

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

1

Efficient Pattern Matching Algorithm for Memory Architecture Cheng-Hung Lin, Member, IEEE, and Shih-Chieh Chang, Member, IEEE

Fig. 1. DFA for matching “bcdf” and “pcdg”.

IE E Pr E oo f

Abstract—Network intrusion detection system is used to inspect packet contents against thousands of predefined malicious or suspicious patterns. Because traditional software alone pattern matching approaches can no longer meet the high throughput of today’s networking, many hardware approaches are proposed to accelerate pattern matching. Among hardware approaches, memory-based architecture has attracted a lot of attention because of its easy reconfigurability and scalability. In order to accommodate the increasing number of attack patterns and meet the throughput requirement of networks, a successful NIDS system must have a memory-efficient pattern-matching algorithm and hardware design. In this paper, we propose a memory-efficient pattern-matching algorithm which can significantly reduce the memory requirement. For Snort rule sets, the new algorithm achieves 21% of memory reduction compared with the traditional Aho–Corasick algorithm. In addition, we can gain 24% of memory reduction by integrating our approach to the bit-split algorithm which is the state-of-the-art DFA-based approach. Index Terms—Aho–Corasick (AC) algorithm, finite automata, pattern matching.

I. INTRODUCTION

Fig. 2. Basic memory architecture.

T

HE MAIN purpose of a signature-based network intrusion detection system is to prevent malicious network attacks by identifying known attack patterns. Due to the increasing complexity of network traffic and the growing number of attacks, an intrusion detection system must be efficient, flexible and scalable. The primary function of an intrusion detection system is to perform matching of attack string patterns. Because string matching is the most computative task in NIDS systems, many hardware approaches are proposed to accelerate string matching. The hardware approaches may be classified into two main categories, the logic [5], [8], [13],[16], [21], [26] and the memory architectures [4], [6], [7], [11], [14], [15], [22]–[24], [27]–[29] In terms of reconfigurability and scalability, the memory architecture has attracted a lot of attention because it allows on-the-fly pattern update on memory without resynthesis and relayout. The basic memory architecture works as follows. Manuscript received August 12, 2008; revised February 25, 2009. This work was supported in part by the R.O.C. National Science Council under Grant NSC 97-2220-E-007-041 and 97-2218-E-003-002. C.-H. Lin is with the Department of Industrial Technology Education, National Taiwan Normal University, Taipei, 10610, Taiwan (e-mail: ). S.-C. Chang is with the Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail: ). Digital Object Identifier 10.1109/TVLSI.2009.2028346

First, the (attack) string patterns are compiled to a finite-state machine (FSM) whose output is asserted when any substring of input strings matches the string patterns. Then, the corresponding state transition table of the FSM is stored in memory. For instance, Fig. 1 shows the state transition graph of the FSM to match two string patterns “bcdf” and “pcdg”, where all transitions to state 0 are omitted. States 4 and 8 are the final states indicating the matching of string patterns “bcdf” and “pcdg”, respectively. Fig. 2 presents a simple memory architecture to implement the FSM. In the architecture, the memory address register consists of the current state and input character; the decoder converts the memory address to the corresponding memory location, which stores the next state and the match vector information. A “0” in the match vector indicates that no “suspicious” pattern is matched; otherwise the value in the matched vector indicates which pattern is matched. For example in Fig. 2, suppose the current state is 7 and the input character is . The decoder will point to the memory location which stores the next state 8 and the match vector 2. Here, the match vector 2 indicates the pattern “pcdg” is matched. Due to the increasing number of attacks, the memory required for implementing the corresponding FSM increases tremendously. Because the performance, cost, and power consumption of the memory architecture is directly related

1063-8210/$26.00 © 2009 IEEE

2

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

proposed a sharing architecture which significantly reduces circuit areas by sharing common infix and suffix sub-patterns. From the perspectives of reconfigurability and scalability, memory architectures are attractive because memory is flexible and scalable. The Aho–Corasick (AC) algorithm [1] is the most popular algorithm which allows for matching multiple string patterns. Aldwairi et al. [2] proposed a configurable string matching accelerator based on a memory implementation of the AC FSM. Tan et al. [27] proposed the bit-split algorithm partitioning a large AC state machine into small state machines to significantly reduce the memory requirements. Jung et al. [14] presented an FPGA implementation of the bit-split string matching architecture. Piyachon et al. [22] proposed to reduce the memory size by relabeling states of AC state machine. Additionally, Piyachon et al. [23] proposed to use Label Transition Table and CAM-based Lookup Table to significantly reduce the memory size. Cho et al. [6], [7] proposed a hash-based pattern matching co-processor where memory is used to store the list of substrings and the state transitions. Dharmapurikar et al. [11] proposed a pattern matching algorithm which modifies the AC algorithm to consider multiple characters at a time. Furthermore, the content addressable memories (CAM) is also widely used for string matching because it can match the entire pattern at once when the pattern is shifted past the CAM. Gokhale et al. [12] used CAM to perform parallel search at a high speed. Sourdis et al. [25] applied the pre-decoded technique for the CAM-based pattern matching to reduce the area. Additionally, Yu et al. [30] presented a ternary content addressable memory (TCAM)-based multiple-pattern matching which can handle complex patterns, correlated patterns, and patterns with negation. The hash-based approach was proposed to utilize Bloom filter for deep packet inspection. Dharmapurikar et al. [10] proposed a hashing-table lookup mechanism utilizing parallel bloom filters to enable large number of fixed-length strings to be scanned in hardware. Lockwood et al. [19] proposed an intelligent gateway based on Bloom filter that provides Internet worm and virus protection in both local and wide area networks.

