

	
 Home

	 Add Document
	 Sign In
	 Create An Account

	
 Viewer

	
 Transcript

Polynomial-time Optimal Distributed Algorithm for Dynamic Allocation of Discrete Resources Ratul K. Guha

Saikat Ray

Telcordia Technologies Piscataway, NJ, USA Email:

University of Bridgeport Bridgeport, CT, USA Email:

Abstract—Today a growing number of applications that operate in dynamic environments use distributed systems. Often, one or more constrained resources need to be allocated across such systems. In addition, for a number of important applications, the resources to be allocated are discrete quantities and the demand profile is intrinsically location and time dependent (thus pre-computating the resource allocation problem off-line is inadequate). We model such systems using graphs – vertices representing the sites and edges capturing locality – where each vertex is associated with the a pair of (integer) numbers representing the current and the required level of a resource. We seek on-the-fly reallocation of resources that satisfy the demand at each node, if it is feasible to do so, while minimizing a given metric of interest, such as the total distance traveled, maximum disruption time, etc. Due to integrality constraints, one expects such a problem to be NP-hard. However, we show that the matrix representing constraints of the problem satisfies the Total Unimodularity property and hence the problem is solvable in polynomial time. We propose a distributed algorithm that employs only local communications. We characterize the proposed algorithm and by numerical performance evaluation, show that it significantly outperforms known heuristic algorithms.

I. I NTRODUCTION The ability of doing optimal resource allocation forms the foundation of many, if not most, human endeavors in engineering, science and business. For instance, in many competitive sectors—such as the airline industry or the oil industry—businesses heavily rely on optimum resource allocation (e.g., assigning aircrafts of right sizes from the given fleet to different routes) to remain profitable [1]. Indeed, most topics studied under the umbrella of operations research can be viewed as a resource allocation problem in some form. However, traditionally such resource allocation problems— e.g., the machine scheduling problem—are solved in a centralized manner [2]. Indeed, in such classical contexts, it is both simple and desirable to have a central processor with all the relevant data and thus a centralized solution is the natural and efficient approach. In recent years, distributed systems are steadily growing in importance in both civilian and military applications. Often, proper functioning of these systems—let alone efficient functioning—depends on one or more constrained resources. Such resources, many times which are discrete quantities, range from communication channels to specialized squadrons. Therefore, it is imperative that the constrained resources, Work supported in part by The Boeing Company, Grant #2029118

whatever they may be, are properly allocated across the system to extend its performance, lifetime, and sometimes just to make the system functional. Unlike the widely studied classical resource allocation problems, a centralized algorithm is generally inadequate for such distributed systems. While a centralized precomputation may be used to allocate resources at the deployment time, such precomputation alone is usually inadequate. The demand and supply of a resource in such systems change over time. Thus, resources must be reallocated continually. For such dynamic computations, centralized algorithms are not desirable in most contexts: having a central processor may be infeasible (e.g., when the individual processing power is limited), undesirable (to avoid a central point of failure), or expensive. In some situations, a decentralized1 solution (similar to linkstate algorithms that are used in the routing contexts) may be used, which, for example, does not have a central point of failure. However, decentralized solutions generally suffer from scalability issues since any change in the system triggers a global update and global recomputation, encumbering the system. Thus resources must be reallocated in such systems using distributed algorithms. While computing an allocation that would satisfy all feasible demands may not be difficult, the challenge is to be able to achieve a feasible allocation and minimize the cost of transporting the resources from one part of the system to another part. This observation is not new; many previous works have attempted to accomplish the aforementioned goal. However, integrality constraints often make the problems NP-hard and therefore most prior work either do not consider integrality constraints, or are heuristic. We review some of these works in Section II. In most cases integral constraints do imply NP-hardness, but not always. This paper is motivated by our observation that several important practical problems arising in seemingly unrelated contexts are well described by a model that achieves the subtle balance between usability and efficiency: while it captures the nuances of the problems, including integrality constraints, it remains polynomially solvable. As an illustration, we now present three representative problems drawn from different contexts. 1 We make a distinction between decentralized and distributed algorithms. In the former case, complete data is replicated at each node, whereas in the latter, a node would typically have only partial data.

2

In battlefields—or surveillance missions—the operation zone is divided into sites. At each site, a certain amount of each resource needs to be allocated. The need for a given resource— the demand—varies from site to site and over time. For example, in a combat zone a rotorcraft with heavy machinery may be needed at the beginning at a high risk site and when the enemy is retreated, the rotorcraft may no longer be necessary at that location and can be used at some other site. Similarly, a well-lit surveillance area may not need a unit with night-vision capabilities; but this may change if there is a power-outage and the necessary units must be brought in from other parts. Note that in this example, moving rotorcrafts or troops from one place to another place incurs cost and the algorithm must take that into account. Our second representative problem is drawn from sensor networks that are finding an ever-increasing number of applications. In several such applications, the given area is divided into many sites and each site must be covered by a minimum number of mobile sensors. The number are dependent on the site and varying as sensors run out of energy with time and the importance of a site increase (decrease) and thus require more (less) sensors to cover it. Then, additional sensors need to be brought in from other parts of the network. In this context, the cost associated with reallocation could be the cost of moving the sensors, or, for instance, the amount of time a given site remains under-supplied. As a final example, consider a wireless ad hoc network that uses a scheduled medium access technique by assigning a globally unique frequency to each transmitter/receiver pair. Such a design is common in non-civilian contexts where reliability of communication is of primary importance and the use of very high power (compared to the area of the system) to maximize reliability precludes frequency reuse. Such networks often use a cluster-based hierarchy and the number of frequencies needed in a cluster depends on the number of slaves present in the cluster. With time, membership of the clusters vary (the clusters themselves can be viewed as static), inducing a varying demand for frequencies from the pool of available frequencies. Thus frequencies need to be reallocated based on local negotiations among the neighboring clusters (done over a low power control channel) in a distributed manner. In this problem, moving the commodities (i.e., assigning a frequency from one cluster to the other cluster) has no (or little) cost; the main objective is satisfying the varying demand. We propose to model the aforementioned problems by a graph, whose vertices correspond to the sites and the edges represent proximity between sites, with a pair of numbers associated with each vertex representing the demand and the supply at that site. The fundamental problem, modeled as a linear integer program, is to reassign the “supply” numbers by a borrowing-lending mechanism among neighboring nodes so as to satisfy the demand numbers at each vertex (if feasible) while minimizing the cost of reallocation. Note that we model the sites, and not the commodities (squadrons, sensors or frequencies) themselves, as vertices. This simplifies our model since now the underlying graph remains unchanged

