ekWMy iz’u&i= lsV&III

Mathematics ¼xf.kr½ Time Allowed : 3 Hours

Max. Marks -100 General Instructions :

(i) (ii)

(iii) (iv)

lHkh iz’u vfuok;Z gSAa bl iz’ui= esa 29 iz’u gSa tks rhu [k.Mksa esa foHkkftr gS]a v] c rFkk lA [k.M ^v* esa 10 iz’u gSa ftuesa ls izR;sd ,d vad dk gSA [k.M ^c* esa 12 iz’u gSa ftuesa ls izR;sd pkj vadksa dk gSA [k.M ^l* esa 7 iz’u gSa ftuesa ls izR;sd N% vadks dk gSA [k.M ^v* esa lHkh iz’uksa dk mÙkj ,d 'kCn] ,d okD; vFkok iz’u dh vko’;drk ds vuqlkj fn;s tk ldrs gSAa iw.kZ iz’ui= esa fodYi ugha gSA fQj Hkh pkj vadksa okys 5 iz’uksa esa ,oa N% vadksa okys 4 iz’uksa esa varfje fodYi gSAa ,sls lHkh iz’uksa esa vkidks ,d gh fodYi gy djuk gSA dSydqyVs ds iz;ksx dh vuqefr ugha gSA

(v) General Instruction (i) All question are compulsory. (ii) The question paper consists of 29 questions divided into three sections A, B and C. Section A is comprised of 10 questions of one mark each, section B is comprised of 12 questions of Four marks each and section C is comprised of Six marks each. (iii) All questions in section A are to be answered in one word, one sectence or as per the exact requirement of the question. (iv) There is no overall choice. However, internal choice has been provided in 5 questions of section B and 4 questions of section C. you have to attempt only one alternates in all such questions. (v) Use of calculator is not permitted.

[k.M & v Section – A iz'u la[;k 1 ls 10 rd izR;sd iz’u 1 vad dk gSA Question number 1 to 10 carry 1 mark each. (1) leqPp; S = {1, 2,3} ij ifjHkkf"kr Qyu f : S → S

f = {(1,3),(3, 2), (2,1)} O;qRØe

Qyu

f −1

ds fy,] tks fuEu#i esa fn[kk;k x;k gS

fy[ksAa

Write the f −1 for the function f : S → S defined over a set S = {1, 2,3} shown as f = {(1,3),(3, 2), (2,1)} (2)

(3)

 1 sin −1  −   2  1 Find the value of sin −1  −   2 2 X 2 Øeokys vkO;wg A ds fy;s λ dk

eku Kkr djsa

eku Kkr djs]a tgk¡

A = 5 ,oa λ A = 20 gSA

Write the value of λ for a matrix A of order 2 X 2 where A = 5 and λ A = 20 . (4)

 1 x  1 3   y −1 =  2 −1 ] rks x + y dk      1 x  1 3  If  =  then find x + y .  y −1  2 −1

;fn

eku crk;sAa

x (5)

lkjf.kd

y

z

2x 2 y 2z x2 y 2 z 2

dk eku fy[ksAa x

y

z

Write the value of the determinant 2 x 2 y 2 z .

x2

y2

z2

π 2

(6)

eku Kkr djsa ∫ sin 3 xdx π −

2

π 2

Evaluate

∫π sin



3

xdx .

2 3

(7)

2

 2  lehdj.k  d y2  +  dy  + sin  dy  + 1 = 0 dk  dx   dx   dx  ¼B½ 2 ¼C ½ 1 ¼ D½

vody ¼ A½ 3

(9)

(

)

(

(10)

vifjHkkf"kr

2

 d y   dy   dy  The degree of the differential equation  2  +   + sin   + 1 = 0 is  dx   dx   dx  (A) 3 (B) 2 (C) 1 (D) Not defined   a vkSj − a ds chp cu jgs dks.k dk eku fy[ksA a   Write the angle between a and − a .    a vkSj a × b ds chp vfn’k xq.kd ds eku fy[ksA a    Write the scaler product of a and a × b . 2

(8)