IE E Pr E oo f

to the memory size, reducing the memory size has become imperative. Certain complicated virus string patterns can be represented by regular expressions. For example, the pattern for detecting the internet radio protocol is represented as “ ”. For memory architecture, only few previous works [15], [29] proposed to reduce the complexity of regular expressions. Still, majority of the patterns are exact string patterns. For example in Snort V2.4, there are 85% of exact string patterns. In this paper, we focus on reducing the memory size of the exact string patterns. We observe that many string patterns are similar because of common sub-strings. However, when string patterns are compiled into an FSM, the similarity does not lead to a small FSM. Consider the same example in Fig. 1 where two string patterns have a common sub-string “cd”. Because of the common sub-string, state 2 has “similar” state transitions to those of state 6. Similarly, states 3 and 7 have “similar” transitions. However, states 2 and 6, states 3 and 7 are not equivalent states and cannot be merged directly. We call a state machine merging those non-equivalent “similar” states, merg_FSM. In this paper, we propose a state-traversal mechanism on a merge_FSM while achieving the same purposes of pattern matching. Since the number of states in merg_FSM can be drastically smaller than the original FSM, it results in a much smaller memory size. We also show that hardware needed to support the state-traversal mechanism is limited. Experimental results show that our algorithm achieves 21% of memory reduction compared with the traditional AC algorithm for total string patterns of Snort [24]. In addition, since our approach is complementary to other memory reduction approaches, we can obtain substantial gain even after applying to the existing state-of-the-art algorithms. For example, after integrating with the bit-split algorithm [27], we can gain 24% of memory reduction. II. RELATED RESEARCHES

In this section, we review several related researches in this area. In the past few years, many algorithms and hardware designs are proposed to accelerate pattern matching. The hardware approaches can be classified into two main categories, logic and memory architectures. The logic architectures mostly use on-chip logic resources of field-programmable gate array (FPGA) to convert regular expression pattern into parallel state machines or combinatorial circuits because FPGA allows for updating new attack patterns. Sidhu et al. [26] proposed algorithm to compile regular expression patterns into combinatorial circuits based on nondeterministic finite automaton (NFA). Hutchings et al. [13] developed a module generator that shared common prefixes to reduce the circuit area on FPGA. Moscola et al. [21] presented a content-scanning module on FPGA for an internet firewall. Clark et al. [8] improved area and throughput by adding predecoded wide parallel inputs to traditional NFA implementations. Baker et al. [5] presented a pre-decoded multiple-pipeline shift-and-compare matcher which reduced routing complexity and comparator size by converting incoming characters into many bit lines. Lin et al. [16]

III. REVIEW OF AC ALGORITHM

In this section, we review the AC algorithm. Among all memory architectures, the AC algorithm has been widely adopted for string matching in [2], [14], [15], [22], [23], [27] because the algorithm can effectively reduce the number of state transitions and therefore the memory size. Using the same example as in Figs. 1 and 3 shows the state transition diagram derived from the AC algorithm where the solid lines represent the valid transitions while the dotted lines represent a new type of state transition called the failure transitions. The failure transition is explained as follows. Given a current state and an input character, the AC machine first checks whether there is a valid transition for the input character; otherwise, the machine jumps to the next state where the failure transition points. Then, the machine recursively considers the same input character until the character causes a valid transition. Consider an example when an AC machine is in state 1 and the input character is . According to the AC state table in Fig. 4, there is no valid transition from state 1 given the input

LIN AND CHANG: EFFICIENT PATTERN MATCHING ALGORITHM FOR MEMORY ARCHITECTURE

3

Fig. 3. State diagram of an AC machine. Fig. 5. Merging similar states.

Fig. 4. AC state table.

IE E Pr E oo f

Fig. 6. Architecture of the state traversal machine.

character . When there is no valid transition, the AC machine takes a failure transition back to state 0. Then in the next cycle, the AC machine reconsiders the same input character in state 0 and finds a valid transition to state 5. This example shows that an AC machine may take more than one cycle to process an input character. In Fig. 3, the double-circled nodes indicate the final states of patterns. In Fig. 3, state 4, the final state of the first string and pattern “bcdf”, stores the match vector state 8, the final state of the second string pattern “pcdg”, stores . Except the final states, the the match vector of to simply other states store the match vector express those states are not final states. IV. BASIC IDEA

Due to the common substrings of string patterns, the compiled AC machine may have states with similar transitions. Despite the similarity, those similar states are not equivalent states and cannot be merged directly. In this section, we first show that functional errors can be created if those similar states are merged directly. Then, we propose a mechanism that can rectify those functional errors after merging those similar states. In Fig. 3, states 2 and 6 are similar because they have identical input transitions , identical failure transitions to state 0. Also, states 3 and 7 are similar. Note that merging similar states results in an erroneous state machine. As shown in Fig. 5, the state machine merges the similar states 2 and 6 to become state 26, and merges the similar states 3 and 7 to become state 37. Again, we refer to the state machine that merges the similar states as the merg_FSM. Given an input string “pcdf”, the original AC state machine shown in Fig. 3 moves from state 0, through state 5, state 6, state 7, and then takes a failure transition to state 0. On the other hand, the merg_FSM moves from state 0, through state 5, state 26, state37, and finally reaches state 4 which indicates the final state of the pattern “bcdf”. As a result of merging similar states, the input string “pcdf” is mistaken as a match of the

pattern “bcdf”. This example shows the merg_FSM may causes false positive results. The merg_FSM is a different machine from the original state machine but with a smaller number of states and transitions. A direct implementation of merg_FSM has a smaller memory than the original state machine in the memory architecture. Our objective is to modify the AC algorithm so that we can store only the state transition table of merg_FSM in memory while the overall system still functions correctly as the original AC state machine does. The overall architecture of our state traversal machine is shown in Fig. 6. The new state traversal mechanism guides the state machine to traverse on the merg_FSM and provides correct results as the original AC state machine. In Section IV, we first discuss the state traversal mechanism. Then in Section V, we discuss how the state traversal machine is created in our algorithm. V. STATE TRAVERSAL MECHANISM ON A MERG_FSM

