7 J our nal of H ydr odyna mics , Se r . B ,5 ( 2003 ) ,7 - 12 Chi na Ocea n Press , B ei ji n g - Pri nt e d i n Chi na

PROPULSIVE PERFORMANCE AND VORTEX S HEDD ING OF A FOIL IN Ξ FLAPPING MOTION Ya ng Ya n , L u Xi2yun , Yi n Xie2z he n D ep a rt me nt of Mec ha nics a n d Mec ha nical En gi nee ri ng , U nive rsit y of Scie nce a n d Tec h nol o gy of Chi na , Hef ei 230026 , Chi na , e 2mail : xlu @ ustc . e du. c n ( Receive d Sep t . 4 , 2002 ) ABSTRACT :  The propulsive performance and vortex shedding of oscillating foil , which mimics biological locomotion , were nu2 merically investigated. The objectives of t his study were to deal wit h unsteady force , in particular t hrust force , exerted on t he foil in pitching and plunging motions , and to explore t he relation of t he propulsive performance wit h vortex structures near t he foil and vortex shedding in t he near wake. The two2dimensional in2 compressible Navier2Stokes equations in t he vorticity and stream2 function formulation were solved by fourt h2order essentially com2 pact finite difference schemes for t he space derivatives and a fourt h2order Runge2 Kutta scheme for t he time advancement . To reveal t he mechanism of t he propulsive performance , t he un2 steady force and t he shedding of t he trailing2 and leading2edge vortices of t he foil were analyzed. The effects of some typical fac2 tors , such as t he frequency and amplitude of t he oscillation , t he p hase difference between t he pitching and plunging motions , and t he t hickness ratio of t he foil , on t he vortex shedding and un2 steady force were discussed.

t o t he l oc o m oti o n p e rf or ma nce . I n p a rticula r , a n oscilla ti n g f oil has of t e n e m p l oye d as a t yp ical m odel t o deal wit h t he f la p p i n g m oti o n t o mi mic bi ol ogical l oc o m oti o n . The oretical a nal yses i ncludi n g t he vort e x p a nel met h od a n d t he unst ea d y lif ti n gli ne t he or y ha ve [1 ] bee n p e rf or me d f or bi r d f li ght a n d f is h swi m 2 [2 , 3 ] mi ng . A det aile d re view of va ri ous t he oretical met h ods has bee n give n by S mit h et al . [ 4 ] . Exp e ri 2 me nts o n oscilla ti n g f oils ha ve e xhi bit e d t he e xis 2 t e nce of op ti mal p a ra met e rs f or t he ge ne ra ti o n of [5 ] a n ef f ective t h rust . Tria nt af yll ou et al . st udie d e xp e ri me nt all y t he wa ke mec ha nis m f or t h rust ge n2 [6 ] e ra ti o n i n oscilla ti o n f oils . A n de rs o n et al . e x2 a mi ne d t he hi gh p r op ulsive ef f icie nc y of oscilla ti n g f oils a t a ce rt ai n f re que nc y. So me rece nt e xp e ri 2 me nt al w or k has bee n p e rf or me d t o i nvesti ga t e t he lea di ng2e dge vortices i n i nsect f li ght by Elli ngt o n et KEY WORDS :   vortex dynamics , vortex shedding , t hrust force , unsteady flow , flapping motion al . [ 7 ] , as well as t he wi n g r ot a ti o n a n d t he ae r od y2 na mic basis of i nsect f li ght by Dic ke ns o n et al . [ 8 ] . B y use of c o mp ut a ti o nal f lui d d yna mics met h 2 1 .  INTROD UCTION ods , a t w o2di me nsi o nal h ove ri n g f light was nume r 2 I nsects a n d f is h ha ve e xp e rie nce d a billi o ns2 icall y c o mp ut e d by Gust afs o n et al . [ 9 ] , a n d t hei r yea r p r ocess of e voluti o n wit h na t ural selecti o n f or calcula t e d results we re qualit a tive a gree me nt wit h t hei r survival a n d ha ve de vel o p e d t hei r sup e ri or s o me a vaila ble e xp e ri me nt al da t a . L iu et al . [ 10 ] ap 2 a n d c o mp let e p e rf or ma nce of f li ght a n d swi m 2 p lie d a met h od of pse udo2c o mp ressi bilit y t o c o m 2 mi ng. Usuall y , a f lap p i ng m oti o n is a basic m ode p ut e visc ous f l ow a r oun d a t h ree 2di me nsi o nal ri gi d of l oc o m oti o n f or i nsects , bi r ds , a n d f is h . Th rust wi ng a n d e xa mi ne d t he a xial f l ows ass ocia t e d wit h a n d lif t a re ge ne ra t e d w he n t he f la p p i ng wi n gs or t he lea di n g2e dge vort e x as obse rve d i n t he e xp e ri 2 t ails i nt e ract wit h t he sur r oun di n g f lui ds . B eca use me nts by Elli ngt o n et al . [ 7 ] . Wa n g [ 11 ] p e rf or me d a of t he hi ghl y unst ea dy na t ure of visc ous f l ow t w o2di me nsi o nal c o mp ut a ti o n of f oil i n f la p p i ng a r oun d a f lap p i ng wi ng , it is f a r f r o m sa tisf act or y m oti o n t o re veal t he f re que nc y selecti o n i n f orwa r d t o un de rst a n d t he p hysical mec ha nis m a n d vort e x i nsect f lap p i ng f li ght . Rece ntl y , Sun et al . [ 12 , 13 ] s he ddi n g i n unst ea d y visc ous f l ow , w hic h is c rucial i nvesti ga t e d nume ricall y t he unst ea d y ae r odyna m 2 Ξ This work was supported by t he National Natural Science Foundation of China ( Grant Nos : 10125210 , 10072063) , t he Hun2 dred2 Talent Programme of t he Chinese Academy of Sciences , and t he Innovation Project of t he Chinese Academy of Sciences. ( Grant Nos : KJ CX2SW2L04 , KJ CX22SW2L2)