3

dksfV gS

)

x+3 y −4 z +8 = = ds fy;s fnd~ dksT;k 3 2 6 x+3 y −4 z +8 Write the direction cosine of the state line = = . 3 2 6

fn;s x;s ljy js[kk

dk eku fy[ksAa

[k.M & ^c* Section – B

iz'u la[;k 11 ls 22 rd izR;sd iz’u 4 vad dk gSA Question number 11 to 22 carry 4 marks each. (11) izkd`frd la[;kvksa ds leqPp; N ij ifjHkkf"kr

f}vk/kkjh lafØ; ∗ ds fy,] tgk¡

a ∗b = a

,oa

b

ds y?kqÙke lekioR;Z gSa Kkr djsa & ¼i½ 20 ∗16 ¼ii½ D;k ∗ Øe fofues; xq.k dks /kkj.k djrk gS \ ¼iii½ D;k ∗ lkgp;Z fu;e dk ikyu djrk gS \ ¼iv½ ∗ ds fy;s lRled vo;o For the binary operation ∗ defined on the set of natural number N . Where a ∗ b = LCM of a and b , find (i) 20 ∗16 (ii) Is ∗ commutative (iii) Is ∗ associative (iv) Identify element for ∗

(12)

(13)

5 3 63 + cos −1 = tan −1 13 5 16 5 3 63 Prove that sin −1 + cos −1 = tan −1 . 13 5 16  2 −2 −4  fn;s x;s oxZ vkO;wg A =  −1 3 4   1 −2 −3

fl) djsa fd

sin −1

dks l;fer ,oa fo"k; l;fer vkO;wgksa ds ;ksx ds #i

esa iznf’kZr djsAa  2 −2 −4  Express the square matrix A =  −1 3 4  as sum of symmetric and skened symmetric matrices.  1 −2 −3 OR 3 1 2 ;fn A =   ] rks n’kkZb;s fd A − 5 A + 7 I = 0 ] − 1 2    3 1 2 If A =   , then show that A − 5 A + 7 I = 0 . − 1 2   (14)

(15)

 sin x , if x < 0 fn;s x;s Qyu f ds lR;rk dh tk¡p djs]a tgk¡ f ( x) =  x  x + 1, if x ≥ 0  sin x , if x < 0  Investigate the continuity of function f where f ( x) =  x .  x + 1, if x ≥ 0 dy dx

Kkr djsa tc

Find

;fn

x = a (cos θ + θ sin θ )

,oa

y = a (sin θ − θ cos θ )

gks

dy , if x = a (cos θ + θ sin θ ) and y = a (sin θ − θ cos θ ) . dx OR y = 3cos(log x) + 4sin(log x) gks]a rks n’kkZb;s fd x 2 y2 + xy1 + y = 0

If y = 3cos(log x) + 4sin(log x) , then show that x 2 y2 + xy1 + y = 0 . (16)

fn;s x;s i[ky; ¼i ½

y = ( x − 2) 2

ds fy;s Kkr djsa

dy dx

¼ii½ i[ky; ij fLFkr nks fcUnqvksa (2, 0), (4, 4) dks tksMu+ s okys thok dk <+ky ¼slope½ ¼iii½ dk eku] tc Li’kZ js[kk dk <+ky ¾ mi;qZDr thok dk <+ky ¼iv½ x izkIr fcUnq ds funsZ’kkad ij Li’kZ js[kk dk lehdj.k

(17)

For given Parabola y = ( x − 2) 2 , find dy (i) dx (ii) slope of the chord joining two points (2, 0) and (4, 4) . (iii) value of x , when slope of the tangent = slope of the chord (iv) equation of the tangent at the obtained point. eku Kkr dhft;s ∫ dx x( x 4 + 1)

Evaluate

dx 4 + 1)

∫ x( x

OR

eku Kkr dhft;s ∫ Evaluate (18)



x+3 5 − 4 x + x2

x+3 5 − 4 x + x2

dx

dx

eku Kkr dhft;s ∫ e x  1 − 12  dx x x  1 1  Evaluate ∫ e x  − 2  dx x x  π

(19)

eku Kkr dhft;s

cos5 x dx ∫0 sin 5 x + cos5 x 2

π

cos5 x dx ∫0 sin 5 x + cos5 x 2

Evaluate (20)

