REPESENTASI HAMILTONIAN MEKANIKA Mekanika Hamilton adalah reformulasi dari mekanika klasik yang diperkenalkan pada 1833 oleh matematikawan Irlandia William Rowan Hamilton . Ini muncul dari mekanika Lagrangian , sebuah reformulasi sebelumnya mekanika klasik diperkenalkan oleh Joseph Louis Lagrange pada 1788, tetapi dapat dirumuskan tanpa recourse pada mekanika Lagrangian menggunakan ruang symplectic (lihat formalisme Matematika , di bawah). Metode Hamilton berbeda dari metode Lagrangian dalam bahwa alih-alih mengungkapkan-diferensial kendala kedua pada n-dimensi ruang koordinat (dimana n adalah jumlah derajat kebebasan sistem), itu mengungkapkan kendala-order pertama n 2 -dimensi ruang fase . Seperti dengan mekanika Lagrange, Hamilton persamaan dan setara menyediakan cara baru dalam memandang mekanika klasik.

Secara umum,

persamaan ini tidak menyediakan cara yang lebih mudah untuk menyelesaikan masalah tertentu.

Sebaliknya, mereka memberikan wawasan yang lebih

mendalam ke kedua struktur umum mekanika klasik dan hubungannya dengan mekanika

kuantum

sebagai

dipahami

melalui

mekanik

Hamilton,

serta

hubungannya ke area lain dari ilmu pengetahuan. Sekilas Sederhana penggunaan Nilai Hamiltonian adalah energi total sistem sedang dijelaskan.

Untuk

sistem tertutup, itu adalah jumlah dari kinetik dan energi potensial dalam sistem. Ada satu set persamaan diferensial yang dikenal sebagai persamaan Hamilton yang memberikan evolusi waktu dari sistem. Hamiltonians dapat digunakan untuk menjelaskan sistem sederhana seperti bola memantul, pendulum atau osilasi pegas di mana perubahan energi dari kinetik ke waktu potensi dan kembali lagi berakhir. Hamiltonians juga dapat digunakan untuk model energi lain dinamis

sistem yang lebih kompleks seperti orbit planet di mekanika langit dan juga dalam mekanika kuantum. Persamaan Hamilton umumnya ditulis sebagai berikut:

Dalam persamaan di atas, dot menunjukkan derivatif biasa terhadap waktu dari fungsi p = p (t) (momentum umum disebut) dan q = q (t) (disebut umum koordinat ), nilai mengambil di beberapa ruang vektor, dan

=

adalah

apa yang disebut Hamilton, atau (skalar dinilai) fungsi Hamiltonian. Jadi, lebih eksplisit, satu dipersamakan bisa menulis

dan menentukan domain nilai di mana parameter t (waktu) bervariasi. Untuk derivasi rinci dari persamaan dari mekanika Lagrangian , lihat di bawah. fisik interpretasi Dasar Interpretasi sederhana dari Persamaan Hamilton adalah sebagai berikut, menerapkannya ke sistem satu dimensi yang terdiri dari satu partikel dengan massa m dalam waktu kondisi batas independen dan menunjukkan konservasi energi : The Hamiltonian

merupakan energi dari sistem, yang merupakan

jumlah kinetik dan energi potensial , dilambangkan tradisional T dan V, masingmasing. Berikut q adalah x-koordinat dan p adalah momentum, mv. Kemudian

Perhatikan bahwa T adalah fungsi dari p saja, sedangkan V adalah fungsi dari x (atau q) saja. Sekarang waktu turunan dari p momentum sama dengan gaya Newtonian, dan sebagainya di sini Persamaan Hamilton pertama berarti bahwa gaya pada partikel sama dengan tingkat di mana ia kehilangan energi potensial terhadap perubahan

x, lokasi. (Angkatan sama dengan negatif gradien energi potensial.) The-turunan terhadap waktu dari q di sini berarti kecepatan: Hamilton kedua Persamaan di sini berarti bahwa partikel kecepatan sama dengan turunan dari energi kinetik yang berkaitan dengan momentum. (Karena derivatif sehubungan dengan p p 2 / 2 m sama dengan p / m / m = v mv =.) Menggunakan's persamaan Hamilton 1. Pertama menulis keluar Lagrangian L = T - V. T Express dan V seolaholah Anda akan menggunakan persamaan Lagrange's. 2. Hitung momentum dengan membedakan Lagrangian sehubungan dengan kecepatan:

.