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

8 ics of a m odel f ruit f l y wi ng i n f lap p i ng m oti o n as well as t he lif t a n d p owe r re qui re me nts f or h ove r 2

w he re u a n d v rep rese nt t he vel ocit y c o mp o ne nts i n x a n d y di recti o ns , as s h ow n i n Fi g. 1 .

i ng f li ght . Alt h ough s o me w or k has bee n ca r rie d out base d o n nume rical met h ods , it is still nee de d t o use hi gh2or de r sc he mes i n nume rical c o m p ut a ti o ns , a n i mp r ove me nt ove r p re vi ous w or k , t o re veal un 2 st ea dy f l ow

mec ha nis m a n d vort e x

d yna mics ,

w hic h a re c rucial t o t he f orce ge ne ra ti o n o n t he m ovi ng f oil . I n t his st ud y , visc ous f l ow p ast a f oil i n p itc hi n g a n d p lungi ng m oti o ns , w hit h is ca p a ble of mi mici n g bi ol ogical l oc o m oti o n , is nume ricall y i nvesti ga t e d f or a wi de ra n ge of t he c o mp ut a ti o nal p a ra met e rs. The t w o2di me nsi o nal i nc o mp ressi ble N a vie r2St o kes e qua ti o ns i n t he vorticit y a n d st rea m 2f uncti o n f or mula ti o n a re s olve d b y a f ourt h2 or de r esse ntiall y c o mp act f i nit e dif f e re nce sc he me , [ 14 ] de vel op e d by E a n d L iu , f or t he sp ace de riva 2

tives a n d a f ourt h2or de r R un ge2 Kut t a sc he me f or t he ti me a dva nce me nt .

2 .  GOVERNING EQUATIONS As s h ow n i n Fi g. 1 , a s ketc h of a f oil i n p itc h 2 i ng a n d p lungi ng m oti o ns t o mi mic bi ol o gical l oc o2 m oti o n is illust ra t e d . I n t his st ud y , t he f ra me is f ixe d wit h t he f oil m oti o ns , a n d t he t w o 2di me n 2 si o nal i nc o mp ressi ble N a vie r2St o kes e qua ti o ns i n t he vorticit y a n d st rea m2f uncti o n f or mula ti o n a re e mp l oye d . To no n2di me nsi o nalize t he gove r ni n g e2 qua ti o ns , t he c h or d le n gt h of t he f oil c is use d as t he le n gt h scale , t he f ree2st rea m vel ocit y U as t he vel ocit y scale . The no n2di me nsi o nal gove r ni n g e 2