(21)

(22)

fn[kkb;s fd fcUnq

A(1, 2, 7), B (2, 6, 3) ,oa C (3,10, −1) laj[ s kh gSAa Show that the points A(1, 2, 7), B (2, 6, 3) and C (3,10, −1) are collinear. OR 'kh"kZfcUnq A(1,1, 2), B(2,3,5) ,oa C (1, 5,5) ls cus f=Hkqt dk {ks=Qy Kkr djsAa Find the area of the triangle with vertices A(1,1, 2), B (2,3,5) and C (1, 5,5) . nks js[kkvksa x + 1 = y + 1 = z + 1 ,oa x − 3 = y − 5 = z − 7 ds chp U;wure nwjh Kkr djsAa 7 1 1 1 −6 −2 x +1 y +1 z +1 x −3 y −5 z −7 Find the shortest distance between two lines = = and = = . 7 −6 1 1 −2 1 ;fn If P( A) = 6 , P( B) = 5 ,oa P( A ∪ B) = 7 gksa rks Kkr djsa Find 11 11 11 (i) P ( A ∩ B ) (ii) P(A B) (iii) P( B A) (iv) P ( A − B ) OR ;fn A ,oa B nks Lora= ?kVuk;sa gksa tgk¡ P( A) = 0.3 ,oa P( B) = 0.4 gksa rks Kkr djsa

¼i ½

P( A ∩ B)

¼ii½

P( A ∪ B)

¼iii½

P(A B)

¼iv½

P( B A)

If A and B are two independent events, where P ( A) = 0.3 and P ( B ) = 0.4 , then find

¼i ½

P( A ∩ B)

¼ii½

P( A ∪ B)

¼iii½

P(A B)

¼iv½

P( B A)

[k.M & ^l* Section – C

iz'u la[;k 23 ls 29 rd izR;sd iz’u 6 vadksa dk gSA Question number 23 to 29 carry 6 marks each. (23) vkC;wgksa dk iz;ksx djds] fuEufyf[kr lehdj.k fudk; dks 3 x − 2 y + 3 z = 8, 2 x + y − z = 1, 4 x − 3 y + 2 z = 4. Using matrics solve the following system of equations ; 3 x − 2 y + 3 z = 8, 2 x + y − z = 1, 4 x − 3 y + 2 z = 4. (24) n'kkZb;s fd fn;s x;s o`Ùk esa vUrfuZfgr vk;rksa esa vf/kdre

gy dhft;s (

{ks=Qy dk vk;r ,d oxZ gSA

Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area. OR 2 ¼i½ vUrjky Kkr djs]a ftlesa Qyu f ( x) = x + 2 x − 5 o/kZeku Øe esa gSA

¼ii½ eku Kkr djsa ¼vodyu dk mi;ksx djrs gq,½&

25.3 (i) Find the internal, where function f ( x) = x + 2 x − 5 is in increasing order. 2

(25)

(ii) Using differentiation, find the value (approx) i[ky; x 2 = y ] ljy js[kk y = x + 2 ,oa x &

25.3 .

v{k ls f?kjs {ks= dk {ks=Qy lekdyu fof/k ls

Kkr djsAa Find the area of the region enclosed by the parabola x 2 = y , st line y = x + 2 and x - axis. OR 3

;ksx dh lhek fof/k vFkkZr izkjafHkd fof/k ls eku Kkr djsa & ∫ xdx 1 3

Using limit of sum ie. Ab-initia method evaluate -

∫ xdx 1

(26)

;fn

dy x + y = x3 ] dx

rks Kkr djsa

¼i½ vodyu lehdj.k dh dksfV ¼ii½ LFkkfir #i esa ykdj P ,oa Q ds eku ¼iii½ lekdyu xq.kkad vFkkZr e∫ Pdx ¼iv½ O;kid gy ¼v½ izkpy fLFkjkad ds eku ;fn x = 1 ,oa y = 2 gks] ¼vi½ fof’k"V gy mi;qZDr izkpy fLFkjkad ds lanHkZ es]a dy + y = x3 , then evaluate – dx (i) Order of the differential equation. (ii) P and Q after bringing it into standard from. Pdx (iii) Integrating factor ie. e ∫ .