3. Express kecepatan dalam hal momentum dengan membalik ekspresi dalam langkah (2). 4. Hitung Hamilton menggunakan definisi biasa H sebagai transformasi

Legendre L:

.

kecepatan dengan menggunakan hasil pada langkah (3). 5. Hamilton Terapkan persamaan.

Pengganti untuk

Catatan Teman-persamaan Hamilton yang menarik mengingat kesederhanaan yang indah dan (sedikit rusak ) simetri . Mereka telah dianalisis di bawah dibayangkan hampir setiap sudut pandang, dari fisika dasar sampai ke geometri symplectic . Banyak yang diketahui tentang solusi persamaan ini, namun tepat solusi umum kasus persamaan gerak tidak dapat diberikan secara eksplisit untuk sistem lebih dari dua partikel titik masif. Temuan jumlah kekal memainkan peranan penting dalam mencari solusi atau informasi tentang alam mereka. Dalam model dengan jumlah tak terbatas derajat kebebasan , ini tentu saja lebih rumit.

An dan

menjanjikan daerah yang menarik dari penelitian adalah studi tentang sistem terintegral , dimana jumlah tak terbatas jumlah yang kekal yang independen dapat dibangun. Hamilton persamaan Menderivasi Kita dapat memperoleh's persamaan Hamilton dengan melihat bagaimana diferensial total dari Lagrangian tergantung pada waktu, posisi umum dan kecepatan umum:

Sekarang momentum umum didefinisikan sebagai Lagrange's memberitahu kita bahwa

Kita dapat mengatur ulang ini untuk mendapatkan

dan persamaan

dan pengganti hasilnya ke diferensial total Lagrangian

Kita dapat menulis ulang ini sebagai

dan mengatur ulang lagi untuk mendapatkan

Istilah di sisi sebelah kiri adalah hanya Hamilton yang kita telah mendefinisikan sebelumnya, jadi kami menemukan bahwa

di mana persamaan kedua memegang karena definisi dari derivatif parsial. Mengasosiasikan istilah dari kedua sisi persamaan di atas persamaan menghasilkan Hamilton

Sebagai reformulasi mekanika Lagrangian Dimulai dengan mekanika Lagrangian , maka persamaan gerak didasarkan pada koordinat umum

dan mencocokkan kecepatan umum

Kami menulis Lagrangian sebagai

dengan variabel subscript dipahami untuk mewakili semua variabel N tipe itu. mekanika Hamilton bertujuan untuk menggantikan variabel kecepatan umum dengan variabel momentum umum, juga dikenal sebagai momentum konjugat. Dengan demikian, adalah mungkin untuk menangani sistem tertentu, seperti aspek mekanika kuantum, yang lain akan lebih rumit. Untuk setiap kecepatan umum, ada satu sesuai momentum konjugat , didefinisikan sebagai:

Dalam koordinat Cartesian , momentum umum adalah justru linier fisik momentum . Dalam lingkaran kutub koordinat , momentum umum sesuai dengan kecepatan angular adalah fisik momentum sudut .

Untuk pilihan sewenang-

wenang dari koordinat umum, tidak mungkin untuk mendapatkan interpretasi intuitif momentum konjugat. Satu hal yang tidak terlalu jelas dalam koordinat ini formulasi terikat adalah koordinat umum yang berbeda benar-benar tidak lebih dari coordinatizations berbeda dari yang sama manifold symplectic . Perumusan Hamiltonian adalah transformasi Legendre dari Lagrangian :

Jika persamaan transformasi mendefinisikan koordinat umum independen

t, dan Lagrangian adalah jumlah produk fungsi (dalam koordinat umum) yang homogen order 0, 1 atau 2, maka dapat ditunjukkan bahwa H adalah sebesar E energi total = T + V. Setiap sisi dalam definisi

menghasilkan diferensial:

Menggantikan definisi sebelumnya momentum konjugat ke dalam persamaan dan koefisien yang sesuai, kita memperoleh persamaan gerak mekanika Hamiltonian, yang dikenal sebagai persamaan kanonik Hamilton:

Teman-persamaan Hamilton adalah orde pertama persamaan diferensial , dan dengan demikian lebih mudah untuk memecahkan persamaan Lagrange dari itu, yang orde kedua. persamaan Hamilton memiliki keuntungan lain atas persamaan Lagrange's: jika sistem memiliki simetri, seperti yang koordinat tidak terjadi di Hamilton, momentum yang terkait dilestarikan, dan yang mengkoordinasikan dapat diabaikan dalam persamaan lainnya dari set tersebut. mengurangi masalah dari n koordinat untuk (n-1) koordinat.

