          

 

                                                                                         

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal conducting plates separated by an electrical insulator such as air.  



Hence the circuit symbol for a capacitor:



 

To charge a capacitor, we connect a battery (or d.c. power supply) across its conducting plates:  When the switch is closed, the capacitor "charges up".  Electric charge is stored on the conducting plates.  A potential difference is created between the conducting plates which becomes equal to the battery/supply voltage. The higher the potential difference (V) between the conducting plates, the greater the charge (Q) stored on the plates.    

α α ∴  ∴ 

 

       



 

    

Note about the Farad The farad is a very large unit - Too large for the practical capacitors used in our household electronic devices (televisions, radios, etc). These practical capacitors have smaller "sub-units":

 µ                

         

         

   µ    

  

  

   

   

       

     

     

  µ

  

  

Experiment to show that the potential difference (V) between the conducting plates of a capacitor is directly proportional to the charge (Q) stored on the plates This circuit can be used to determine the relationship connecting the potential difference between the conducting plates of a capacitor and the charge stored on the plates.

+ variable voltage d.c. power supply -

A B switch

V

resistor

capacitor

C

coulomb meter

                           potential difference between capacitor plates/ V

charge stored on capacitor plates/ x 10-6 C

1.0

2.0

2.0

4.0

3.0

6.0

4.0

8.0

5.0

10.0

6.0

12.0

                

charge stored on capacitor plates/ x 10-6 C



12.0 10.0 8.0 6.0 4.0 2.0 0

1.0 2.0 3.0 4.0 5.0 6.0 potential difference between capacitor plates/ V

Work Done Charging a Capacitor This circuit represents the charging of a capacitor. When the switch is closed, negatively charged electrons flow from the negative terminal of the battery and build up on plate X of the capacitor - So plate X becomes negatively charged. As a result, negatively charged electrons on plate Y of the capacitor are repelled and travel through the wire to the the positive terminal of the battery - So plate Y becomes positively charged.

      

closed switch

battery +

V

high resistance voltmeter

+ + + + Y X capacitor

     

    

This creates a potential difference (V) between the capacitor plates. This potential difference increases until it becomes equal to the battery voltage, when the flow of electrons stops. NO ELECTRONS TRAVEL THROUGH THE INSULATING MATERIAL (AIR) BETWEEN THE CAPACITOR PLATES. To push electrons onto the negatively charged capacitor plate, the battery must do work against the potential difference between the capacitor plates. WORK MUST BE DONE TO CHARGE A CAPACITOR.                          ∴ 

 



  

      

   

   

Work Done Charging a Capacitor = Area Under QV Graph 

    

  

    



  

   

   0



  

    



 

 

  5.0

0

6.0   

0.25

0

12.0   

Energy Stored in a Capacitor Work done by a battery/power supply in "charging" a capacitor is stored as electrical potential energy in an electric field which exists between the charged capacitor plates. This electrical potential energy is released when the capacitor is discharged, e.g., by connecting both plates of the capacitor to a light bulb.

          



    µ

  

  

   

   

   

      

    

   

   

        

      

    

    

  µ

   

  



         

         

         

   

    

   

   

        

    

    

    

   

     

     

    

     

     

     

  µ

  

  

   

  

  

  µ

  

  

        

     

     

  

  

  

Voltage-Time Graphs for a Charging Capacitor   6.0 V +

This electric circuit can be used to investigate the charging of a capacitor.

switch

-

(The resistor is present to set the value of the maximum current which can flow).

A

Current starts to flow immediately the switch is closed.    

  



V

  



V

 

   ∴     ∴     ∴       Time/ seconds 0.0 2.0 4.0 6.0 8.0 10.0 12.0

2.6 4.0 5.0 5.6 6.0

Potential difference (voltage) across capacitor / volts

potential difference (voltage) across capacitor/ V

Potential difference (voltage) across resistor / volts

6.0

6.0

5.0

5.0

4.0

4.0

3.0

3.0

2.0

2.0

1.0 0



potential difference (voltage) across resistor/ V



1.0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

Current-Time Graph for a Charging Capacitor The resistor in the circuit sets the value of the maximum current which can flow. At any instant during the charging process, the size of the current flowing depends on the potential difference across the resistor at that instant and the resistance of the resistor.

     Ω Ω      Ω Time/ seconds

0.0

2.0

4.0

6.0

8.0

10.0

12.0

2.6 4.0 5.0 5.6 6.0

Potential difference (voltage) across capacitor / volts Potential difference (voltage) across resistor / volts Circuit current/ amperes

circuit current/ A

   

0.060 0.050 0.040 0.030 0.020 0.010 0

2.0

4.0

6.0

8.0

10.0

12.0 time/ s

        

Current-Time and Voltage-Time Graphs for a Discharging Capacitor This electric circuit can be used to investigate the discharging of a capacitor.



(The resistor is present to set the value of the maximum current which can flow). The capacitor will discharge and current will start to flow immediately the switch is moved to the right - Electrons will flow from the bottom capacitor plate, through the resistor and ammeter to the top capacitor plate, until the potential difference (voltage) between the plates becomes zero, when no more electrons will flow - The current will be zero.

time/ s

       

       

        

discharge current/ A

0

potential difference (voltage) across capacitor/ V

    

V A

0 potential difference (voltage) across resistor/ V



6.0 V

-

   

V

+

The capacitor is "fully charged" - No current is flowing.





0

time/ s

time/ s

Comparison of Graphs For Charging and Discharging Capacitors

time/ s

potential difference (voltage) across capacitor/ V

0



0

potential difference (voltage) across resistor/ V

potential difference (voltage) across capacitor/ V

0

potential difference (voltage) across resistor/ V



0

time/ s

0

time/ s time/ s

discharge current/ A

charging current/ A

0

time/ s

time/ s

Time For A Capacitor to Charge and Discharge The time taken for a capacitor to charge or discharge depends on the capacitance of the capacitor and the resistance of the resistor connected in series with it.               