(or changes slowly) without sacrificing the essential features of the problems. An example is shown in Fig. 1. Fig. 1(a) shows the initial configuration; the circles depict the sites. In this example, the resource of each site is the number of nodes present in the site (membership). The induced graph is shown in Fig. 1(b). Each node is associated with a pair of numbers in the form (current level, target level) of the resource. Fig. 1(c) shows one of the desirable configurations where the target at each vertex is satisfied. This apparently simple model captures the essential aspects of the problems, including the integrality constraints on the resources, without being computationally hard due to the following property: the constraint set of the proposed problem possesses the total unimodularity property (we prove this in Section IV). Total unimodularity implies that all corner points of the polytope representing the feasible set are integral; therefore the linear program obtained by relaxing the integrality constraints of the corresponding integer program has integral solutions and it is sufficient to solve the linear program [3]. The model easily accommodates multiple resources. We propose a penalty based distributed algorithm for solving the relaxed LP that provably achieves optimality. The algorithm is parsimonious in terms of information exchange: each node exchanges only 2 bit information at each step. Several numerical simulations demonstrate that the proposed algorithm converges in a time-scale that is reasonable for the problem areas considered; especially when the computation is done as a result of a perturbation, which is more common, instead of computing from scratch. Thus the main contributions of this paper are two-fold: (i) providing a unifying model for a number of important distributed resource reallocation problem that captures essential aspects, including integrality constraints, yet efficient; (ii) and proposing a parsimonious distributed algorithm that provably solves the proposed optimization problem, typically within a reasonable time. Note that we do not claim to be able to capture every aspect of the problems while keeping our model tractable. Indeed, it is not difficult to include additional constraints that will make the model NP-hard. Rather, the proposed model represents a particular trade-off between capturing features (specifically, integrality constraints) and computational complexity. This trade-off might not be best for some problems, but we believe that it is the appropriate choice for a large class of problems. The proposed model has allowed the authors to easily identify some important problems with integrality constraints as tractable, e.g., the sensor coverage problem in [4], and provide optimal solutions (instead of heuristic ones). Many practitioners may similarly benefit from this paper. II. R ELATED W ORK Resource (re)allocation is a foundational problem that has been studied in a variety of contexts; we mention some of them here. Redistribution of nodes for load balancing amongst ISPs based on characteristics of user access preferences has been considered in [5]. Reassignment of nodes in a wireless LAN amongst access points using cell breathing techniques has been

3

(6,2)

(5,6)

(6,7)

(5,2)

(7,7)

(3,1)

(7,1)

(6,6) (8,8)

(5,8) (a) Initial Configuration. Circles denote sites. Fig. 1.

(b) Induced Graph.

(c) Desired Graph.

The topology and the induced graph. Each vertex is associated with (current level, target level) of a resource.

considered in [6]. In cell breathing techniques the power levels of the access points are altered so as to control the set of accessing users resulting in a reallocation. Sensor networks have also attracted significant attention [7]. For instance, significant efforts have been put towards sensor network deployment so as to minimize operational costs and achieve the objectives (to monitor quantities, surveillance etc.) [8]. Authors in [9] have proposed energy efficient initialization algorithms for sensor networks that are mostly off-line but wake up only to gather data. In [10], Howard et al. discuss deployment of robotic sensors where positions of previously deployed sensors are utilized. All these algorithms are heuristics. Our work is most similar to the works in literature on coverage of mobile sensor networks. Various deployment strategies have been proposed where sensors move to increase coverage and/or to make the spatial distribution of sensors uniform [11]. The work done in [4] is a representative one. This work focus on reducing the response time for relocation algorithms. In this work, the authors propose a two phase relocation solution. In the first phase the redundant sensors are identified and then sensors are mobilized in a cascaded manner. The algorithms are evaluated in terms of energy and time. However, they provide no performance guarantees. In fact, if the total supply is inadequate to meet the total demand, then these algorithms may not even converge to any meaningful solution. Also, cascading may incur significant cost-overhead in practical scenarios where there is a high setup cost for a node to join an area. Finally, these algorithms perform poorly for reallocation of a given (single) resource from multiple sources to multiple destinations because coupling in different decisions are not captured in these algorithms. In contrast, the proposed algorithm in this paper (a very brief version appeared in [12]) is optimal even for multiple-sources-multipledestinations problem, works significantly better in practice in multiple-sources-multiple-destinations problem, and easily handles the cases when the total supply is less than the total demand (even if it is not known a priori if that is the case). Section V quantifies the advantage of our algorithm over the algorithm proposed in [4]. The General Pickup and Delivery Problem (GPDP) studied in transportation engineering is a generalization of the problem

we study in this paper [13]. However, GPDP is NP-hard and to the best of our knowledge, no distributed algorithm exists for solving GPDP. As we stated in the introduction, our contributions lie in proposing a model that captures the essential features of many practical problems, yet computationally efficient, and proposing a distributed algorithm to solve the problem. There is a rich literature on dynamic link scheduling stemming from Tassiulas’ seminal work [14] (see [15] for a survey.) that view scheduling as a resource allocation problem. However, the problems considered there (e.g., throughputoptimal schedule computation) are not related to our problems. For completeness, we note that some classical resource allocation problems, such as the Banker’s Algorithm proposed by Dijkstra [16] that studies avoiding deadlocks arising from incorrect resource allocations, are not applicable in our contexts since deadlocks do not arise in the problems we study. III. P ROBLEM S TATEMENT In this section we formally define the resource reallocation problem addressed in this paper. For concreteness, consider a spatial region in which a set of mobile devices are scattered, as shown in Fig. 1(a). The region is divided into sites (depicted by circles in Fig. 1(a)). The reader can visualize the mobile devices that belong to a given site to form a cluster. These clusters are immobile (or, slowly moving) whereas the mobile devices can move from one site to the other site. We model the scenario using a graph, G = (V, E). The vertex set V of graph G is the set of sites (clusters); the edges in set E represent proximity as well as communication capability among the sites: i.e., there is an edge between nodes u and v if and only if u and v can communicate.2 With each node u of G, there are two associated integers: σu and τu . The number σu represent the current level of a given resource and the number τu represent the target level of the resource (cf. Fig. 1(b)). Note that it is due to the integrality of σu and τu that the optimization problem is potentially NP-hard. 2 The reader can assume that two clusters communicate with each other through a leader—the clusterhead device. However, how the communication is carried out is immaterial as far as the model is concerned.