Efektif, ini

Dalam rangka

Lagrangian, tentu hasilnya bahwa momentum yang sesuai adalah kekal masih

mengikuti segera, tapi semua kecepatan umum masih terjadi di Lagrangian - kita masih harus menyelesaikan suatu sistem persamaan dalam n koordinat.

[4]

Pendekatan Lagrangian dan Hamiltonian menyediakan dasar untuk hasil lebih dalam teori mekanika klasik, dan untuk formulasi mekanika kuantum. Geometri sistem Hamiltonian Sebuah sistem Hamiltonian dapat dipahami sebagai bundel serat E selama waktu R, dengan serat t E, t ∈ R sebagai ruang posisi. The Lagrangian dengan demikian fungsi pada bundel jet J atas E; mengambil fiberwise transformasi Legendre dari Lagrangian menghasilkan fungsi pada berkas ganda dari waktu ke waktu yang serat di t adalah ruang kotangens T

*

E

t,

yang dilengkapi dengan

alami symplectic bentuk , dan fungsi yang terakhir adalah Hamiltonian. Generalisasi untuk mekanika kuantum melalui braket Poisson Hamilton persamaan di atas bekerja dengan baik untuk mekanika klasik , tapi tidak untuk

mekanika

kuantum

,

sejak dibahas persamaan

diferensial

mengasumsikan bahwa seseorang dapat menentukan posisi yang tepat dan momentum partikel secara simultan pada setiap titik waktu. Namun, persamaan dapat lebih umum untuk kemudian diperluas untuk diterapkan ke mekanika kuantum serta mekanika klasik, melalui deformasi dari aljabar Poisson lebih dari p dan q ke aljabar kurung Moyal . Secara khusus, bentuk yang lebih umum dari persamaan Hamilton reads

dimana f adalah beberapa fungsi dari p dan q, dan H adalah Hamiltonian. Untuk mengetahui

aturan

untuk

mengevaluasi

sebuah

braket

Poisson

tanpa

menggunakan persamaan diferensial, lihat aljabar Lie , sebuah braket Poisson adalah nama untuk braket Lie dalam aljabar Poisson .

Poisson kurung ini

kemudian dapat diperpanjang untuk kurung Moyal comporting ke aljabar Lie inequivalent, sebagaimana dibuktikan oleh H Groenewold, dan dengan demikian menggambarkan difusi kuantum mekanik dalam ruang fase (lihat prinsip ketidakpastian dan kuantisasi Weyl ). Ini aljabar pendekatan yang lebih tidak hanya mengizinkan akhirnya memperluas distribusi probabilitas dalam ruang fase untuk kuasi-probabilitas distribusi Wigner , namun, pada braket Poisson pengaturan klasik belaka, juga menyediakan lebih banyak kekuatan dalam membantu menganalisis relevan jumlah dilestarikan dalam suatu sistem. formalisme Matematika Setiap halus -nilai fungsi nyata H pada manifold symplectic dapat digunakan untuk menentukan sistem Hamiltonian . Fungsi H dikenal sebagai Hamiltonian atau fungsi energi. symplectic tersebut manifold ini kemudian disebut dengan ruang fase .

The Hamilton menginduksi khusus medan vektor di manifold

symplectic, yang dikenal sebagai medan vektor symplectic . Bidang vektor symplectic, juga disebut medan vektor Hamilton, menginduksi aliran Hamiltonian pada manifold. Para kurva integral dari medan vektor adalah parameter-keluarga salah satu transformasi dari manifold, parameter kurva ini biasanya disebut waktu.

Evolusi waktu diberikan oleh symplectomorphisms .