Fig. 1  Sketch of a foil in plunging and pitching motions

W he n we s olve t he N a vie r 2St o kes Eqs . ( 1 ) 2 ( 2 ) i n t he f ra me f ixe d wit h t he f oil m oti o ns , a n a ddi 2 ti o nal t e r m due t o t he Cori olis f orce occurs i n E q . ( 1 ) f or t he p itc hi n g m oti o n , a n d no f ictiti ous f orce ap p ea rs i n t he vorticit y Eq . ( 1 ) f or t he p lungi ng m oti o n c o nsi de re d he re . The no 2slip a n d no2p e ne 2 t ra ti o n boun da r y c o n diti o ns a t t he f oil a re e nf orce d e xp licitly t h r ough t he vorticit y boun da r y c o n diti o n a n d t he st rea m2f uncti o n boun da r y c o n diti o n , re 2 sp ectivel y . I n t he f a r f iel d , t he boun da r y c o n diti o n o n t he st rea m2f uncti o n is give n by t he p ot e ntial [ 11 ] f l ow , as use d b y Wa ng , t he det aile d f or mula 2 ti o n has bee n desc ri be d t he re . The m oti o n of t he f oil c o nsists of p itc hi n g a n d p lungi ng oscilla ti o ns . The p lungi ng oscilla ti o n is w rit t e n as h = A m sin ( 2πf t + θ)

( 4)

a n d t he p itc hi n g oscilla ti o n as

qua ti o ns a re t hus give n as ,

α = αm sin ( 2πf t + θ + <) 5ω 5 Ψ 5ω 5 Ψ 5ω 1 2 dΩ + = g ω- 2 5t 5y 5x 5x 5y Re dt

( 1)

g 2Ψ = - ω

( 2)

( 5)

w he re A m a n d αm a re t he a mp lit udes of t he p lungi ng a n d p itc hi n g oscilla ti o n , resp ectivel y , f rep rese nts t he f re que nc y of t he oscilla ti o n , a n d θa n d < de not e t he i nitial p hase a n d t he p hase dif f e re nce bet wee n t he p itc hi n g a n d p lungi ng oscilla ti o ns .

w he re ω a n d Ψ rep rese nt t he vorticit y a n d st rea m2 f uncti o n , resp ectivel y. Ω is t he r ot a ti o n sp ee d of 3 .   NUMERICAL METHODS t he p itc hi n g oscilla ti o n . Re is t he Re ynol ds num 2 To calcula t e visc ous f l ow a r oun d a m ovi n g be r , def i ne d as Re = Uc/ ν , a n d νis t he ki ne ma tic f oil , we e mp l oy a f ourt h2or de r esse ntiall y c o mp act visc osit y. B ase d o n t he st rea m 2f uncti o n , t he vel oc 2 f i nit e dif f e re nce sc he me , de vel o p e d by E a n d [ 14 ] it y is obt ai ne d b y L iu , t o s olve t he i nc o m p ressi ble N a vie r2St o kes e qua ti o ns. A n a dva nt a ge of t he sc he me is t ha t a t eac h ti me st ep , o nl y t w o Poiss o n s olve rs a re re 2 5Ψ 5Ψ ( 3) qui re d t o ac hie ve a f ourt h or de r s p a tial accurac y. u = , v =5y 5x B y usi ng t he N a vie r2St o kes e qua ti o ns i n t he vortici 2 © 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