In the previous example, state 26 represents two different states (state 2 and state 6) and state 37 represents two different states (state 3 and state 7). We have shown that directly merging similar states leads to an erroneous state machine. To have a correct result, when state 26 is reached, we need a mechanism to understand in the original AC state machine whether it is state 2 or state 6. Similarly, when state 37 is reached, we need to know in the original AC state machine whether it is state 3 or state 7. In this example, we can differentiate state 2 or state 6 if we can memorize the precedent state of state 26. If the precedent state of state 26 is state 1, we know that in the original AC state machine, it is state 2. On the other hand, if the precedent state of state 26 is state 5, the original is state 6. This example shows that if we can memorize the precedent state entering the merged states, we can differentiate all merged states. In the following section, we discuss how the precedent path vector can be retained during the state traversal in the merg_FSM.

4

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 8. New state diagram of merg_FSM.

First of all, we would like to mention that in a traditional AC state machine, a final state stores the corresponding match vector which is one-hot encoded. For example in Fig. 3, state 4, the final state of the first string pattern “bcdf”, stores the and state 8, the final state of match vector the second string pattern “pcdg”, stores the match vector of . Except for the final states, the other states simply to express those states are not store final states. One-hot encoding for a match vector is necessary because a final state may represent more than one matched string pattern [5]. Therefore, the width of the match vector is equal to the number of string patterns. As shown in Fig. 4, the majority of memories in the column “match vector” store the zero vectors {00} which are not efficient. In our design, we reuse those memory spaces storing zero vectors {00} to store useful path information called pathVec. First, each bit of the pathVec corresponds to a string pattern. Then, if there exists a path from the initial state to a final state, which matches a string pattern, the corresponding bit of the pathVec of the states on the path will be set to 1. Otherwise, they are set to 0. Consider the string pattern “bcdf” whose final state is state 4 in Fig. 7. The path from state 0, via states 1, 2, 3 to the final state 4 matches the first string pattern “bcdf”. Therefore, the first bit of the pathVec of the states on the path, {state 0, state 1, state 2, state 3, and state 4}, is set to 1. Similarly, the path from state 0, via states 5, 6, 7 to the final state 8 matches the second string pattern “pcdg”. Therefore, the second bit of the pathVec of the states on the path, {state 0, state 5, state 6, state 7, and state 8}, is set to 1. In addition, we add an additional bit, called ifFinal, to indicate whether the state is a final state. For example, because states 4 and 8 are final states, the ifFinal bits of states 4 and 8 are set to 1, the others are set to 0. As shown in Fig. 7, each state stores the pathVec and ifFinal as the form, “pathVec_ ifFinal”. Compared with the original AC state machine in Fig. 3, we only add an additional bit to each state. We have mentioned that in this example, states 2 and 6, states 3 and 7 are similar because they have similar transitions. However, they are not equivalent. Note that two states are equivalent if and only if their next states are equivalent. In Fig. 7, states 3 and 7 are similar but not equivalent because for the same input , state 3 takes a transition to state 4 while state 7 takes a failure transition to state 0. Similarly, state 2 and state 6 are not equivalent states because their next states, state 3 and state 7, are not equivalent states. In our algorithm, we define such similar states as pseudoequivalent states. The definition is as follows.

Definition: Two states are defined as pseudo-equivalent states if they have identical input transitions, identical failure transitions, and identical ifFinal bit, but different next states. In Fig. 7, states 2 and 6 are pseudo-equivalent states because they have identical input transitions , identical failure transitions to state 0 and identical ifFinal bit 0. Also, state 3 and state 7 are pseudo-equivalent states. In our algorithm, the pseudo-equivalent states 2 and 6 are merged to be state 26 and states 3 and 7 are merged to be state 37, as shown in Fig. 8. The pathVec_ifFinal are updated by taking the union on the pathVec_ifFinal of the merged states. Therefore, the pathVec_ifFinal of states 26 and 37 are modified to be {11_0}. In addition, we need a register, called preReg, to trace the precedent pathVec in each state. The width of preReg is equal to the width of pathVec. Each bit of the preReg also corresponds to a string pattern. The preReg is updated in each state by performing a bitwise AND operation on the pathVec of the next state and its current value. By tracing the precedent path entering into the merged state, we can differentiate all merged states. When the final state is reached, the value of the preReg indicates the match vector of the matched pattern. During the state traversal, if all the bits of the preReg become 0, the machine will go to the failure mode and choose the failure transition as in the AC algorithm. After any failure transition, all the bits of the preReg are reset to 1. Consider an example in Fig. 9 where the string “pcdf” is applied. Initially, in state 0, the preReg is initialized to . After taking the input character , the merg_FSM goes to state 5 and updates the preReg by performing a bitwise AND operation on the pathVec {10} of state 5 and the current preReg {11}. The resulting new value of the preReg will be . Then, after taking the input character , the merg_FSM goes to state 26 and updates the preReg by performing a bitwise AND operation on the pathVec {11} of state 26 and the current preReg {10}. The preReg remains . Further, after taking the input character , the merg_FSM goes to state 37 and updates the preReg by performing a bitwise AND operation on the pathVec {11} of state 37 and the current preReg {10}. The preReg remains . Finally, after taking the input character , the merg_FSM goes to state 4. After performing a bitwise AND operation on the pathVec {01} of state 4 and the current preReg {10}, the preReg becomes . According to our algorithm, during the state traversal, if all the bits of the preReg become 0, the machine will go to the failure mode and choose the failure transition as

IE E Pr E oo f

Fig. 7. New data structure, pathVec, and ifFinal.