4

 N M X X Dij xij min

+

C

j=1

i=1 j=1

s.t.

N X

N X

Ã

dj −

M X i=1

! xij (2)

xij

≤ si ∀i ∈ {1, 2, ..., M }

(3)

xij

≤ dj ∀j ∈ {1, 2, ..., N }

(4)

xij

≥ 0

(5)

xij

∈

j=1

M X i=1

Fig. 2.

Z+

(6)

The optimization problem REALLOCATE.

In the initial state, the target at every vertex may not be satisfied; i.e., there may exist a vertex u∗ so that σu∗ < τu∗ . The goal is to achieve a configuration by exchanging whole positive numbers where σu ≥ τu ∀ u ∈ V ; i.e., the target value is satisfied at each node. Note that exchanging a quantity z ∈ Z+ from node u with current resource level σu to node v with current resource level cv results into new current resource levels σu − z and cv + z (therefore, any such transfer is predicated on the condition σu ≥ z). However, not always can targets at all nodes be satisfied; the problem is feasible if and only if X X σu ≥ τu . (1) u∈V

u∈V

As we will see, we pose the problem such that if Eq. (1) is true, then all target values are satisfied, and if Eq. (1) is not true, then a metric of the differences |σu − τu | enters the cost function (hence minimized). We assume that the target values τu ’s are outside the control of the algorithm; however, they may change in response to external triggers, even during the redistribution phase. There is a cost associated for moving 1 unit of resource from a vertex u to vertex v, denoted by Duv . The notation is meant to suggest Duv to be the “distance” between the vertices. In practice, this cost may or may not be related to the physical distance between the sites. It is also possible to put Duv = 0 ∀ (u, v) ∈ E; the proposed algorithm is not affected. We assume that every vertex u knows Duv ∀ v ∈ V . The distributed algorithm proposed in Section IV needs to send a 2 bit information to potentially non-neighboring nodes. So we assume that a simple multihop routing is available. It is not very difficult to define additional variables to eliminate the need for such multihop routing; however, doing so introduces notational complexity and in fact does not save the amount of bits that need to be transmitted counting multiple-hops. Our goal is to solve the above mentioned problem while minimizing the cost of moving the resources captured by the parameters Duv ’s. We now formulate this problem as a linear integer programming problem. Let |V | = K. We define a vertex i to be a source if σi > τi and a destination if σi < τi (the vertices for which σi = τi are neither sources, nor destinations). Let there be M sources and

N destinations. Define the surplus of source i (i ∈ {1 . . . M }) as si = σi −τi and the deficit of a destination j (j ∈ {1 . . . N }) to be dj = τj −σj . By definition, si ’s and dj ’s are nonnegative quantities. If N M X X dj , (7) si ≥ i=1

j=1

then it is possible to satisfy the target value at each vertex; otherwise not (Eq. (7) is equivalent to Eq. (1)). However, in practice it is not possible for the vertices to know a priori whether condition (7) is satisfied or not. Thus we need to form the optimization problem in such a manner that if (7) is satisfied, then all targets are satisfied, but if (7) is not satisfied, then a measure of the deficits is made small. We accomplish this in the following way. Let C be a large enough number such that N M X X dj . si , C > max Dij · min (8) i,j

i=1

j=1

With this definition, we pose the reallocation problem as the integer linear program shown in Fig. 2. The optimization variable, xij denotes the amount of resource that flows from source i to destination j. Clearly, xij needs to be a nonnegative integer, as stipulated by Eq. (6). The total amount of outgoing resource from a given vertex cannot exceed its surplus; this constraint is captured in Eq. (3). Eq. (4), on the other hand captures the fact there is no need to send more than the deficit to a destination vertex. However, if it is possible to satisfy the deficits at each destination vertex, the optimization program will do that—i.e., Eq. (4) will become an equality. This is due to the second term in the objective. If deficit is not satisfied at any vertex, then the second term is at least C, which, by design is more than the maximum possible value of the first term in the objective. Thus, it is always better to set the second term to 0 by satisfying the deficits at all vertices. Note that due to condition in Eq. (4), ³ ´ PM dj − i=1 xij is never negative. Naive solutions to the optimization problem of Fig. 2 will be very inefficient due to the integrality constraints. In Section IV we investigate efficient methods of solving this problem. Remark: We note that the problem formulation can be trivially extended to multiple resources. In particular, given type of resources k = 1, 2, . . . , K, the extended problem is obtained by replacing xij ’s by xijk ’s; Dij ’s by Dijk ’s; dj ’s by djk ’s and si ’s by sik ’s. The extended problem separates into K problems which can be solved independently. IV. A LGORITHM A. Problem characterization The optimization problem REALLOCATE proposed in Fig. 2 is potentially a difficult problem due to the integrality constraints. However, we now show that the integrality constraints are redundant; the solution to the problem in Fig. 2 is

5

 N M X X Dij xij min

+

C

j=1

i=1 j=1

s.t.

N X

N X

Ã

dj −

M X i=1

! xij (9)

xij

≤ si ∀i ∈ {1, 2, ..., M }

(10)

xij

≤ dj ∀j ∈ {1, 2, ..., N }

(11)

xij

≥ 0

(12)

j=1

M X i=1

Fig. 3.