9 t y2st rea m f uncti o n f or mula ti o n , t he vorticit y boun da r y c o n diti o n is e xp licitl y e nf orce d t o sa tisf y t he no2slip boun da r y c o n diti o n . To disc retize t he ti me de riva tive i n Eq . ( 1 ) , we use a f ourt h2or de r R unge2 Kut t a sc he me f or t he ti me a dva nce me nt . 4 .   RESUL TS AND D ISCUSSION I n t his st ud y , a n ellip tic f oil is use d , a n d a c o nf or mal ma p is e mp l oye d f or gri d ge ne ra ti o n wit h a gri d num be r 256 ×256 i n t he ra dial a n d ci r 2 cumf e re ntial di recti o ns , res p ectivel y. The c o mp u2 t a ti o nal do mai n is a bout 10 c i n t he ra dial di rec 2 ti o n , a n d ti me st ep is 0 . 0002 i n view of t he c o m p u2 t a ti o n st a bilit y c o n diti o n . The c o nve r ge nce c hec k wit h dif f e re nt gri d sizes a n d ti me st e ps has bee n e xt e nsivel y t a ke n . It has bee n det e r mi ne d t ha t t he c o mp ut e d results a re i n de p e n de nt of t he ti me st e p a n d t he gri d size use d i n t he p rese nt calcula ti o n . To deal wit h s yst e ma ticall y t he mec ha nis m of t he p r op ulsive p e rf or ma nce a n d vort e x s he ddi n g of t he f oil i n t he p itc hi n g a n d p lungi ng m oti o ns , t he c o mp ut a ti o n p a ra met e rs a re c h ose n as f oll ows . The 3 Re ynol ds num be r is Re = 10 , t he t hic k ness ra ti o of t he f oil λ = 0 . 0625 , 0 . 125 , 0 . 25 a n d 0 . 5 . I n Eqs . ( 4 ) a n d ( 5 ) , t he p lungi ng a mp lit ude A m = 0 . 08 , 0 . 16 , 0 . 24 a n d 0 . 32 , t he p itc hi n g a mp lit ude as αm = 5°, 10°, 15°a n d 20°, t he oscilla ti o n f re 2 que nc y f = 0 . 5 , 1 , 2 a n d 4 , t he p hase dif f e re nce < = 90°t o 270°, a n d t he i nitial p hase as θ = 180° . To i nvesti ga t e t he ef f ects of t h ose p a ra met e rs o n t he vort e x s he ddi n g a n d unst ea d y f orce , s o me t yp ical results a re mai nl y discusse d i n t he f oll owi n g. Fig. 2 s h ows t he ti me 2dep e n de nt dra g a n d lif t c oef f icie nts f or t he p lungi ng oscilla ti o n a t A m = 0 . 16 , f = 1 , λ = 0 . 125 . The lif t c oef f icie nt CL va ries s ym met ricall y a bout t he ze r o , t hus ti me 2a v2 e ra ge d lif t f orce is ze r o as e xp ect e d f r o m t he s ym 2 met ric f lap p i n g. The f re que nc y of CD is t wice t ha t of CL , beca use t he dra g is ge ne ra t e d i n bot h t he up a n d dow n oscilla ti o ns . The dra g c oef f icie nt CD va ries as ym met ricall y a bout t he ze r o value , be 2 ca use t he f ore2a n d2af t s ym met r y is br o ke n due t o t he f ree2st rea m vel ocit y. The ti me2a ve ra ge d dra g c oef f icie nt C gD is - 0 . 39 ap p r oxi ma t el y. He re , we def i ne a ne ga tive value of C gD as a t h rust i n t he mea n f orwa r d di recti o n . Thus t he mea n t h rust c o 2 ef f icie nt i n t his case is 0 . 39 . To a nal yse t he mec ha nis m of t he t h rust ge ne r 2 a ti o n , we e xa mi ne t he qualit a tive f ea t ures of vor 2 t e x s he ddi n g. Fr o m t he vorticit y st ruct ures , it is

Fig. 2   Time2dependent lift and drag coefficients for t he plunging oscillation at A m = 0 . 16 , f = 1 , λ = 0 . 125

f oun d t ha t a re ve rse Ka r ma n vort e x 2st reet is f or me d i n t he wa ke of t he f oil , w he re t he vortices i n t he wa ke r ot a t e i n t he op p osit e di recti o n c o m 2 p a re d t o a classic Ka r ma n vort e x wa ke . He nce t he i n duce d f l ow has a c o m p o ne nt m ovi n g bac kwa r d wit h resp ect t o t he f oil t o ge ne ra t e t he t h rust . To un de rst a n d vort e x e voluti o n m ore clea rl y nea r t he f oil , Fi g. 3 s h ows t he vorticit y c o nt ours a t se ve ral p hases duri n g o ne p e ri od . W he n t he f oil is m ovi n g dow nwa r d , a ne ga tive lea di n g2vort e x L V N 1 is f or me d a n d p ai re d wit h a not he r p ositive lea di n g2 vort e x L V P0 t o f or m a vort e x p ai r ( i . e . , L V P0 + L V N 1 ) as s h ow n i n Fi g. 3 ( a ) , w he re t he p ositive vort e x rep rese nts a c ount e r2cl oc kwise vort e x a n d t he ne ga tive o ne is a cl oc kwise vort e x. Mea nw hile , a ne ga tive vort e x ( L V N 0 ) f or me d i n t he p re vi ous p e ri od m oves dow nst rea m al o n g t he l owe r2si de of t he f oil a n d a p ositive t raili n g2vort e x TV P1 is ge ne r 2 a t e d. N ot e t ha t t he vort e x p ai r ( L V P0 + L V N 1 ) r ot a t es a n d sep a ra t es a gai n i n Fi g. 3 ( b ) . The n , it is i nt e resti n g t o f i n d t ha t t he vort e x L V N 1 is p assi ng ove r t he lea di n g2e dge of t he f oil f r o m t he up p e r2 si de t o t he l owe r2si de of t he f oil , a n d its e voluti o n is helpf ul t o ge ne ra t e a t h rust f orce due t o t he f or 2 ma ti o n of t he l owe r2p ressure dist ri buti o n i n duce d by t he vort e x. W he n t he f oil is oscilla ti n g up wa r d , as e xp ect e d , t he vort e x e voluti o n is re p ea t e d i n t he