LIN AND CHANG: EFFICIENT PATTERN MATCHING ALGORITHM FOR MEMORY ARCHITECTURE

5

Fig. 12. Direct graph of first pattern. Fig. 9. State transitions of the input string “pcdf”.

Fig. 13. Adding second pattern to direct graph.

IE E Pr E oo f

Fig. 10. State transitions of the input string “pcdg”.

Fig. 14. Construction of pathVec and ifFinal.

Fig. 11. State traversal pattern matching algorithm.

in the AC algorithm. Therefore, the machine takes the failure transition to state 0 instead of state 4. Similarly, consider another example in Fig. 10 where the string “pcdg” is applied. The process of state traversal is similar to the previous example until the state machine reaches state 37 and the input character is . After taking the input character , the merg_FSM goes to state 8 and the preReg becomes by performing a bitwise AND operation on the pathVec {10} of state 8 and the current preReg {10}. Because , the value of ifFinal is 1, the value of preReg, indicates the pattern is matched. The algorithm of our state traversal algorithm is shown in Fig. 11. VI. CONSTRUCTION OF STATE TRAVERSAL MACHINE The construction of a state traversal machine consists of: 1) the construction of valid transition, failure transition, pathVec, and ifFinal functions and 2) merging pseudo-equivalent states. In the first step, the states and valid transitions are created first.

And then, the failure transitions are created. The construction of pathVec and ifFinal begins in the first step and completes in the second step. For a set of string patterns, a graph is created for the valid transition function. The creation of the graph starts at an initial state 0. Then, each string pattern is inserted into the graph by adding a directed path from initial state 0 to a final state where the path terminates. Therefore, there is a path, from initial state 0 to a final state, which matches the corresponding string pattern. For example, consider the three patterns, “abcdef”, “apcdeg”, and “awcdeh”. Adding the first pattern “abcdef” to the graph, we obtain a direct graph as shown in Fig. 12. The path from state 0 to state 6 matches the first pattern “abcdef”. Therefore, the pathVec of all states on the path is set , and the ifFinal of state 6 is set to 1 to to notify the final state where the path terminates. Adding the second pattern “apcdeg” into the graph, we obtain the following. Note that when the pattern “apcdeg” is added to the graph, because there is already an edge labeled from state 0 to state 1, the edge is reused. As shown in Fig. 13, the pathVec of states and the pathVec of other 0 and 1 is set to states, {state 7, state 8, state 9, state 10, state 11} on the path is . Furthermore, the ifFinal of state 11 set to is set to 1 to indicate the final state for the second pattern. Similarly, when the third pattern “awcdeh” is added to the graph, the edge labeled from state 0 to state 1 is also reused. Therefore, . The the pathVec of states 0 and 1 is set to pathVec of other states {state 12, state 13, state 14, state 15, and . The ifFinal state 16} on the path is set to of state 16 is set to 1 to indicate the final state of the third pattern. Finally, Fig. 14 shows the directed graph consisting only of valid transitions.

6

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 17. Merging pseudo-equivalent states with different sequences.

Fig. 15. State diagram of the state traversal machine.

Fig. 16. AC state machine for the two patterns, “abcdef” and “wdebcg”.

Fig. 18. Algorithm for extracting substrings.

IE E Pr E oo f

In the second step, our algorithm extracts and merges the pseudo-equivalent states. Notice that merging pseudo-equivalent states includes merging the failure transitions and performing the union on the pathVec of the merged states. Consider the same example as shown in Fig. 14. We can find that states 3, 8, and 13 are pseudo-equivalent states because they have identical input transitions , identical failure transitions to state 0 and identical ifFinal 0. Similarly, states 4, 9, and 14 are pseudo-equivalent states and states 5, 10, and 15 are pseudo-equivalent states. As shown in Fig. 15, those pseudo-equivalent states are merged to states 3_8_13, 4_9_14 and 5_10_15, respectively. The pathVec of state 3_8_13 is modified to be by performing the union on the pathVec of state 3, state 8, and state 13. Similarly, the pathVec of states 4_9_14 and 5_10_15 is also modified to be {111}. Fig. 15 shows the final state diagram of our state traversal machine. Compared with the original AC state machine in Fig. 14, six states are eliminated. VII. LOOP BACK IN MERGED STATES