If x

(27)

(28)

(iv) General solution. (v) Value of arbitrary constant if x = 1 and y = 2 . (vi) Particular solution. vfu;ksftr pj x ds fy;s izkf;drk caVu P( x) fuEu gSa  K , if x = 0  2 K , if x = 1  P( x) =   3K , if x = 2 0, otherwise ¼i½ K dk eku Kkr djsas (i) Determine the value of K ¼ii½ Kkr djsa P( x < 2) (ii) Find P ( x < 2) ¼iii½ P( x ≤ 2) (iii) P ( x ≤ 2) ¼iv½ P( x ≥ 2) (iv) P ( x ≥ 2) ¼v½ izkf;drk caVu lkj.kh (v) Probability Distribution Table ¼vi½ ek/; (vi) Mean. (3, −4, −5) ,oa (2, −3,1) dks tksMu + s okyh ljy js[kk ds }kjk lery 2 x + y + z = 7

okys fcUnq dk funsZ’kkad Kkr djsAa

dks cs/kus

(29)

Find the co-ordinates of the point where the line through (3, −4, −5) and (2, −3,1) crosses the plane 2x + y + z = 7 . OR lery ds lehdj.k dks Kkr djsa tks (1,1, 0), (1, 2,1) ,oa (−2, 2, −1) ls xqtjrs gksAa Find the equation of the plane passing through there points (1,1, 0), (1, 2,1) and (−2, 2, −1) . ,d mRiknd la;a= nks mRikn A ,oa B dk mRiknu djrk gSA mRikn A esa fuekZ.k Lrj ij 9 ?kaVs ,oa lqlTtkdj.k esa 1 ?kaVk rFkk mRikn B esa fuekZ.k Lrj ij 12 ?kaVk ,oa lqlTtkdj.k esa

3 ?kaVs yxrs gSAa fuekZ.k ds fy;s vf/kdre 180 ekuo ?kaVs ,oa lqlTtkdj.k ds fy;s vf/kdre 30 ?kaVs miyC/k gSAa izR;sd mRikn A ij mRiknd dks ` 8000 ,oa mRikn B ij ` 12000 feyrs gSAa mRikn A ,oa B fdruh la[;k esa izfr lIrkg cuk;h tk;sa ftlls la;a= dks vf/kdre ykHk gks ldsA vf/kd ykHk dh izfr lIrkg jkf’k Kkr djsAa A manufacturing company makes two models A and B of product. Each piece of model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing the maximum labour hours are available 180 and 30 respectively. The company makes a profit of ` 8000 on each piece of model A and ` 12000 on each piece of model B. How many pieces of model A and B should be manufactured per week to realise a maximum profit ? What is the maximum profit per week ? OR ,d vkgkj foKkuh nks izdkj ds HkksT; inkFkksZa X ,oa Y dks bl izdkj feykdj ,d feJ.k cukuk pkgrk gS ftlesa de ls de 10 bZdkbZ foVkfeu A, 12 bZdkbZ foVkfeu B ,oa 8 bZdkbZ foVkfeu C gksA ,d fdyks HkksT; inkFkZ esa foVkfeu dh ek=k bl izdkj gS & A B C Hkkstu foVkfeu X 1 2 3 Y 2 2 1 X dh dher ` 16@fdxzk ,oa Y dh dher ` 20@fdxzk gSA feJ.k Hkkstu dh U;wure dher dk

fu/kkZj.k djsa ftlesa okafNr foVkfeu dh ek=k iwjk gks ldsA A dietician wishes to mix together two kind of foods X and Y in such a way that the mixture contains at least 10 units of vitamine A, 12 unite of vitamin B and 8 units of vitamin C. The vitamin contents of one kg food is given below :Vitamin A B C Food X 1 2 3 Y 2 2 1 One kg of food X costs ` 16 and one kg of food Y costs ` 20. Find the least cost of the mixture which will produce the required diet.

Math Set III.pdf

Write the scaler product of a. and (a b × ) . (10) fn; s x; s ljy js[kk 3 4 8. 3 2 6. x y z + − +. = = d s fy; s fnd ~ dk sT;k dk eku fy[k s aA. Write the direction cosine of the ...