The relaxed optimization problem RELAX REALLOCATE.

same as the solution to the problem RELAX REALLOCATE in Fig. 3 obtained by ignoring (6). Lemma 1: The optimization problems REALLOCATE and RELAX REALLOCATE have identical solutions. Lemma 1 follows from the following observation. By inspection, we find that the constraints of REALLOCATE have the following special properties: 1) Every surplus, deficit and cost values (via scaling) are integral. 2) Every variable is present in exactly two constraints. 3) Every coefficient in the L.H.S. of every constraint is 1. Let A be the matrix that results into viewing the constraints of REALLOCATE in the matrix form (i.e., in the form Ax ≤ b). The above properties imply that A is totally unimodular; i.e., the determinant of every square submatrix of A is 1, 0 or −1 [3]. This fact is proved below. Proof: Let S be a square submatrix of A of order t × t. We show that det(S) ∈ {0, +1, −1} by induction on t. For t = 1 the statement follows from Property 3. Let t > 1. Then there are three cases to consider: Case 1: S has an all-0 column. Then det(S) = 0. Case 2: S has a column with exactly one 1. In that case we can permute the rows and columns to write ¶ µ 1 sT S= 0 S′ for some S ′ and s; 0 ∈ Rt−1 denotes the all zero vector. Permutation of rows and columns does not change the magnitude of the determinant. From the induction hypothesis, det(S ′) ∈ {0, +1, −1}. It follows det(S) ∈ {0, +1, −1}. Case 3: Each column of S has exactly two 1’s. Then possibly after permutations of rows and columns, we can write µ ′ ¶ S S= S ′′ such that each column of S ′ has exactly one 1 and each column of S ′′ contains exactly one 1. The sum of all rows of both S ′ and S ′′ are the all-one vector. Hence the rows of S are linearly dependent; thus, det(S) = 0. Thus the constraint matrix A is totally unimodular. This leads to the following

Source vertex i computes the backlog indicator PN n −1 if Pj=1 xij < si , N n ǫin = 0 if j=1 xij = si , 1 if PN xn > s . i j=1 ij Destination vertex j computes the backlog indicator PM n −1 if Pi=1 xij < dj , M n ǫjn = 0 if i=1 xij = dj , P M 1 if n i=1 xij > dj . Source vertex i updates £ ¤ xn+1 = xnij − δn (γ(ǫin + ǫjn) + Dij) + . ij Fig. 4.

(13)

The steps the algorithm performs in step n.

Theorem 1: Let A be a totally unimodular m × n matrix and let b ∈ Zn . Then each corner of the polyhedron P := {x|Ax ≤ b} is an integer vector. Proof: See [3]. The objective function of RELAX REALLOCATE is linear. Therefore, the optimum solution of RELAX REALLOCATE is one of the corner points of the feasible set. By Theorem 1, every corner point of the feasible set of RELAX REALLOCATE is an integer vector. Thus an optimal solution of RELAX REALLOCATE satisfies Eq. (6); hence all constraints of REALLOCATE; hence an optimal solution of of REALLOCATE. Lemma 1 follows. B. Distributed algorithm We now propose a distributed iterative algorithm to solve REALLOCATE with minimal information exchange between the participants. We assume that a 2-bit variable can be sent from a source vertex to a destination vertex by multihop routing. As noted before, it is possible to eliminate the requirement of multihop routing by introducing additional variables; but there is no gain in terms of the total number of bit transmissions by doing so. Let {δn } be a sequence ofPreal number (step-sizes) that ∞ satisfy limn→∞ δn = 0 and n=1 δn = ∞. For example, δn = 1/n satisfies the conditions. The goal of the distributed optimization is to compute the variables xij of problem RELAX REALLOCATE. This is done by the iterative algorithm shown in Fig. 4. The variable xnij is the value of xij at the n-th iteration which is stored at the i-th node. [·]+ denotes the projection on [0, ∞). In iteration n, source vertex i computes its own backlog ǫin . This computation requires no communication since vertex i knows xij ’s and si . Each destination vertex j collects the sum of xnij ’s, computes its backlog ǫjn and sends ǫjn to every source vertex i. Finally, each source vertex updates xnij (i.e., computes xn+1 ij) using Eq. (13). Remark 1: Since each destination j needs only the sum PM n x , the distribution can be done efficiently by means of i=1 ij

6

a spanning tree. For sending the sum to a given node j, node j is considered to be the root of the spanning tree (note that since no optimality property is required of the tree, any node can be considered to be its root). Each node l then receives the partial sum from its children, adds its own xnlj (we set xnlj = 0 if node l is not a node with surplus) to it and forwards it to its parent. This process can be further optimized by using a minimum weight spanning tree as the distribution tree (by setting the cost of each edge to be 1) [17]. Note also that only the clusters which have a deficit or a surplus enter the algorithm. Thus, the complexity of the algorithm for solving a reallocation problem is independent of the network size. Remark 2: The iterative algorithm is merely a distributed computational tool. Physical resources are moved only when the iterations are complete and each source i knows the xij ’s. The variables xnij ’s may be fractional, but they converge to integers. Since the iterations may need to run for a large number of steps (cf. Section V), the total communication cost (e.g., in terms of energy expenditure) may not be very small, but we expect them to be much smaller than the cost of moving physical resources. C. Convergence of the distributed algorithm Theorem 2: For all γ > 1, the distributed iterative algorithm in Fig. 4 converges to the optimal solution of REALLOCATION, irrespective of the initial choice of the iterates. Theorem 2 allows one to start the distributed algorithm from any initial point. In particular, if an optimal solution X0 is computed, and then the parameters of the problem changes, the new optimum solution can be found starting from X0 . In many cases this speeds up convergence significantly. The proof of Theorem 2 is adapted from [18]. We use the following terminology. Consider a convex and continuous function f defined on a convex set F ⊆ Rk . Then a vector w0 ∈ Rk is called a subgradient of f at a point y0 ∈ F if it satisfies f (y) − f (y0) ≥ (w0 , y − y0) ∀y ∈ F . An interior point y0 of F is the minimum point of f in F if and only if ~0 belongs to the set of subgradients at y0 . We now begin the proof of convergence of the proposed algorithm. PN Proof: Let gi = = j=1 xij − si and hj PM PM PN ~ x − d . Define Q(X) = |g | + |h | + j i=1 i ¯ i=1Pij ³P ´¯ j=1 j PM ¯ ¯ N M D x + C|d − x | ¯L − j=1 j i=1 ij ij i=1 ij ¯. Define a new problem P as follows: ~ = L + γQ(X). ~ P: Minimize : F (X) Here L is the objective function in RELAX REALLOCATE. Let X~ ∗ be the optimal solution and U ∗ be the optimal value ~ We carry out the proof in two steps. In the first step, of F (X). we prove that P has the same solution as REALLOCATE for γ > 1. In the second step, we prove that the solution (i.e., the set of variables xij ’s) obtained by the iterative approach converges to the optimal solution of P, i.e., limn→∞ ||X~n − X~ ∗ || = 0 where X~n is the solution obtained at the nth iteration ~ (by appropriately stacking xij ’s into a single vector), and ||X|| ~ The result follows. denotes the Euclidean norm of X.