When certain cases of multiple sections of pseudo-equivalent states are merged, it may create loop back problem in a state machine. The reason for the loop back problem comes from merging common sub-patterns with different sequences. For example, the two patterns, “abcdef” and “wdebcg,” have common sub-patterns, “bc” and “de,” which appear in different sequences. Fig. 16 shows the corresponding state machine. Because of the common sub-patterns, “bc”, states 2 and 10, states 3 and 11 are pseudo-equivalent states. And, because of the common sub-patterns, “de”, states 4 and 8, states 5 and 9 are also pseudo-equivalent states. Merging the pseudo-equivalent states will create a loop back transition from state 5 to state 2, as shown in Fig. 17. The loop transition may cause false positive matching results. For example, the input string “abcdebcdef” will be mistaken as a match of the pattern “abcdef.” In other words, as long as the common substrings appear in sequence, merging the corresponding pseudo-equivalent states will not result in loop back transitions. Therefore, in our program, we record and identify the orders of common sub-patterns. If the common sub-patterns appear in sequence, the corre-

sponding pseudo-equivalent states can be merged without loop back problems. Fig. 18 shows the pseudo code of our algorithm to find common substrings without the loop back problem. First, all common sub-strings are extracted by the longest common substring algorithm [9]. The algorithm can report all of the common substrings. Then, the common substrings are labeled as new sequences. Next, we use the longest common subsequence (LCS) algorithm [20] to find all of the longest subsequence common to all strings. The results from the LCS algorithm guarantee that there will be no loop back transition. For example, consider the two patterns, “abcdefghijklm” and “abcwsghidefxyklm.” Using the longest common substring algorithm, we can extract all of the common substrings of these two patterns such as “abc”, “def”, “ghi” and “klm”. Then, we label the substrings “abc”, “def”, “ghi”, and “klm” as , , and , respectively. Therefore, the sequence of substrings ” while the sequence in “abcdefghijklm” is labeled as “ of substrings in “abcwsghidefxyklm” is labeled as “ ”. We subsequently use LCS algorithm to find all of the longest ” common subsequences among the two new sequences, “ ” and the results are “ ” or “ ”. Therefore, and “ we can merge the subsequences of (“abc”), (“ghi”) and (“klm”) or the subsequences of (“abc”), (“def”) and (“klm”) without the loop back problem. Notice that the result of LCS may not be unique. In Section IX, we will define a gain function to choose subsequences to be merged. VIII. HARDWARE ARCHITECTURE Fig. 19 shows our hardware module which can be configured for matching 16 or 32 patterns with a state machine containing 1024 valid transitions at most. In Fig. 19, the register, called address_register, is used to store the current state and the input character. The valid_memory is used to store the information of valid_state, pathVec, and ifFinal corresponding to each valid transition while the failure_memory is used to store the failure_state corresponding to each failure transition. In this

LIN AND CHANG: EFFICIENT PATTERN MATCHING ALGORITHM FOR MEMORY ARCHITECTURE

7

TABLE I EXPERIMENTAL RESULTS AFTER APPLYING OUR ALGORITHM TO THE AC ALGORITHM.

IE E Pr E oo f

called preReg, is used to trace the precedent pathVec in each state. The preReg is initiated to be 1 for all bits and is updated by performing a bitwise AND operation on its current value and the pathVec from the valid_memory. The ns_ctrl unit is used to determine the next state by the value of preReg and n_valid. If the preReg is 0 for all bits or the n_valid is 1, the ns_sel will output low to let the failure_state update the current_state register. On the other hand, if the preReg is not zero and the n_valid is not 1, the ns_sel will output high to let the valid_state update the current_state register. IX. EXPERIMENTAL RESULTS

Fig. 19. Hardware module for the new algorithm.

Fig. 20. Flow of experiments.

prototype, we use a hardwired circuit, called A2P, to translate the content of the address_register to a contiguous scope, called pos, to utilize the valid_memory. The circuit A2P can be implemented using hardwired circuit or CAM [17]. In addition, the signal n_valid is high if there is no valid transition corresponding to the address_register. Furthermore, the register,

Using the version 2.4 of Snort rule set, we extract 2217 exact string patterns containing 36 536 characters from the rule database. The results are compared with the methods of the AC algorithm and the bit-split algorithm. The flow of our experiment is shown in Fig. 20. In the first stage, we obtain string patterns from Snort rule database. In the second stage, we group 32 string patterns as a module based on the similarity of string patterns. Further, in the third stage, we use LCS to extract substrings without loop back problem. Because the solution of LCS may not be unique, we select the common substrings which have the largest sharing gain. The sharing gain of common substrings is defined as the length of common substrings multiplied by the number of patterns sharing the common substrings. For example, three patterns, “1common1”, “2common2”, and “3common3” have the common substrings “common”. The sharing gain of the common substrings is because the substring “common” has six characters which are shared by three patterns. In the final stage, we merge the extracted common substrings and generate the transition table. Table I shows the results before and after integrating our algorithm to the AC algorithm. Columns one, two and three show the name of the rule set, the number of patterns, and the number of characters of the rule set. Columns four, five, and six show the number of state transitions, the number of states, and the memory size of the AC algorithm. Columns seven, eight, and nine show the results of our approach. Column ten shows the memory reduction compared to the AC algorithm. As shown in Fig. 19, the memory requirement includes the size of the valid memory and the failure memory. Because the memory requirement is proportional to the number of states, our algorithm has reduced memory size on the traditional AC algorithm. For example in the first row of

8

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II EXPERIMENTAL RESULTS AFTER APPLYING OUR ALGORITHM TO THE BIT-SPLIT ALGORITHM