Dengan Teorema Liouville , setiap symplectomorphism menjaga bentuk volume pada ruang fase . Pengumpulan symplectomorphisms disebabkan oleh aliran Hamilton umumnya disebut mekanika Hamiltonian sistem Hamiltonian. Struktur symplectic menginduksi kurung Poisson . Braket Poisson memberikan ruang fungsi pada struktur manifold dari suatu aljabar Lie .

Mengingat fungsi f

Jika kita memiliki distribusi probabilitas , ρ, maka (karena ruang kecepatan fase (

) Memiliki divergensi nol, dan probabilitas kekal) derivatif konvektif yang

dapat ditunjukkan dengan nol dan

Hal ini disebut Teorema Liouville . Setiap fungsi halus G selama symplectic manifold menghasilkan parameter-keluarga salah satu symplectomorphisms dan jika {G, H} = 0, maka G adalah kekal dan symplectomorphisms adalah transformasi simetri . Sebuah Hamilton dapat memiliki beberapa dilestarikan jumlah

i

G.

Jika

symplectic manifold memiliki dimensi 2 n dan ada n fungsional independen dilestarikan jumlah i G yang dalam involusi (yaitu, {G

i,

G

j}

= 0), maka Hamilton

Liouville integrable . The -Arnol'd Teorema Liouville mengatakan bahwa secara lokal,

setiap

integrable

Liouville

Hamiltonian

dapat

diubah

symplectomorphism di sebuah Hamiltonian baru dengan jumlah

i

melalui

G dilestarikan

sebagai koordinat, koordinat yang baru disebut tindakan-sudut koordinat. The Hamilton berubah tergantung hanya pada i G, dan karenanya persamaan gerak memiliki bentuk sederhana

untuk beberapa fungsi F (Arnol'd et al 1988.,). Ada seluruh bidang berfokus pada penyimpangan kecil dari sistem integrable diatur oleh teorema KAM .

The integrability bidang vektor Hamilton pertanyaan terbuka.

Secara umum,

sistem Hamilton adalah chaos ; konsep ukuran, kelengkapan, integrability dan stabilitas yang buruk didefinisikan. Pada saat ini, studi tentang sistem dinamis terutama kualitatif, dan bukan ilmu kuantitatif. manifold Riemann Kasus khusus yang penting adalah mereka Hamiltonians yang bentuk kuadrat , yaitu, Hamiltonians yang dapat ditulis sebagai

mana

adalah lancar bervariasi hasil kali dalam pada serat

, Yang

ruang kotangens ke q titik di ruang konfigurasi , kadang-kadang disebut cometric . Hamiltonian ini terdiri seluruhnya dari istilah kinetik . Jika seseorang mempertimbangkan manifold Riemann atau manifold pseudoRiemann , yang Riemann metrik menginduksi isomorfisma linier antara dan kotangens bundel tangen.

(Lihat isomorfisma Musik ).

isomorfisma ini, kita dapat menentukan cometric.

Menggunakan

(Dalam koordinat, matriks

mendefinisikan cometric adalah kebalikan dari matriks mendefinisikan metrik.) Solusi-solusi terhadap persamaan Hamilton-Jacobi untuk Hamilton adalah maka sama dengan geodesics di manifold. Secara khusus, aliran Hamiltonian dalam hal ini adalah hal yang sama dengan aliran geodesic . Adanya solusi tersebut, dan kelengkapan dari himpunan solusi, dibahas secara rinci dalam artikel di geodesics . Lihat juga Geodesics sebagai arus Hamiltonian . Sub-manifold Riemann

Ketika cometric sudah mati, maka tidak invertible. Dalam hal ini, seseorang tidak memiliki manifold Riemann, sebagai salah satu tidak memiliki metrik. Namun, Hamiltonian masih ada. Dalam kasus di mana cometric sudah mati di setiap q titik ruang konfigurasi Q manifold, sehingga peringkat dari cometric kurang dari dimensi Q manifold, satu memiliki sub-Riemann manifold . The Hamiltonian dalam kasus ini dikenal sebagai sub-Riemann Hamiltonian. Setiap Hamilton unik seperti menentukan cometric, dan sebaliknya. Ini berarti bahwa setiap sub-Riemann manifold secara unik ditentukan oleh anak-Riemann Hamilton pembantu, dan yang sebaliknya adalah benar: setiap sub-Riemann Hamiltonian manifold memiliki sub-Riemann unik.