 

50 V +

                 

1 kΩ Ω

V

 

switch

-

100 µF

V

A

12 V +

6 kΩ Ω

V

  

switch

-

10 µF

  

A

        

V

     

     µ  Ω 

   



     



V

25 nF

    

+

 

-

6.0 V

V

3.0 kΩ Ω

     

A

             

Capacitors - Capacitance, Charge and Potential Difference

In each case, calculate the capacitance of the capacitor: In each case, calculate the charge stored on the plates of the capacitor: In each case, calculate the potential difference between the plates of the capacitor: ○ charge stored on capacitor plates. = 2.5 x 10-5 C. ○ potential difference between capacitor plates. = 10 V.

11MB Sizes 0 Downloads 350 Views

Recommend Documents

Potential Difference sample problems
150 J of heat energy are given off by the resistor when 0.3 C of charge is passed through the circuit. (I.e. the battery gives off 150 J of electric potential energy to ...

Nanofiber surface based capacitors
Dec 16, 2010 - See application ?le for complete search history. 230. (56). References ..... Bj ork, M.T. et a1 ., “One-dimensional Steeplechase for Electron Real.

Two kinds of potential difference for a capacitor
Sep 19, 2007 - this in the experiments performed for determination of charge and mass ... tween the two poles of the battery that has charged the capacitor.

CAPACITANCE LEVEL SWITCH
circuit and relay will be activated. As Capacitance Level Switch has no moving parts inside the device, it will not be affected by friction. It is suitable for powder or liquid application easy to install. The customer can choose the types for his re

2. Capacitors
where VC = voltage across the individual capacitor in the series (C1, C2, ...,Cn), V; ... When a dc voltage is connected across a capacitor, a time t is required to ...

CAPACITANCE LEVEL SWITCH
timer in clockwise. The relay will energized after. "Indicator" illuminate for several seconds if set timer more than 0 second. The delay function is suitable for ...

MEMS tunable capacitors and switches for RF ...
The native aluminum oxide un the metal surface is indicated in black. 50 ... This pull-in effect can be avoided in a dual-gap relay- type tunable capacitor ...

Microelectromechanical tunable capacitors for ...
Feb 14, 2006 - is that it requires high voltages, i.e. typically 10–50 V. A wide variety of ... effect, which limits the gap tuning in electrostatic actuators. However, a distinct ...... Illustration of the IRS technique for hermetic MEMS packaging

Characteristic trapping lifetime and capacitance-voltage ...
are necessary to complement the room temperature data in order to gather ... measurements and secure conclusions on the density of interface states can only ...

MEMS tunable capacitors and switches for RF ...
switch is electrically open showing an isolation of 17 and. 23 dB at 1 and ... From these data the actual air gap d, (see Fig. ..... IMAPS 2001, Baltimore. USA, Oct.

mechanical capacitors on silicon
result, the specific resistivity is increased. Permanent damage to the crystal lattice can be achieved using high-energy (E > 1MeV) beams of electro-magnetic.

RFP218_Installation Capacitors HESCO SEPCO IESCO.pdf
Page 1 of 47. IRG/PDP/LTCAP-INSTALL/2014/218 1. REQUEST FOR PROPOSALS (RFP). IRG/PDP/LTCAP-INSTALL/2014/218. For the Installation of 20,550 ...

DENDROCLIMATIC POTENTIAL OF EARLYWOOD AND ...
DENDROCLIMATIC POTENTIAL OF EARLYWOOD AND LATEWOOD.pdf. DENDROCLIMATIC POTENTIAL OF EARLYWOOD AND LATEWOOD.pdf. Open.

mechanical capacitors on silicon
insulating or high-ohmic substrate using a dedicated,. CMOS compatible, thin film process. The inductors and capacitors made in this fashion have much.

Symmetric Difference in Difference Dominates ...
The use of a selection model to assess the properties of econometric estimators owes a lot to earlier similar efforts by Heckman (1978), Heckman and Robb (1985), Ashenfelter and Card (1985) and Abadie (2005). The consistency of Symmetric DID with tim

Electric Charge and Static Electricity.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Electric Charge ...

Point Charge and Charged Sphere - GitHub
What is Ex(P), the value of the x-component of the electric field at point P, ... Since Y is perpendicular to the radial axis here, none of the E field will be in the Y ...

Difference Between homogeneous distributed database and ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Difference Between homogeneous distributed database and heterogeneous distributed database.pdf. Difference B

ABB-Low Voltage Capacitors-Power Factor Correction Solutions.pdf ...
Page 1 of 20. Low Voltage Capacitors. Power Factor Correction Solutions. Low Voltage Products. www.dienhathe.info. www.dienhathe.org. Page 1 of 20 ...

Gate capacitance in electrochemical transistor of single ...
and Fermi–Dirac distribution at T=290 K as follows: Q(Vchem) = 0. D(E) exp[(E − eVchem)/kBT] + 1. dE, where kB is Boltzmann constant. Using the equation, the.

INTRODUCTION TO DIFFERENCE BETWEEN DOMESTIC AND ...
INTRODUCTION TO DIFFERENCE BETWEEN DOMESTIC AND INDUSTRIAL WASTEWATER NOTE 1.pdf. INTRODUCTION TO DIFFERENCE BETWEEN ...Missing:

Cooperative Control and Potential Games - Semantic Scholar
However, we will use the consensus problem as the main illustration .... and the learning dynamics, so that players collectively accom- plish the ...... obstruction free. Therefore, we ..... the intermediate nodes to successfully transfer the data fr