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

10 op p osit e di recti o n . I n Fi g. 3 ( c ) , t he lea di n g2vor 2 t e x L V N 0 c oalesces wit h t he t raili n g2vort e x TV N 1 t o s he d dow nst rea m . Mea nw hile , t he ne ga tive vort e x L V N 1 f or me d i n t he up p e r2si de of t he f oil is p ai re d wit h t he vort e x L V P1 t o f or m a vort e x p ai r ( i . e . , L V P1 + L V N 1 ) i n Fi g. 3 ( c ) . The vort e x p ai r ( L V P1 + L V N 1 ) is sep a ra t e d i n Fi g. 3 ( d ) . The vort e x L V N 1 m oves dow nst rea m al o n g t he l owe r2 si de of t he f oil a n d c or res p o n ds t o t he vort e x L V N 0 i n Fi g. 3 ( a ) . The vort e x L V P1 m oves ove r t he lea d 2 i ng2e dge f r o m t he l owe r2si de t o t he up p e r2si de of t he f oil a n d c or resp o n ds t o t he vort e x L V P0 i n Fi g. 3 ( a ) . I n t he f oll owi n g oscilla ti o n p e ri od , t he vor 2 t e x e voluti o n is rep ea t e d as desc rip ti o n a bove .

ti me2a ve ra ge d dra g c oef f icie nt values a t A m = 0 . 08 a n d 0 . 24 a re calcula t e d a n d a re a p p r oxi ma t el y 0 . 12 a n d - 0 . 3 , resp ectivel y , f or t he p lungi ng oscilla 2 ti o n a t f = 1 , λ = 0 . 125 . B y c o mp a ri ng C gD value i n Fi g. 2 , a n ef f ective t h rust f orce is ge ne ra t e d a t t he a mp lit ude A m = 0 . 16 ap p r oxi ma t el y. This be ha vi or is c o nsist e nt wit h t he calcula t e d results b y [ 11 ] Wa n g . He re , s o me a nal ysis is brief l y give n t o illus 2 t ra t e t he ef f ect of t he f re que nc y of t he oscilla ti o n o n t he f orce . Fi g. 4 s h ows t he ti me2dep e n de nt dra g c oef f icie nt f or t he p lungi ng oscilla ti o n a t f = 0 . 5 a n d 2 , resp ectivel y , f or A m = 0 . 16 a n d λ = 0 . 125 . The t h rust f orce is ge ne ra t e d beca use t he ti me 2a v2 e ra ge d dra g c oef f icie nt is ne ga tive . It is als o f oun d t ha t a re ve rse Ka r ma n vort e x2st reet is f or me d i n t he wa ke of t he f oil f or t he c or res p o n di n g c o n di 2 ti o ns i n Fi g. 4 .

Fig. 4  Time2dependent drag coefficient for t he plunging os2 cillation at A m = 0 . 16 , λ = 0 . 125

Fig. 3  Instantaneous vorticity contours at A m = 0 . 16 , f = 1 , λ = 0 . 125 . Solid lines represent positive values and dashed lines negative values. Increment of t he contours is 5

To illust ra t e t he ef f ect of t he a m p lit ude of t he oscilla ti o n o n t he f orce a n d vort e x s he ddi n g , t he

To illust ra t e t he ef f ect of t he t hic k ness ra ti o of t he f oil o n t he f orce a n d vort e x s he ddi n g , se ve r 2 al dif f e re nt t hic k ness ra ti os a re calcula t e d . As s h ow n i n Fi g. 2 , t he ti me2a ve ra ge d dra g c oef f icie nt C gD is - 0 . 39 ap p r oxi ma t el y a t λ = 0 . 125 . W he n t he t hic k ness ra ti o i nc reases , base d o n our calcula 2 ti o n f or λ = 0 . 25 , A m = 0 . 16 a n d f = 1 , C gD is 0 . 065 ap p r oxi ma t el y w hic h is not a t h rust f orce . As a t yp ical case , it is well k now n t ha t a dra g f orce is alwa ys f or me d f or a t ra nsve rsel y oscilla ti n g ci rcu2