~ such that Q(X) ~ > 0. For such X, ~ there Step 1: Select X always exists a component of the subgradient that is more than or equal to 1 + γ and 1 + γ is more than 0. Therefore ~0 does ~ cannot be an not belong to the set of subgradients. Hence X optimal solution for P . Therefore all solutions of P involve ~ for which Q(X) ~ = 0. Also for Q(X) ~ = 0 the value of X the objective function of RELAX REALLOCATE and P are equal. Therefore for γ > 1, any optimal solution of P is an optimal solution of RELAX REALLOCATE. Step 2: Choose an arbitrary κ > 0. Let κ′ = κ/2. For any ~ : F (X) ~ ≥ U ∗ −ǫ′ }. From [19, ǫ′ > 0 define Dǫ′ as Dǫ′ = {X Theorem 27.2] it follows that there exists an ǫ = ǫ(κ′) > 0 such that ~ : ||X ~ − X~ ∗ || ≤ κ′ }. Dǫ ⊂ {X (14) ~ n 6∈ Dǫ . Therefore F (X~n) < U ∗ − ǫ. Consider n for which X ~ n+1 = The update equations can be compactly stated as X ~ n (v, v ′) + δn ν~n]+ , where ν~n is the subgradient of F (X). ~ [X ~ It follows from the definition of subgradients that (ν~n , Xn − ~ ∗) ≤ F (X~n) − U ∗ < −ǫ. Now, ||ν~n || ≤ T, where X p T = (1 + γ)2 + M N γ 2 (2 + Dmax + C)2 and Dmax is the maximum distance between any two nodes. ~ n+1 − X ~ ∗ ||2 ||X

~ n + δn ν~n]+ − X ~ ∗ ||2 = ||[X ~ n + δn ν~n − X ~ ∗ ||2 ≤ ||X

~n − X ~ ∗ ||2 + δ 2 ||ν~n ||2 = ||X n ~n − X ~ ∗) +2δn (ν~n , X ~n − X ~ ∗ ||2 + T 2 δ 2 − 2ǫδn . < ||X n Since δn → 0, δn ≤ ǫ/T 2 when n is sufficiently large. For all such n, ~ n+1 − X ~ ∗ ||2 < ||X ~n − X ~ ∗ ||2 − ǫδn . ||X

(15)

~ n 6∈ Dǫ for all Suppose there exists a Nǫ′ < ∞ such that X ′ ′ n ≥ Nǫ . Therefore, there exists Nǫ ≥ Nǫ such that (15) holds for all n ≥ Nǫ . Adding the inequalities obtained from (15) for n = Nǫ to Nǫ + m we obtain ~ ∗ ||2 − ǫ ~ N +m+1 − X ~ ∗ ||2 < ||X ~N − X ||X ǫ ǫ

NX ǫ +m

δn ,

n=Nǫ

~ N +m+1 − X ~ ∗ || → −∞ as m → ∞ whichP implies that ||X ǫ ∞ ~ N +m+1 − since 1 δn = ∞. This is not possible since ||X ǫ ∗ ~ X || ≥ 0. Hence the supposition was incorrect. Hence there ~ n ∈ Dǫ for exists a sequence n1,ǫ < n2,ǫ < . . . such that X i,ǫ all i = 1, 2, Let i1 = n1,ǫ . Since δn → 0, there exists i2 s.t. δn ≤ min(κ′ /T, ǫ/T 2), ∀ n ≥ ni2 ,ǫ . Let i′ = max(i1 , i2). Consider the following cases. ~ n ∈ Dǫ and from Case 1: n = nj,ǫ for some j ≥ i′ . Here X ′ ∗ ~ n − X~ || ≤ κ < κ. (14) it follows that ||X ~n = Case 2: n = nj,ǫ + 1 for some j ≥ i′ . Then X ~n − X ~ n || = ~ n +1 = [X ~ n + δn ~νn]+ . Thus ||X X j,ǫ j,ǫ j,ǫ j,ǫ j,ǫ ~ n + δn ~νn − ~ n || ≤ ||X ~ n + δn ~νn]+ − X ||[X j,ǫ j,ǫ j,ǫ j,ǫ j,ǫ j,ǫ j,ǫ ~ n || = δn ||~νn || ≤ U δn ≤ κ′ . From the above and X j,ǫ j,ǫ j,ǫ j,ǫ ~ n − X~ ∗ || ≤ ~ n − X~ ∗ || ≤ κ′ (Case 1) we get ||X since ||X j,ǫ ′ ′ ~n − X ~ n || ≤ κ + κ = 2κ′ = κ. ~ n − X~ ∗ || + ||X ||X j,ǫ j,ǫ

7

4

100

x 10

Redistribution Time (seconds)

3.5

Total Cost (metres)

3 2.5 2 1.5

Cascaded Approach Distributed Algorithm

1 0.5 0 0

Fig. 5.

