antinous. A fatherâ€”his name, his reputationâ€”is integral to his son's identity. Athena, in her guise as. Mentes, communicates the importance of the patriarch in her introduction to Telemachus: â€œWise old Anchialus/ was

[image: alt]

Grading Category: Progress Point Value: 15 points ...

defection. o C. His resourcefulness will equip him to elude pursuit. o D. His resourcefulness ensures that he will one day find his way back to his parents. Which of the following BEST supports Connor's leadership ability? o A. â€œThat's when Connor

[image: alt]

Grading Category: Progress Point Value: 30 points ...

Choose ONE of the following: â€¢ Friendship. â€¢ Loyalty. â€¢ Love. â€¢ Justice. What message ... Did you adhere to the conventionsâ€”e.g., start sentences with capital letters; end with periods? ... inside the quotation marksâ€”but after the ()?. â

[image: alt]

Grading Category: Progress Point Value: 15 points ...

Group Dynamic Warm-Up pp. 37-50. Decide which character fulfills each of the following roles. Add any group roles that are not listed, but which you think are important. Be prepared to explain your choices. The Visionary. The Mediator/Communicator/Di

[image: alt]

IOV: A Universal Value System - GitHub

Abstract. A Universal Value System would allow users to store and exchange multiple types of values without the need to download an electronic wallet each time a new blockchain is being created. The decentralization of blockchains has created a diver

[image: alt]

IOV: A Universal Value System - GitHub

tributed ledgers. Cosmos became the first player working to eliminate the dependence on exchanges and create a decentralized network that allows the pdf). 2. Buterin V, , et al. (2014) A next-generation smart contract and decentralized applicat

[image: alt]

lecture 5: matrix diagonalization, singular value ... - GitHub

We can decorrelate the variables using spectral principal axis rotation (diagonalization) Î±=XT. L. DX. L. â€¢ One way to do so is to use eigenvectors, columns of X. L corresponding to the non-zero eigenvalues Î» i of precision matrix, to define new

[image: alt]

markdown-cheatsheet-online.pdf

would otherwise have special meaning in Markdown's formaing syntax. Markdown provides backslash escapes for. the following characters: \ backslash. ` backtick. * asterisk. _ underscore. {} curly braces. [] square brackets. () parentheses. # hash mark

[image: alt]

markdown-cheatsheet-online.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Main menu.

[image: alt]

KNOWING) Category

May 24, 2017 - 21.17/06/2017â€‹ â€‹Saturdayâ€‹ â€‹01.30â€‹ â€‹PMâ€‹ â€‹toâ€‹ â€‹03.15â€‹ â€‹PM. Categoryâ€‹ â€‹Number:414/16. WWW.FACEBOOK.COM/EXAMCHOICES.

[image: alt]

SC CATEGORY ST CATEGORY Government - deo-nellore

Aug 11, 1989 - D esignation (if S. A. / LP . specify the subject). P lace of w orking. D ate of B irth. Category. Academic qualifications. SA-MAT 11/09/2010 23:16.

[image: alt]

Masters cheatsheet - top 80.pdf

Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Masters cheatsheet - top 80.pdf. Masters cheatsheet - top 80.pdf.

[image: alt]

Diablo-3-cheatsheet-62-63.pdf

Doom Hammer. Dread Lance. Exorcist. Guru Staff. Heaven Hand. Hellion Crossbow. High Scabbard. Razorspikes. Revenant Bow. Rune Sword. Sacred Shield.

[image: alt]

Category-specific effects in semantic memory: Category ...

brief practice task at a laptop computer during which they indicated Pleasantness ... began with a 10â€“15 min acquisition of 5 mm adjacent slices for determining ...

[image: alt]

Category-Based Induction

(APPLE, WATERMELON), and (FALCON, CHIMPANZEE)â€”the last pair consists of elements at the same hierarchical level within the category ANIMAL.

[image: alt]

Category-Specific Deficits

senting different classes of features have been offered as one possible explanation for a natural kini (e.g., dog, carrot) arici artifact (e.g., hammer, car) dissociation that has been observed in Alzheimer's disease (Devlin, Gn- nerman, Andersen, &

[image: alt]

Open Category MBBS.pdf

902-wpl-2247-17.doc. admission in the said college is cancelled as per the directions of. respondent no.3. When the petitioner sought reasons for cancellation of.

[image: alt]

Diablo-3-cheatsheet-62-63.pdf

Grand Chain. Grand Halberd. Heaven Strand. Impellor. Kurastian Asp. Massacre Axe. Mythical Staff. Oni Blade. Pallium. Phantom Bow. Piercer. Ring. Sagaris. Sanctified. Quiver. Slag Hammer. Sovereign. Greaves. Sovereign Helm. Sovereign Mail. Sovereign.

×
Report Value category cheatsheet - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