IE E Pr E oo f

TABLE III HARDWARE COMPARISONS WITH PREVIOUS APPROACHES

the Table I, the Oracle rule set has 337 patterns with 11 128 characters. Using the traditional AC algorithm, the number of transitions and states are 6793 and 6804, respectively. The memory size is 49 267 bytes. Integrating our algorithm to the AC algorithm, the number of transitions and states are reduced to 4432 and 3846, respectively. The memory size is reduced to 30 699 bytes, 38% of memory reduction from the AC algorithm. For total 2217 string patterns of Snort rule sets, our algorithm achieves a 21% memory reduction compared with the AC algorithm. Because the state-of-the-art bit-split algorithm is based on the AC algorithm, our algorithm can also be integrated to the bitsplit algorithm to further reduce memory requirements. Table II shows the results before and after applying our algorithm to the bit-split algorithm. Consider the same Oracle rule set in the first row of Table II. Applying the bit-split algorithm which splits the traditional AC state machine into 4 state machines, the number of transitions and states are 21 949 and 21 993, respectively. The size of memory is 266 132 bytes. Integrating our algorithm to the bit-split algorithm, the number of transitions and states are reduced to 14 437 and 12 664, respectively. The size of memory is reduced to 166 026 bytes. The memory reduction achieves 38%. For total 2,217 string patterns of Snort rule sets, integrating our algorithm to the bit-split algorithm can achieve 24% of memory reduction. Furthermore, we have synthesized the hardware module in Fig. 19 using the ASIC flow of the UMC 0.18 m technology. The results are compared with [2], [6], [27], [28], [30] as shown in Table III. In Table III, columns 2, 3, and 4 shows the number of characters, the memory size, and the throughput. Column 5 shows the memory utilization per character while column 6 shows the memory efficiency which is defined as the following equation: Memory efficiency

throughput Char. Num. Mem

As shown in Table III, our design has better memory utilization and memory efficiency than [2], [6], [27], [28], [30]. X. CONCLUSION

We have presented a memory-efficient pattern matching algorithm which can significantly reduce the number of states and transitions by merging pseudo-equivalent states while maintaining correctness of string matching. In addition, the new algorithm is complementary to other memory reduction approaches and provides further reductions in memory needs. The experiments demonstrate a significant reduction in memory footprint for data sets commonly used to evaluate IDS systems. REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching: An AID to bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975. [2] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching hardware for speeding up intrusion detection,” Proc. ACM SIGARCH Comput. Arch. News, vol. 33, no. 1, pp. 99–107, 2005. [3] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed pattern matching for network IDS/IPS,” in Proc. IEEE Int. Conf. Netw. Protocols (ICNP), 2006, pp. 187–196. [4] B. Brodie, R. Cytron, and D. Taylor, “A scalable architecture for high-throughput regular-expression pattern matching,” in Proc. 33rd Int. Symp. Comput. Arch. (ISCA), 2006, pp. 191–122. [5] Z. K. Baker and V. K. Prasanna, “High-throughput linked-pattern matching for intrusion detection systems,” in Proc. Symp. Arch. for Netw. Commun. Syst. (ANCS), Oct. 2005, pp. 193–202. [6] Y. H. Cho and W. H. Mangione-Smith, “A pattern matching co-processor for network security,” in Proc. 42nd IEEE/ACM Des. Autom. Conf., Anaheim, CA, Jun. 13–17, 2005, pp. 234–239. [7] Y. H. Cho and W. H. Mangione-Smith, “Fast reconfiguring deep packet filter for 1 + GigabitNetwork ,” in Proc. 13th Ann. IEEE Symp. Field Program. Custom Comput. Mach. (FCCM), 2005, pp. 215–224. [8] C. R. Clark and D. E. Schimmel, “Scalable pattern matching on high speed networks,” in Proc. 12th Ann. IEEE Symp. Field Program. Custom Comput. Mach. (FCCM), 2004, pp. 249–257. [9] G. Dan, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge, U.K.: Cambridge University Press, 1997. [10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep packet inspection using parallel bloom filters,” in Proc. 11th Symp. High Perform. Interconnects, Aug. 2003, pp. 44–53.

LIN AND CHANG: EFFICIENT PATTERN MATCHING ALGORITHM FOR MEMORY ARCHITECTURE

[26] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using FPGAS,” in Proc. 9th Ann. IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM), 2001, pp. 227–238. [27] L. Tan and T. Sherwood, “A high throughput string matching architecture for intrusion detection and prevention,” in Proc. 32nd Annu. Int. Symp. Comput. Arch. (ISCA), 2005, pp. 112–122. [28] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic memory-efficien string matching algorithms for intrusion detection,” in Proc. 23nd Conf. IEEE Commun. Soc. (INFOCOMM), Mar. 2004, pp. 2628–2639. [29] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-efficient regular expression matching for deep packet inspection,” in Proc. ACM/IEEE Symp. Arch. Netw. Commun. Syst. (ANCS), 2006, pp. 93–102. [30] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet patternmatching using TCAM,” in Proc. 12th IEEE Int. Conf. Netw. Protocols (ICNP), 2004, pp. 174–183.

Cheng-Hung Lin (S’06-M’08) received the Ph.D. degree in computer science from the National Tsing Hua University, HsinChu, Taiwan, in 2008. He is currently an Associate Professor with the Department of Industrial Technology Education, National Taiwan Normal University, Taipei, Taiwan. His current research interests include network intrusion detection, multicore programming, and parallel algorithm design.