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

11 [ 15 ] la r c yli n de r ( i . e . , λ = 1 ) i n a unif or m f l ow . Thus , t he t hic k ness ra ti o must be li mit e d a reas o n 2 a ble ra n ge t o ge ne ra t e a n ef f ective t h rust f orce . Visc ous f l ow a r oun d a f oil wit h p itc hi n g oscil 2 la ti o n a r oun d its mi d2c h or d is calcula t e d . The ti me 2 a ve ra ge d dra g c oef f icie nt C gD is alwa ys p ositive f or dif f e re nt a mp lit udes of t he oscilla ti o n . Cor re 2 sp o n di n gly , a classic Ka r ma n vort e x2st reet is f or me d i n t he wa ke of t he p itc hi n g f oil . Furt he r m ore , a n oscilla ti n g f oil wit h c oup le d t he p itc hi n g a n d p lungi ng m oti o ns is i nvesti ga t e d . As a t yp ical case , we f i rst a nal ysis t he f orce be ha v 2 i or f or A m = 0 . 16 , αm = 5°, < = 180°, f = 1 , λ = 0 . 125 . Fi g. 5 s h ows t he ti me2dep e n de nt dra g c oef 2 f icie nt. The ti me2a ve ra ge d dra g c oef f icie nt C gD is ne ga tive t o f or m a t h rust f orce . To e xa mi ne t he f ea t ure of vort e x s he ddi n g , a re ve rse Ka r ma n vor 2 t e x2st reet is f or me d i n t he wa ke .

Fig. 5  Time2dependent drag coefficient for t he pitching oscil2 lation at A m = 0 . 16 , αm = 5°, < = 180° f = 1,λ= 0 . 125

To deal wit h t he ef f ects of t he p itc hi n g a n d p lungi ng a mp lit udes ( i . e . , αm , A m ) a n d t he p hase dif f e re nce < o n t he dra g f orce ( or t h rust f orce ) , Fig. 6 s h ows t he dra g c oef f icie nt ve rsus ti me f or αm = 5°a n d 10°, A m = 0 . 08 a n d 0 . 16 , a n d < = 90°, 135°a n d 180° . A t < = 135°, as s h ow n i n Fi gs . 6a a n d 6c , a n ef f ective t h rust f orce is ge ne ra t e d , w hic h is c o nsist e nt wit h t he p re vi ous e xp e ri me nt al w or k [ 6 ] . Howe ve r , a t t he p lungi ng oscilla ti o n a m 2 p lit ude A m = 0 . 08 ( Fi g. 6 d ) , t he ti me2a ve ra ge d dra g c oef f icie nt is p ositive . I n a li mit e d case , w he n A m →0 , t he f oil m oti o n is o nl y t he p itc hi n g oscilla ti o n , a n d a dra g f orce is alwa ys ge ne ra t e d as discusse d i n t he a bove . Thus , t o ge ne ra t e hi gh p r op ulsive ef f icie nc y , a n op ti mal p a ra met e r2c o m2 bi na ti o n is nee de d . 5 .  CONCL UD ING REMARKS The p r op ulsive p e rf or ma nce a n d vort e x s he d 2 di ng of a f oil wit h t he m oti o ns of p itc hi n g a n d

Fig. 6  Time2dependent drag coefficient at f = 1 , λ = 0 . 125

p lungi ng oscilla ti o n a re i nvesti ga t e d by s olvi n g t he t w o2di me nsi o nal i nc o mp ressi ble N a vie r2St o kes e 2 qua ti o ns i n t he vorticit y a n d st rea m2f uncti o n f or 2 mula ti o n . To accura t el y p re dict t he f orce a n d vor 2 t e x e voluti o n , t he f ourt h 2or de r esse ntiall y c o mp act f i nit e dif f e re nce sc he mes a re e m p l oye d t o dis 2 c retize t he sp ace de riva tives a n d t he f ourt h 2or de r

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

12 R unge2 Kut t a sc he me t o a p p r oxi ma t e t he ti me a d 2 va nce me nt . I n t his st ud y , a wi de ra n ge of p a ra me 2 t e r is c h ose n t o re veal t he f orce c ha ract e ristics a n d vort e x e voluti o n . The ti me 2dep e n de nt dra g a n d lif t f orces , i n p a rticula r t h rust f orce , a n d t he rela ti o ns of t he f orce be ha vi or wit h vort e x st ruct ure nea r t he f oil a n d vort e x s he ddi n g i n t he nea r wa ke a re dis 2 cusse d . B ase d o n our calcula t e d results , a n o p ti mal p a ra met e r2c o m bi na ti o n t o ge ne ra t e a hi gh p r op ul 2 sive ef f icie nc y ma y be i n t he f oll owi n g ra n ge . The t hic k ness ra ti o of t he f oil is λ = 0 . 062520 . 15 , t he p lungi ng a mp lit ude A m = 0 . 1520 . 3 , t he p itc hi n g a mp lit ude αm = 5° 215°, t he oscilla ti o n f re que nc y f = 122 , t he p hase dif f e re nce < = 90° 2180° . O n t he ot he r ha n d , a ni mal l oc o m oti o n is ce rt ai nl y f a r m ore c o mp le x a n d dive rse t ha n t he si m p le m odel c o nsi de re d he re . It is obvi ousl y t ha t our w or k is still helpf ul t o un de rst a n d t he unst ea d y ef f ect a n d f un da me nt al l oc o m oti o n mec ha nis m i n bi ol o gical f li ght a n d swi m mi n g. I deall y , t h ree2di me nsi o nal c o mp ut a ti o n a r oun d a n elasticall y f le xi ble wi n g is desi ra ble a n d is a t a r get i n our f urt he r w or k .