50

100

150

200

250

300

Number of Mobilized Nodes

350

~ n′ 6∈ Case 3: nj,ǫ + 1 < n < nj+1,ǫ for some j ≥ i′ . Also X ′ ~ Dǫ ∀nj,ǫ < n < nj+1,ǫ . From (15), it follows that ||Xn′ +1 − ~ ∗ || < ||X ~ n′ − X ~ ∗ ||. Thus, ||X ~n − X ~ ∗ || < ||X ~ n +1 − X ~ ∗ ||. X j,ǫ ~ n +1 − X~ ∗ || ≤ κ (Case 2), ||X ~ n − X~ ∗ || ≤ κ. Since ||X j,ǫ ~ n − X~ ∗ || ≤ κ ∀n ≥ From cases 1,2 and 3, it follows that ||X ~ ni′ ,ǫ . Since κ is arbitrary, limn→∞ ||Xn − X~ ∗ || = 0. Remark: In some applications, it is appropriate to set Dij ’s to 0 (e.g., consider the distributed channel assignment problem). Suppose that Eq. (7) is satisfied. Then Dij = 0 ∀ i, j is equivalent to having no cost function; i.e., the problem reduces to a feasibility checking problem. The general algorithm of course solves this special case, however a simpler algorithm exists for this case. Let each vertex with a surplus send 1 unit of the resource to a neighboring node with a deficit, if such a node exists. This algorithm guarantees that when it terminates (i.e., when there is no vertex with a surplus who has a neighboring vertex with a deficit), the deficit at any node is at most 1. Furthermore, the previous algorithm can be easily modified to eliminate those deficits by letting a vertex with a surplus randomly send 1 unit of resource to a neighboring vertex with no surplus or deficit. However, in this paper our focus is on the cases for which Dij ’s are not all 0. Thus we do not elaborate on this special case any further. V. R ESULTS We begin by comparing the performance of the proposed distributed solution to the algorithm proposed in [4]. Recall that [4] uses a cascading approach where resources are moved to adjoint sites (vertices) in a heuristic manner until demands are satisfied. Fig. 5 reports the total cost (the total distance traveled) incurred by both algorithms. The network size is varied. The x-axis plots the number of nodes (resources) that are moved. In our case the nodes travel along the line of sight. So the total distance moved is expected to be significantly smaller. This is confirmed by Fig. 5. The distance moved is an indicator of the energy that needs to be used. Thus, we may conclude that in our case the total energy spent would be significantly lower than using a cascaded approach. Moreover, the difference between the cascaded and our approaches continue to grow

Cascaded Approach 80

70

Fig. 6.

Distributed Algorithm

60

50

40 0

400

Distance moved under distributed algorithm vs cascaded approach.

90

50

100

150

200

250

300

Number of Mobilized Nodes

350

400

Time required under distributed algorithm vs cascaded approach.

indicating that the optimal computation becomes increasingly important with the graph size. We now focus on another dimension for a fair comparison. Owing to the direct mobilization from the source to destination, the delay in our algorithm in replenishing the resource after a deficit occurs could be higher than a cascaded approach. In particular, in the cascaded approach the path is precomputed and all the nodes on the path can move simultaneously to fill the gaps. Hence the delay incurred in the cascaded approach is proportional to the length of the longest hop. However the cascaded approach requires different pairs of source and sink to be satisfied sequentially as proposed in [4]. In contrast, while delay in our approach is proportional to Dmax , the longest distance between any two clusters, all pairs are satisfied simultaneously. In Fig. 6, we plot the time required for mobilization under our methodology against the cascaded method as a function of the number of mobilized nodes in the network. We observe that as the number of mobilized nodes is low the cascaded method performs better owing to simultaneous movement of nodes over short distances. But, as the number of mobilized nodes increases, the cascaded approach suffers owing to hierarchical cascading schedules. Thus, our approach is more scalable. Note that [4] reports evaluation of the cascaded algorithm for networks with less than 50 nodes involved; in that regime the cascaded approach performs better. We now focus on evaluating the convergence of our proposed distributed algorithm under randomly generated topologies. The scenarios consist of 1000 nodes divided into 10 clusters (sites)3 . We simulate the convergence time with different initial values of the iterates, dynamic changes in cluster positions, and varying supply and demand. We use γ = 1000 in our simulations. We begin by the case where the total supply and the demand at the clusters are equal (i.e., Eq. 1 is satisfied with an equality). The clusters exchange nodes amongst themselves in order to satisfy the demand requirement. Fig. 7 reports the convergence of the proposed method to the optimal solution starting from an all-0 solution. Fig. 8 reports convergence 3 Recall

that each cluster is a vertex in the induced graph.

8

1400

1800 1600

1200

1400 1000 1200

Iterate Value Optimal

1000

Cost

Cost

800

800

600

600 400 400 200

200

0 0

500

Fig. 7.

Convergence of the distributed algorithm

1000

1500

2000

Iteration Number

2500

0 0

3000

1000

2000

3000

Iteration #

4000

5000

6000

Fig. 9. Reconvergence of the distributed algorithm when the supply and the demand vary.

2000

1500

1800 1600 1400

1000

Cost

1200

Cost

1000 800 600

500

400 200 0 0

2000

3000

Iteration #

4000

5000

6000

0 0

1000

2000

3000

Iteration #

4000

5000

6000

Convergence of the distributed algorithm under random starting

when a random value of the starting variables is used. We observe that the improvement is not significant because the iterates come close to the optimal value very quickly even when the initial guess is far from the optimal. Note that 1000 iterations are equivalent to about a few hundred milli-seconds of real time in typical systems. We now investigate the convergence when the supply and the demand change in a random fashion approximately by 20%. The sum of the supply is kept the same as the total demand. Fig. 9 reports the outcome. In this figure, the supply and the demand change at iteration 3000, at a time when the algorithm has not yet converged. In spite of this, the algorithm converges to the optimal value around iteration 4700, as expected. We next consider the situation when clusters drift during the distributed computation. This drift could be caused by external requirements, local conditions etc. The change in the position will affect the final optimal value. Fig. 10 shows the reconvergence. In this figure, first the algorithm converges around iteration 2000. Then at iteration 3000, clusters are shifted by 5%. As seen from the figure, the algorithm rapidly recomputes the new optimum. It is also interesting to note that the convergence in this case is much faster than the case reported in Fig. 9. This is because, if the clusters move, then it is only the objective function that changes (due to changes in Dij ’s). However, if supply or demand change, then some

Fig. 10.

Reconvergence of the distributed algorithm when clusters move.

constraints are violated, and it takes longer for the algorithm to get the solution back into the feasible set. Now we consider the more common situations where the total supply is different from the total demand, either more or less. If the total supply is more, a feasible solution exists and the algorithm converges to that solution as shown in Fig. 11. However when the demand is more, it is not possible to satisfy the requirement at each cluster. In such cases, our formulation satisfies the demands as much as possible before reducing the cost of the redistribution. We evaluate a situation

1800

1600

1400

Demand more than supply

1200

Supply more than demand

1000

Cost

Fig. 8. iterates.

1000

800

600

400

200

0 0

1000

2000

3000

4000

5000

6000

Iteration #

Fig. 11. Reconvergence of the distributed algorithm when supply is different from demand.

9

1600 1400 1200

Iterate Value Optimal

Cost

1000 800 600 400 200 0 0

Fig. 12. rounded.