IE E Pr E oo f

[11] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern matching for content filtering,” in Proc. Symp. Arch. for Netw. Commun. Syst. (ANCS), Oct. 2005, pp. 183–192. [12] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. H. Granidt, “Towards gigabit rate network intrusion detection,” in Proc. the Eleventh Annual ACM/SIGDA International Conference on FieldProgrammable Logic and Applications (FPL ’03), 2002, pp. 404–413. [13] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intrusion detection with reconfigurable hardware,” in Proc. 10 th Annu. IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM), 2002, pp. 111–120. [14] H. J. Jung, Z. K. Baker, and V. K. Prasanna, “ Performance of FPGA implementation of bit-split architecture for intrusion detection systems,” in Proc. 20th Int. Parallel Distrib. Process. Symp. (IPDPS), 2006. [15] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “ Algorithms to accelerate multiple regular expressions matching for deep packet inspection,” in ACM SIGCOMM Computer Communication Review. : ACM Press, 2006, vol. 36, pp. 339–350. [16] C. H. Lin, C. T. Huang, C. P. Jiang, and S. C. Chang, “Optimization of pattern matching circuits for regular expression on FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 12, pp. 1303–1310, Dec. 2007. [17] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A memory-efficient parallel string matching architecture for high-speed intrusion detection,” IEEE J. Sel. Areas Commun., vol. 24, no. 10, pp. 1793–1804, Oct. 2006. [18] J. V. Lunteren, “High-performance pattern-matching for intrusion detection,” in Proc. IEEE INFOCOM, 2006, pp. 1–13. [19] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks, “Internet worm and virus protection in dynamically reconfigurable hardware,” presented at the Military Aerosp. Program. Logic Device (MAPLD), Washington, DC, Sep. 2003, E10. [20] D. Maier, “The complexity of some problems on subsequences and supersequences,” J. ACM, vol. 25, no. 2, pp. 322–336, 1978. [21] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a content-scanning module for an internet firewall,” in Proc. 11th Ann. IEEE Symp. Field-Program. Custom Comput. Mach. (FCCM), 2003, pp. 31–38. [22] P. Piyachon and Y. Luo, “Compact state machines for high performance pattern matching,” in Proc. 41nd IEEE/ACM Des. Autom. Conf., 2007, pp. 493–496. [23] P. Piyachon and Y. Luo, “Design of high performance pattern matching engine through compact deterministic finite automata,” in Proc. 42nd IEEE/ACM Des. Autom. Conf., 2008, pp. 852–857. [24] M. Roesch, “Snort- lightweight intrusion detection for networks,” in Proc. 15th Syst. Administration Conf. (LISA), 1999, pp. 229–238. [25] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and high-speed NIDS pattern matching,” in Proc. 12th Annu. IEEE Symp. Field Program. Custom Comput. Mach. (FCCM), 2004, pp. 258–267.

9

Shih-Chieh Chang (S’92–M’95) received the B.S. degree in electrical engineering from the National Taiwan University, Taiwan, in 1987 and the Ph.D. degree in electrical engineering from the University of California, Santa Barbara, in 1994. He is currently a Professor with the Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan. From 1995 to 1996, he worked with Synopsys, Inc., Mountain View, CA. From 1996 to 2001, he joined the faculty with the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan, R.O.C. His current research interests include logic synthesis, functional verification for SoC, and noise analysis. Dr. Chang was a recipient of a Best Paper Award at the 1994 Design Automation Conference.

[image: Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore]
Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore

[image: Optimization of Pattern Matching Algorithm for Memory Based ...]
Optimization of Pattern Matching Algorithm for Memory Based ...

[image: Optimization of Pattern Matching Algorithm for Memory Based ...]
Optimization of Pattern Matching Algorithm for Memory Based ...

[image: Optimization of Pattern Matching Algorithm for Memory ...]
Optimization of Pattern Matching Algorithm for Memory ...

[image: Efficient randomized pattern-matching algorithms]
Efficient randomized pattern-matching algorithms

[image: A Memory Efficient Algorithm for Adaptive Multidimensional Integration ...]
A Memory Efficient Algorithm for Adaptive Multidimensional Integration ...

[image: A Universal Online Caching Algorithm Based on Pattern Matching]
A Universal Online Caching Algorithm Based on Pattern Matching

[image: Pattern Matching]
Pattern Matching

[image: Tree Pattern Matching to Subset Matching in Linear ...]
Tree Pattern Matching to Subset Matching in Linear ...

[image: the matching-minimization algorithm, the inca algorithm and a ...]
the matching-minimization algorithm, the inca algorithm and a ...

[image: the matching-minimization algorithm, the inca algorithm ... - Audentia]
the matching-minimization algorithm, the inca algorithm ... - Audentia

[image: q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching]
q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

[image: Eliminating Dependent Pattern Matching - Research at Google]
Eliminating Dependent Pattern Matching - Research at Google

[image: biochemistry pattern matching .pdf]
biochemistry pattern matching .pdf

[image: String Pattern Matching For High Speed in NIDS - IJRIT]
String Pattern Matching For High Speed in NIDS - IJRIT

[image: q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching]
q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

[image: Optimization of Pattern Matching Circuits for Regular ...]
Optimization of Pattern Matching Circuits for Regular ...

[image: A New Point Pattern Matching Method for Palmprint]
A New Point Pattern Matching Method for Palmprint

[image: String Pattern Matching For High Speed in NIDS]
String Pattern Matching For High Speed in NIDS

[image: Sparsity adaptive matching pursuit algorithm for ...]
Sparsity adaptive matching pursuit algorithm for ...

[image: A faster algorithm for finding optimal semi-matching]
A faster algorithm for finding optimal semi-matching

[image: Efficient FDTD algorithm for plane-wave simulation for ...]
Efficient FDTD algorithm for plane-wave simulation for ...

[image: New star pattern recognition algorithm for APS star ...]
New star pattern recognition algorithm for APS star ...

[image: Generalized compressive sensing matching pursuit algorithm]
Generalized compressive sensing matching pursuit algorithm

Efficient Pattern Matching Algorithm for Memory ...

matching approaches can no longer meet the high throughput of high speed. Sourdis et al. ... based on Bloom filter that provides Internet worm and virus.

 Download PDF

 645KB Sizes
 0 Downloads
 334 Views

 Report

Recommend Documents

[image: alt]

Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore

intrusion detection system must have a memory-efficient pat- tern-matching algorithm and hardware design. In this paper, we propose a memory-efficient ...