REFERENCES [ 1 ]  PHL IPS P. J . , EAST , R. A. and PRA T T N. H. An unsteady lifting line t heory of flapping wings wit h applica2 tion to t he forward flight of birds [J ] . J. Fluid Mech. , 1981 ,112 : 972125 . [ 2 ]  L IGHTHILL M. J . , Aquatic animal propulsion of high hydromechanical efficiency. [J ] . J. Fluid Mech. , 1970 , 44 : 2652301 . [ 3 ]  CHEN G Jianyu , ZHUAN G Lixian and TON G Binggang. Analysis of swimming 32D waving plate [ J ] . J. Fluid

Mech. , 1991 , 232 : 3412355 . [ 4 ]  SM ITH M. J . C. , WIL KIN , P. J . and WILL IAMS M. H. The advances of an unsteady met hod in modeling t he aerodynamic forces on rigid flapping wings [J ] . J. Exp. Biol. , 1996 ,199 : 107321083 . [ 5 ]  TRIAN TAF YLLOU M. S. , TRIAN TAF YLLOU G. S. and GOPAL KRISHNAN R. Wake mechanics for t hrust generation in oscillation foils[J ] . Phys. Fluids , 1991 , 3 : 12226 . [ 6 ]  ANDERSON J . M. , STREITL IEN K. , BARRET T D. S. and TRIAN TAF YLLOU M. S. Oscillating foils of high propulsive efficiency [ J ] . J. Fluid Mech. , 1998 , 360 : 41272 . [ 7 ]  ELL IN GTON C. P. , B ER G C. Van Den , WILL MO T T A. P. and THOMAS A. L . R. Leading2edge vortices in insect flight [J ] . Nature , 1996 , 384 : 6262630 . [ 8 ]  DIC KINSON M. H. , L EHMANN F. O. and SAN E S. P. Wing rotation and t he aerodynamic basis of insect flight [J ] . Science , 1999 , 284 : 195421960 . [ 9 ]  GUSTAFSON K. E. and L EB EN , R. Computation of dragonfly aerodynamics [J ] . Comput. Phys. Commun. , 1991 , 65 : 1212129 . [ 10 ] L IU Hao and KAWACHI K. A numerical study of insect flight [J ] . J. Comput. Phys. , 1998 , 146 : 1242143 . [ 11 ] WAN G Jane. Vortex shedding and frequency selection in flapping flight [J ] . J. Fluid Mech. , 2000 , 410 : 3232341 . [ 12 ] SUN Mao and TAN G Jian. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion [J ] . J. Exp. Biol. , 2002 ,205 : 55270 . [ 13 ] SUN Mao and TAN GJian. Lift and power requirements of hovering flight in drosop hila virilis [ J ] . J. Exp. Biol. , 2002 ,205 : 241322427 . [ 14 ] E Weinan and L IU Jianguo. Essentially compact schemes for unsteady viscous incompressible flows[J ] . J. Comput. Phys. , 1996 ,126 : 1222138 . [ 15 ] L U Xiyun and DAL TON C. Calculation of t he timing of vortex formation from an oscillating cylinder [J ] . J. Fluid Structures , 1996 ,10 : 5272541 .

© 1995-2003 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

propulsive performance and vortex shedding of a foil in ...

4 Time2dependent drag coefficient for the plunging os2 cillation at A m = 0. 16 , λ = 0. 125. To illustrate the effect of the thickness ratio of the foil on the force and vortex shedding, sever2 al different thickness ratios are calculated. As shown in Fig.2, the time2averaged drag coefficient. CD is - 0. 39 approximately at λ = 0. 125.

259KB Sizes 0 Downloads 108 Views

Recommend Documents

performance-of-simple-gas-foil-thrust-bearings-in-air.pdf ...
performance-of-simple-gas-foil-thrust-bearings-in-air.pdf. performance-of-simple-gas-foil-thrust-bearings-in-air.pdf. Open. Extract. Open with. Sign In.

FOIL Procedure.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. FOIL Procedure.