95KB Sizes 7 Downloads 185 Views

Recommend Documents

Math Set III 6.pdf
Page 1 of 6. ekWMy iz'u&i= lsV&III. Mathematics 1⁄4xf.kr1⁄2. Time Allowed : 3 Hours Max. Marks -100. General Instructions : (i) lHkh iz'u vfuok;Z g S aA. (ii) bl iz'ui= e sa 29 iz'u g Sa tk s rhu [k.Mk sa e sa foHkkftr g Sa] v] c rFkk lA [k.M ^v*

Math 3 NCFE Review Set B Key.pdf
Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps.

Math Notebook Homework Set 12 Continuity.pdf
Math Notebook Homework Set 12 Continuity.pdf. Math Notebook Homework Set 12 Continuity.pdf. Open. Extract. Open with. Sign In. Main menu.

Math Learning Disabilities - The Math Wiki
operational sign, at borrowing or carrying appropriately, and at sequencing the steps ... answered problems each on an individual card; they alternate in their ...

Math 109b - Final - Math Home Page
Mar 15, 2017 - (b) (6 points) Show that every smooth vector field on S must have a singular point. (c) (8 points) Show that for every smooth immersion φ : S → R3, there is a point p ∈ S where the principal curvatures are of opposite signs. 2. (1

Seasonal Math asonal Math
of the seasons at http://scienceworld.wolfram.com/astronomy/SummerSolstice.htm as a starting point http://en.wikipedia.org/wiki/Solstice (do not rely primarily on have a simple, yet effective, order to study the seasons, we ings to our diagram. the p

Problem Set 5: Math 454 Spring 2017 Due Thursday ...
Jan 6, 2017 - Problem 2. Let E/F be a finite extension and L: E → M(n,F) be an injective F–algebra homomorphism with n = [E : F]. (a) Prove that if cL(β) is the characteristic polynomial of L(β), then Pβ divides cL(β). (b) Prove that there ex

Math 7711-01 Modular forms: Homework set 4 1. Using ...
b(mod N) surjects and has kernel Γ(N). 3. Show that the map Γ0(N) → (Z/NZ). ∗ given by. [ a b. c d. ] ↦→ d(mod N) surjects and has kernel Γ1(N). 4. Show that.

MATH PAPER All Set - SSC CGL TIER 1 (27 August to 11 September ...
3) 3000. 4) 9000. Correct Answer: 300. Candidate Answer: 300. Question 56.A gun is fired at a distance of 6.64 km away from Ram. He hears the sound 20 seconds later. Then the speed of sound is. एक बदकूराम से 6.64 क.मी. क

Set No.
The data for 2-bus system is given below. SG1 =Unknown ... Develop the expressions for analyzing single line to ground fault in a large power · system using “Z ...

Set No:
Give advantages · and disadvantages of ... were given the problem of moving a desk with two things on it from one room to · another. ... 5.(a) Explain with examples primitive constructs CAR, CDR CONS AND COND IN · LISP. .... (b) With the help of an e

Set No:
In the gate n/w shown in fig. only wires a,b,c and d may become either s-a-o or ... 7.a) Find the shortest homing sequence for the machine shown in table. . PS.

Set No.
(ii) fire point (iii) cloud point and explain their · significance. .... 7.a) Compare the air refrigeration system with vapour compression refrigeration system? Set No. 4.

Set No:
Deduce an expression for the thermal efficiency of joules air engine and show that · it is less than Carnot efficiency. 5. a) Define the mean effective pressure?

Set No:
Explain constraint satisfaction with the help of a crypt arithmetic problem. 3. a) What are the uses of combining forward and backward reasoning? Justify your.

Set No.
Discuss the factors determining the choice of direction for a particular problem. 2. Trace the constraint satisfaction procedure solving the crypt arithmetic problem.

Set No.
c) With the help of a neat sketch, explain the construction and operation of a sliding ... c) Why do commercial vehicles need more than three forward speeds?

Set No.
3. a) Develop the model forms of sequential and sequential recursive models from ... 5. a) What are the goodness fit tests to notify that trip generation based ...