[image: alt]

Optimization of Pattern Matching Algorithm for Memory Based ...

Dec 4, 2007 - widely adopted for string matching in [6][7][8][9][10] because the algorithm can H. J. Jung, Z. K. Baker, and V. K. Prasanna. Performance of.

[image: alt]

Optimization of Pattern Matching Algorithm for Memory Based ...

Dec 4, 2007 - accommodate the increasing number of attack patterns and meet ... omitted. States 4 and 8 are the final states indicating the matching of string ...

[image: alt]

Optimization of Pattern Matching Algorithm for Memory ...

Dec 4, 2007 - . ABSTRACT. Due to the ... To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior.

[image: alt]

Efficient randomized pattern-matching algorithms

the following string-matching problem: For a specified set. ((X(i), Y(i))) of pairs of strings, properties of our algorithms, even if the input data are chosen by an ...

[image: alt]

A Memory Efficient Algorithm for Adaptive Multidimensional Integration ...

implemented on GPU platform using a single Tesla M2090 device [9]. memory access patterns in CUDA,â€� Design Automation Conference (DAC), 2011 48th.

[image: alt]

A Universal Online Caching Algorithm Based on Pattern Matching

We present a universal algorithm for the classical online problem of caching or Call this the maximal suffix and let its length be Dn. 2. Take an Î± Some Distribution-free Aspects of ... Compression Conference, 2000, 163-172. [21] J. Ziv

[image: alt]

Pattern Matching

basis of the degree of linkage between expected and achieved outcomes. In light of this ... al scaling, and cluster analysis as well as unique graphic portrayals of the results Pattern match of program design to job-related outcomes. Expected.

[image: alt]

Tree Pattern Matching to Subset Matching in Linear ...

'U"cdc f f There are only O (ns) mar k ed nodes#I with the property that all nodes in either the left subtree ofBI or the right subtree ofBI are unmar k ed; this is ...

[image: alt]

the matching-minimization algorithm, the inca algorithm and a ...

trix and ID âˆˆ DÃ—D the identity matrix. Note that the operator vec{Â·} is simply rearranging the parameters by stacking together the columns of the matrix. For voice ...

[image: alt]

the matching-minimization algorithm, the inca algorithm ... - Audentia

ABSTRACT. This paper presents a mathematical framework that is suitable for voice conversion and adaptation in speech processing. Voice con- version is formulated as a search for the optimal correspondances between a set of source-speaker spectra and

[image: alt]

q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

possible to create a table of aliases for domain- specific alphanumeric values, however, it is unlikely that all possible errors could be anticipated in advance. 2.

[image: alt]

Eliminating Dependent Pattern Matching - Research at Google

so, we justify pattern matching as a language construct, in the style of ALF [13], without compromising we first give our notion of data (and hence splitting) a firm basis. Definition 8 Fred McBride. Computer Aided Manipulation of Symbol

[image: alt]

biochemistry pattern matching .pdf

biochemistry pattern matching .pdf. biochemistry pattern matching .pdf. Open. Extract. Open with. Sign In. Main menu. Whoops! There was a problem previewing ...

[image: alt]

String Pattern Matching For High Speed in NIDS - IJRIT

scalability has been a dominant issue for implementation of NIDSes in hardware ... a preprocessing algorithm and a scalable, high-throughput, Memory-effi-.

[image: alt]

q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

matching is to increase automated record linkage. Valid linkages will be determined by the user and should represent those â€œnear matchesâ€� that the user.

[image: alt]

Optimization of Pattern Matching Circuits for Regular ...

NFA approaches, a content matching server [9] was developed to automatically generate deterministic finite automatons (DFAs) construct an NFA for a given regular expression and used it to process text characters. ... [12] adopted a scalable, low

[image: alt]

A New Point Pattern Matching Method for Palmprint

Email: ; . Abstractâ€”Point new template minutiae set), we traverse all of the candidates pair ã€ˆu, vã€‰ âˆˆ C Ã— D.

[image: alt]

String Pattern Matching For High Speed in NIDS

They are critical net-work security tools that help protect high-speed computer ... Most hardware-based solutions for high-speed string matching in NIDS fall into ...

[image: alt]

Sparsity adaptive matching pursuit algorithm for ...

where y is the sampled vector with M â‰ª N data points, Î¦ rep- resents an M Ã— N ... sparsity adaptive matching pursuit (SAMP) for blind signal recovery when K is ...

[image: alt]

A faster algorithm for finding optimal semi-matching

Sep 29, 2007 - CancelAll(N2). Figure 2: Divide-and-conquer algorithm. To find the min-cost flow in N, the algorithm use a subroutine called CancelAll to cancel.

[image: alt]

Efficient FDTD algorithm for plane-wave simulation for ...

propose an algorithm that uses a finite-difference time-domain velocity is on the free surface; in grid type 2, the vertical component is on the free surface. 50 Hz. The model consists of a 100-m-thick attenuative layer of QP. = 50 and QS

[image: alt]

New star pattern recognition algorithm for APS star ...

to make sure the compatibility of the software and the imaging sensor noise level. The new ... in position as well as in magnitude determination, especially in the dynamic stages. This ... Two main reasons incite to the development of high.

[image: alt]

Generalized compressive sensing matching pursuit algorithm

Generalized compressive sensing matching pursuit algorithm. Nam H. Nguyen, Sang Chin and Trac D. Tran. In this short note, we present a generalized greedy ...

×
Report Efficient Pattern Matching Algorithm for Memory ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