1000

2000

3000

Iteration #

4000

5000

6000

Reconvergence of the distributed algorithm when variables are

where all the clusters have equal priority in satisfying demand, but we can easily assign different priorities to different constraints as well as to specific clusters. Fig. 11 shows the reconvergence in such a situation. Note that it is also possible to assign less priority to satisfying demands by reducing the parameter C (cf. Eq. (8)). In the present algorithm, the variables xij ’s pass through fractional values over the course of the distributed computation (although it is guaranteed that they will converge to integers). The actual transfer of resources is not done until the algorithm has converged and every source knows how much resource must be sent to every destination. However, in some situations, even though any transfer of resource must be integral, it is desirable to transfer resources before the algorithm has converged. In such cases the intermediate values may be rounded off and resource may be sent accordingly. Although, the resultant algorithm is not guaranteed to converge to the optimal solution in this case, Fig. 12 shows that in practice, the values remain close. VI. S UMMARY The problem of allocating discrete resources arises in important applications where efficiently solving the problem becomes critical. In past the problem has been addressed in various contexts, but the prior works often use heuristics and they do not shed light to the fundamental aspects of the problem. Motivated by the shortcomings of previous approaches, in this paper we present a simple graph based model of resource allocation problem that is able to capture essential aspects of several important applications, yet remains computationally efficient. In particular, each vertex of the graph represent a site, the edges capture locality, and a pair of integers, (current resource level, target resource level), associated with each vertex encode the surplus (or deficit) of the resource at that site. The problem then boils down to redistributing the “current resource level” numbers using a borrowing-lending mechanism between the nodes so that the “target resource level” number is satisfied at each vertex. We pose this graph based the resource reallocation problem as an optimization problem. We show that the structure of proposed model satisfies the total unimodularity (TUM) criterion and hence all corner points of

the feasibility region are integral vectors [3]. Thus, we are able to solve the optimization problem through its relaxed version (i.e., by ignoring the integrality constraints). We propose a penalty based distributed algorithm for solving the optimization problem and prove that the algorithm converges to the optimal solution. We carry out several numerical experiments to quantify the performance of the proposed algorithm and find that the algorithm converges within a reasonable number of steps, especially after a perturbation. While the current work significantly advances the state of the art, many interesting avenues remain to be explored. Our present formulation is unable to capture metrics related to time, such as the maximum continuous time any site remains undersupplied (assuming that it is possible to satisfy the demands at each site). A distributed scheduling approach may be appropriate for solving this problem. Similarly, modeling the problem of channel allocation with potential reuse remains a future work. Another potentially fruitful direction would be to consider more than one resources at a time where there is coupling between the resources. R EFERENCES [1] J. K. Brueckner, “Network structure and airline scheduling,” Journal of Industrial Economics, vol. 52, no. 2, pp. 291–312, 2004. [2] J. Lenstra, A. Rinnooy, and P. Brucker, “Complexity of machine scheduling problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–362, 1977. [3] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity. Dover Publications, 1998. [4] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor networks,” Proc. of IEEE Infocom, 2005. [5] Y. Jiang, X. Lu, I. Luque, M. Moriyama, K. Takanuki, and R. Kuba, “Autonomous node reallocation for achieving load balance under changing users preference,” Proc. of Autonomous Decentralized Systems, 2005. [6] V. Bahl, M. T. Hajiaghayi, K. Jain, S. Mirrokni, L. Qiu, and A. Saberi, “Cell breathing in wireless LANS: Algorithms and evaluation,” IEEE TMC, vol. 6, no. 2, 2007. [7] I. F. Akylidiz, W. Su, Y. Sankarsubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, August 2002. [8] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization,” Proc. of IEEE Infocom, 2003. [9] Y. Li, W. Ye, and J. Heidemann, “Energy efficient network reconfiguration for mostly-off sensor networks,” in Proceedings of the Third IEEE Conference on Sensor and Adhoc Communication and Networks. IEEE, September 2006. [Online]. Available: http://www.isi.edu/ johnh/PAPERS/Li06a.html [10] A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incremental selfdeployment algorithm for mobile sensor networks,” Autonomous Robots, Special Issue on Intelligent Embedded Systems, 2002. [11] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” Proc. of IEEE INFOCOM, 2004. [12] R. Guha and S. Ray, “Optimal on-demand mobile sensor allocation,” in Proceedings of IEEE Sensors. Atlanta, GA: IEEE, October 2007. [13] M. Savelsbergh and M. Sol, “The general pickup and delivery problem,” Transportation Science, vol. 29, no. 1, pp. 17–29, 1995. [14] L. Tassiulas and A. Ephremides, “Jointly optimal routing and scheduling in packet radio networks,” IEEE Transactions on Information Theory, vol. 38, no. 1, pp. 165–168, January 1992. [15] L. Georgiadis, M. J. Neely, and L. Tassiulas. [16] E. W. Dijkstra, Selected Writings on Computing: A personal perspective. Springer-Verlag, 1982, pp 308-312. [17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. The MIT Press, 2001. [18] K. Kar, S. Sarkar, and L. Tassiulas, “Optimization based rate control for multipath sessions,” University of Maryland, Tech. Rep., 2001. [19] R. T. Rockafellar, Convex Analysis. Princeton Univ. Press, 1972.

Polynomial-time Optimal Distributed Algorithm for ...

A Fast Distributed Approximation Algorithm for ...

A distributed algorithm for minimum weight spanning trees ... - GitHub

Nearly Optimal Bounds for Distributed Wireless ...

A Fast Distributed Approximation Algorithm for ...

A New Scheduling Algorithm for Distributed Streaming ...

A Distributed Clustering Algorithm for Voronoi Cell-based Large ...

An Optimal Online Algorithm For Retrieving ... - Research at Google

Genetic evolutionary algorithm for optimal allocation of ...

A Distributed Hardware Algorithm for Scheduling ...

A Simple Distributed Power Control Algorithm for ...

Coordinate-free Distributed Algorithm for Boundary ...

Optimal Stochastic Policies for Distributed Data ... - RPI ECSE

Optimal Policies for Distributed Data Aggregation in ...

Design of Optimal Quantizers for Distributed Source ...

Optimal Stochastic Policies for Distributed Data ...