Large-Scale Electron Vortex Structure Formation in a ...
to vorticity in the electron velocity field (see, e.g., [4, 5]), the onset of electron trapping can result in the forma- tion of a vortex or a chain of vortices, depending on ...

Large-Scale Electron Vortex Structure Formation in a ...
The PL represents an axisymmetric electromagnetostatic trap in which elec- trons are retained by the electric field in the axial direc- tion, and by the magnetic field in the radial direction. It is the negative space charge accumulated in the PL tha

Combustion, performance and emission characteristics of fusel oil in a ...
Jan 20, 2015 - Combustion, performance and emission characteristics of fusel oil in a spark ignition engine.pdf. Combustion, performance and emission ...

FOIL Request.pdf
Page 1 of 1. FREEDOM OF INFORMATION LAW REQUEST. Date: TO: RECORDS OFFICER, Village of Naples, PO Box 386, Naples, NY 14512. I,. ,. NAME ...

Aluminum Foil and Pans.pdf
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Aluminum Foil and Pans.pdf. Aluminum Foil and Pans.pdf. Open.

Aluminum Foil and Pans, InDesign.pdf
Aluminum Foil and Pans, InDesign.pdf. Aluminum Foil and Pans, InDesign.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Aluminum Foil and ...

Experimental Study of Electron Vortex Structures in ...
Abstract—Results are presented from experimental studies of electron vortex bunches in a cold ion-beam plasma consisting ... of electrons in the vortices terminates when the condition for the longitudinal confinement of electrons by the electric fi

Aluminum Foil and Pans, InDesign.pdf
Aluminum Foil and Pans, InDesign.pdf. Aluminum Foil and Pans, InDesign.pdf. Open. Extract. Open with. Sign In. Main menu.

Instabilities and vortex-lattice formation in rotating ... - Springer Link
namic studies of condensate solutions in the rotating frame [4] and ...... 0.5 0.6 0.7 0.8 0.9 1.0. 0.72. 0.68. 0.64. 0.60. 0.58. 100. 101. 102. 10–1. 10–2 εdd. Ωb/ω⊥.

Vortex decoupling line and its anisotropy in ...
three-dimensional (3D) Abrikosov flux lines. In the DS the phase correlator between the adjacent layers falls to ... of the continuous 3D Abrikosov-like vortices, it is natural to ask whether the FLL in this state exhibits features similar to ... FLL

The Effect of Crossflow on Vortex Rings
The trailing column enhances the entrainment significantly because of the high pressure gradient created by deformation of the column upon interacting with crossflow. It is shown that the crossflow reduces the stroke ratio beyond which the trailing c

A Business Fable About Shedding The Three Fears ...
new pdf - Download PDF/ePub eBook Getting. Naked: A Business Fable About Shedding The. Three Fears That Sabotage Client Loyalty (J–B. Lencioni Series) ...

On the Effectiveness of Aluminium Foil Helmets: An Empirical Study ...
On the Effectiveness of Aluminium Foil Helmets: An Empirical Study.pdf. On the Effectiveness of Aluminium Foil Helmets: An Empirical Study.pdf. Open. Extract.

Redring Vortex Handwash.pdf
Page 2 of 2. 2. 3. The heating element(s) are only switched on when sufficient water is flowing. This is done automatically with a switch, which works on water ...

vortex tube pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. vortex tube pdf.

The Effect of Crossflow on Vortex Rings
University of Minnesota, Minneapolis, MN, 55414, USA. DNS is performed to study passive scalar mixing in vortex rings in the presence, and ... crossflow x y z wall. Square wave excitation. Figure 1. A Schematic of the problem along with the time hist

A Max-Min approach to delay load shedding in power ...
Keywords: robustness, power distribution networks, capacity uncertainties, Mixed Integer Linear Program- ming. 1. Introduction. In the context of energy, the market deregulation is deeply modifying the conditions of control of the opera- tional safet

A Comparison of Engine Performance and Emissions of Fusel Oil ...
A Comparison of Engine Performance and Emissions of F ... d Gasoline Mixtures at Different Ignition Timings.pdf. A Comparison of Engine Performance and ...

The performance of rooks in a cooperative task ... - Springer Link
Received: 12 April 2009 / Revised: 30 October 2009 / Accepted: 6 December 2009 / Published online: 18 December 2009. © Springer-Verlag 2009. Abstract In ...

Karman Vortex Street - Flow Visualization
Mar 13, 2011 - . [3] Espeyrac, Lionel. "Strouhal Instability." Physics Knowledge. Physics Knowledge, 2009. Web. 13 Mar.