Keberadaan-Riemann

geodesics sub diberikan oleh -Rashevskii teorema Chow . Yang terus-menerus, real-nilai kelompok Heisenberg memberikan contoh sederhana dari manifold Riemann-sub.

Untuk kelompok Heisenberg, yang

Hamiltonian diberikan oleh

p z tidak terlibat dalam Hamiltonian. aljabar Poisson Hamilton sistem dapat digeneralisir dalam berbagai cara. Bukan hanya melihat aljabar dari fungsi mulus selama manifold symplectic , mekanik Hamilton dapat dirumuskan pada umumnya komutatif unital nyata aljabar Poisson .

Sebuah

negara adalah kontinu linier fungsional pada aljabar Poisson (dilengkapi dengan beberapa sesuai topologi ) sedemikian rupa sehingga untuk setiap elemen A aljabar, A peta ² ke bilangan real tak negatif. Sebuah generalisasi lebih lanjut diberikan oleh dinamika Nambu .

partikel Dibebankan dalam medan elektromagnetik Sebuah ilustrasi yang baik dari mekanika Hamiltonian diberikan oleh Hamiltonian dari partikel bermuatan dalam medan elektromagnetik . Cartesian (yaitu q

i

= x

i),

Dalam koordinat

Lagrangian relativistik klasik dari partikel-non medan

elektromagnetik (dalam SI Unit ):

dimana e adalah muatan listrik dari partikel (tidak harus muatan elektron), φ adalah skalar potensial listrik , dan

i

A adalah komponen dari vektor potensial

magnetik (ini dapat diubah melalui transformasi gauge ). Momentum umum mungkin diturunkan oleh:

Pengaturan ulang, kita dapat menyatakan kecepatan dalam hal momentum, seperti:

Jika kita mengganti definisi momentum, dan definisi kecepatan dalam hal momentum, ke definisi dari Hamiltonian diberikan di atas, dan kemudian menyederhanakan dan mengatur ulang, kita mendapatkan:

Persamaan ini sering digunakan dalam mekanika kuantum .

relativistik partikel bermuatan dalam medan elektromagnetik The Lagrangian untuk partikel bermuatan relativistik diberikan oleh:

Jadi kanonik partikel (total) momentum

yaitu jumlah momentum kinetik dan momentum potensial. Penyelesaian untuk kecepatan, kita mendapatkan

Jadi Hamilton adalah

Dari sini kita mendapatkan persamaan gaya (setara dengan -Lagrange persamaan Euler )

dari yang satu dapat memperoleh

Sebuah ekspresi yang setara untuk Hamiltonian sebagai fungsi dari momentum (kinetik) relativistik,

adalah

Hal ini memiliki keuntungan yang tidak bisa.

dapat diukur secara eksperimen sedangkan

Perhatikan bahwa (Hamiltonian total energi ) dapat dipandang

sebagai jumlah dari energi relativitas (kinetik + istirahat) ,

ditambah

dengan energi potensial ,

Referensi 

Arnol'd, VI (1989), Metode Matematika Mekanika Klasik, Springer-Verlag, ISBN 0-387-96890-3



Ibrahim, R. ; Marsden, JE (1978), Yayasan Mekanika, London: BenjaminCummings, ISBN 0-8053-0102-X



Arnol'd, VI ; Kozlov, VV; Neĩshtadt, AI (1988), aspek Matematika dan langit

mekanika klasik, 3, Springer-Verlag 

Vinogradov, AM; Kupershmidt, BA (1981) ( DjVu ), Struktur mekanika

Hamiltonian , London Math.

Soc.

Lek.

Catatan Ser:., 60, London

Cambridge Univ. Tekan, http://diffiety.ac.ru/djvu/structures.djvu Pranala luar



Binney, James J. , Mekanika Klasik (catatan kuliah) , Universitas Oxford , http://www-thphys.physics.ox.ac.uk/users/JamesBinney/cmech.pdf

,

diakses 27 Oktober 2010 

Tong, David , Klasik Dinamika (Cambridge catatan kuliah) , University of Cambridge

,

http://www.damtp.cam.ac.uk/user/tong/dynamics.html

diakses 27 Oktober 2010

,

REPESENTASI HAMILTONIAN MEKANIKA.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. REPESENTASI ...