Optimal Stochastic Policies for Distributed Data ... - RPI ECSE

A faster algorithm for finding optimal semi-matching

Genetic evolutionary algorithm for optimal allocation of ...

An Optimal Capacity Planning Algorithm for ...

Optimal Dynamic Actuator Location in Distributed ... - CiteSeerX

A Lifetime Optimal Algorithm for Speculative PRE

Cooperative Cognitive Networks: Optimal, Distributed ...

A Distributed Throughput-Optimal CSMA/CA

Polynomial-time Optimal Distributed Algorithm for ...

Reassignment of nodes in a wireless LAN amongst access points using cell breathing ... monitor quantities, surveillance etc.) [8]. Authors in [9] have proposed ...

 Download PDF

 306KB Sizes
 2 Downloads
 287 Views

 Report

Recommend Documents

Polynomial-time Optimal Distributed Algorithm for ...

a reallocation problem is independent of the network size. Remark 2: The ... We now begin the proof of convergence of the proposed algorithm. Proof: Let gi. =.

A Fast Distributed Approximation Algorithm for ...

ists graphs where no distributed MST algorithm can do better than Î©(n) time. ... Âµ(G, w) is the â€œMST-radiusâ€� of the graph [7] (is a function of the graph topology as ...

A distributed algorithm for minimum weight spanning trees ... - GitHub

displayed will be uniform (all nodes run the exact same code) and will require up to fragment it belongs to and in state Found at all other times. The algorithm.

Nearly Optimal Bounds for Distributed Wireless ...

HalldÃ³rsson and Mitra (). Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model 1: Choose probability q = â€œthe right valueâ€�. 2: for ln n q.

A Fast Distributed Approximation Algorithm for ...

We present a fast distributed approximation algorithm for the MST problem. We will first briefly describe the One of our motivations for this work is to investigate whether fast distributed algo- rithms that construct and ID(u) < ID(v). At

A New Scheduling Algorithm for Distributed Streaming ...

Department of Computer Science and Technology, Tsinghua University, Beijing 100084 China. 1 This paper is ... Tel: +86 10 62782530; fax:+86 10 62771138; Email: . Abstract ... In patching algorithm, users receive at.

A Distributed Clustering Algorithm for Voronoi Cell-based Large ...

followed by simple introduction to the network initialization. phase in Section II. Then, from a mathematic view of point,. derive stochastic geometry to form the algorithm for. minimizing the energy cost in the network in section III. Section IV sho

An Optimal Online Algorithm For Retrieving ... - Research at Google

Oct 23, 2015 - Perturbed Statistical Databases In The Low-Dimensional. Querying Model. Krzysztof The goal of this paper is to present and analyze a database applications an adversary can use data in order to reveal information ...

Genetic evolutionary algorithm for optimal allocation of ...

Keywords WDM optical networks Â· Optimal wavelength converter ... network may employ wavelength converters to increase the toward the next generation.

A Distributed Hardware Algorithm for Scheduling ...

This algorithm provides a deadlock-free scheduling over a large class of architectures structure to dispatch tasks to the cores, e.g. one program running on a ...

A Simple Distributed Power Control Algorithm for ...

the following advantages: 1) the operations of each SU are simple and ... It is proved that, the CR network with this simple algorithm Wireless Commun., vol.

Coordinate-free Distributed Algorithm for Boundary ...

State Key Laboratory of Industrial Control Technology, Zhejiang University, China. Â§. INRIA Lille ... Wireless sensor networks (WSNs) have been widely adopted.

Optimal Stochastic Policies for Distributed Data ... - RPI ECSE

Aggregation in Wireless Sensor Networks ... Markov decision processes, wireless sensor networks. Technology Institute, Information and Decision Sup-.

Optimal Policies for Distributed Data Aggregation in ...

Department of Electrical, Computer and Systems Engineering. Rensselaer Polytechnic ... monitoring, disaster relief and target tracking. Therefore, the [16] Crossbow, MPR/MIB Users Manual Rev. A, Doc. 7430-0021-07. San. Jose, CA: Crossbow Techn

Design of Optimal Quantizers for Distributed Source ...

Information Systems Laboratory, Electrical Eng. Dept. Stanford ... Consider a network of low-cost remote sensors sending data to a central unit, which may also ...

Optimal Stochastic Policies for Distributed Data ...

for saving energy and reducing contentions for communi- and adjust the maximum duration for aggregation for the next cycle. CA, Apr. 2004, pp. 405â€“413 ...

Optimal Stochastic Policies for Distributed Data ... - RPI ECSE

for saving energy and reducing contentions for communi- ... for communication resources. ... alternatives to the optimal policy and the performance loss can.

A faster algorithm for finding optimal semi-matching

Sep 29, 2007 - CancelAll(N2). Figure 2: Divide-and-conquer algorithm. To find the min-cost flow in N, the algorithm use a subroutine called CancelAll to cancel.

Genetic evolutionary algorithm for optimal allocation of ...

Given a set of connections between the source-destination node-pairs, the algorithm to advantages of natural genetic system. In this article, more rence on Wireless and Optical Communications Networks â€“ 2006. (WOCN'06), IEEE ...

An Optimal Capacity Planning Algorithm for ...

a three-tier web-based service system with multiple server clusters. To the best service deployment. The service provisioning network supports 5 types of ab-.

Optimal Dynamic Actuator Location in Distributed ... - CiteSeerX

Center for Self-Organizing and Intelligent Systems (CSOIS). Dept. of Electrical and We call the tessellation defined by (3) a Centroidal Voronoi. Tessellation if ...

A Lifetime Optimal Algorithm for Speculative PRE

network problems. General Terms: Algorithms, Languages, Experimentation, Performance. Additional Key Words and Phrases: Partial redundancy elimination, classic PRE, speculative. PRE, computational optimality, lifetime optimality, data flow analysis.

Cooperative Cognitive Networks: Optimal, Distributed ...

This paper considers the cooperation between a cognitive system and a primary ... S.H. Song is with Department of Electronic and Computer Engineering, The ...

A Distributed Throughput-Optimal CSMA/CA

time, non-zero carrier sense delay and data packet collisions. ... in [4] to include data packet collisions. ... By definition, the first packet in success at time t + 1 in.

×
Report Polynomial-time Optimal Distributed Algorithm for ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