355KB Sizes 1 Downloads 178 Views

Recommend Documents

HAMILTONIAN PDE'S AND WEAK TURBULENCE ...
The mathematical tools are basic ones, essentially Fourier series and ODE's. References. [1] Bourgain, J. ... E-mail address: [email protected]. 1.

HAMILTONIAN PDE'S AND WEAK TURBULENCE ...
The mathematical tools are basic ones, essentially Fourier series and ODE's. FDP/MAPMO-UMR 7349, ... E-mail address: [email protected]. 1.

Hamiltonian Monte Carlo for Hierarchical Models
Dec 3, 2013 - eigenvalues, which encode the direction and magnitudes of the local deviation from isotropy. data, latent mean µ set to zero, and a log-normal ...

Teitelboim, Hamiltonian Formulation of General Relativity.pdf ...
Whoops! There was a problem loading more pages. Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Teitelboim, Hamiltonian Formulation of General Relat

Model Reduction of Port-Hamiltonian Systems as ...
Rostyslav V. Polyuga is with the Centre for Analysis, Scientific computing and Applications ... Of course, the matrix D and the vector x in. (2) are different from ...

Hamiltonian mechanics and its applications (2).pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Hamiltonian ...

An Improved Degree Based Condition for Hamiltonian ...
Lenin Mehedy1, Md. Kamrul Hasan1 and Mohammad Kaykobad2. 1Department of Computer Engineering, Kyung Hee University, South Korea. 2Department of Computer Science and Engineering, North South University, Dhaka, Bangladesh. Email: 1{lenin, kamrul}@oslab

Gyromap for a two-dimensional Hamiltonian fluid model ...
the constant ion temperature normalized by the electron tem- perature, and f;g. Ѕ Љ ј z Б $f В $g is the canonical bracket in the plane across the magnetic field B ...

Unimodality of Betti numbers for Hamiltonian circle actions ... - IBS-CGP
Apr 20, 2016 - b2n(M)} is unimodal, i.e. bi(M) ≤ bi+2(M) for every i < n. Recently, the author and Kim [Y. Cho and M. Kim, Unimodality of the Betti numbers for ...

Hamiltonian circle action with self-indexing moment map
and we call i∗ .... We call such a class CY the canonical class with respect to Y . In the case when all the fixed ..... School of Mathematics, Korea Institute for Advanced Study ... Center for Geometry and Physics, Institute for Basic Science (IBS

Interpolation-Based H_2 Model Reduction for Port-Hamiltonian Systems
reduction of large scale port-Hamiltonian systems that preserve ...... [25] J. Willems, “Dissipative dynamical systems,” Archive for Rational. Mechanics and ...

solved problems in lagrangian and hamiltonian mechanics pdf ...
solved problems in lagrangian and hamiltonian mechanics pdf. solved problems in lagrangian and hamiltonian mechanics pdf. Open. Extract. Open with. Sign In.

Unimodality of the Betti numbers for Hamiltonian circle ...
and denote by ˜ωH the push-forward of ωH. Obviously, the restriction of ˜ωH on each fiber M is precisely ω and we call a class [˜ωH] ∈ H2. S1 (M) an equivariant ...

Interpolation-Based H_2 Model Reduction for Port-Hamiltonian Systems
Abstract—Port network modeling of physical systems leads directly to an important class of passive state space systems: port-Hamiltonian systems. We consider here methods for model reduction of large scale port-Hamiltonian systems that preserve por

Log-concavity of complexity one Hamiltonian torus ...
entropy of the system, which measures the degree of disorder in the system. ..... such that (c − ϵ,c + ϵ) does not contain a critical value except for c. Let Nc be a ...

Adaptive Control of Uncertain Hamiltonian Multi-Input ...
Jul 16, 2009 - ... versions of one or more of the figures in this paper are available online ..... defined in (9) can be easily obtained using symbolic math pack-.

Adaptive Control of Uncertain Hamiltonian Multi-Input Multi-Output ...
actuator matrix D ∈ Rn×m. For full tracking control, it is generally required that n ≤ m and D has full row rank. Expressing dynamics of systems in the form of Eq.

Model Reduction of Port-Hamiltonian Systems as ...
Hamiltonian systems, preserving the port-Hamiltonian structure ... model reduction methods for port-Hamiltonian systems. ..... Available from http://proteomics-.