Bootstrapping high-frequency jump tests: Supplementary Appendix∗ Prosper Dovonon

S´ılvia Gon¸calves McGill University

Concordia University

Ulrich Hounyo University at Albany, SUNY and CREATES

Nour Meddahi Toulouse School of Economics

November 15, 2017

This supplementary appendix is organized as follows. In Section S1, we first provide an auxiliary lemma and then provide proofs of the general bootstrap results appearing in Section 3 of the main paper. In Section S2, we establish the results appearing in Section 4 of the main paper. In particular, this section contains the asymptotic expansion of the cumulants of the asymptotic test statistic Tn and its bootstrap versions Tn∗ and T¯n∗ . The limits of these cumulants are derived by relying on some auxiliary lemmas that are introduced and proved in this section of the appendix. Detailed formulas useful for the implementation of the log version of our tests are provided in Appendix S3. Finally, Section S4 presents the theoretical justification for the local Gaussian bootstrap when applied to two alternative jump tests: the test of Podolskij and Ziggel (2010) and the big jumps test of Lee and Hannig (2010).

Appendix S1: Proofs of results in Section 3 ∗ ∗ 0 ∗ We p nfirst derive the first and second order bootstrap moments of (RVn , BVn ) . Note that since ri = vˆi · ηi , we can write

RVn∗ =

n X

vˆin · ui

and

BVn∗ =

i=1

n 1 X n 1/2 n 1/2 vˆ (ˆ v i ) · wi k12 i=2 i−1

where ui ≡ ηi2 and wi ≡ |ηi−1 | |ηi |, with ηi ∼ i.i.d. N (0, 1). The bootstrap moments of (RVn∗ , BVn∗ )0 depend on the moments and dependence properties of (ui , wi ) . The proof is trivial and is omitted for brevity. Lemma S1.1 If ri∗ = (a1) E ∗ (RVn∗ ) =

n P i=1

p

vˆin · ηi ,

i = 1, . . . , n, where ηi ∼ i.i.d. N (0, 1), then

vˆin .



We are grateful for comments from participants at the SoFie Annual Conference in Toronto, June 2014, and at the IAAE 2014 Annual Conference, Queen Mary, University of London, June 2014. We are also grateful to two anonymous referees and an associate editor for many valuable suggestions. Dovonon, Gon¸calves and Meddahi acknowledge financial support from a ANR-FQRSC grant. In addition, Ulrich Hounyo acknowledges support from CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation, as well as support from the Oxford-Man Institute of Quantitative Finance.

1

(a2) E ∗ (BVn∗ ) =

n P i=2

n vˆi−1

1/2

(ˆ vin )1/2 .

n P √ (ˆ vin )2 . (a3) V ar∗ ( nRVn∗ ) = 2n i=1

n n   P  P  n 1/2 √ n n (ˆ vin ) vˆi−1 + 2 k1−2 − 1 n (ˆ vin )1/2 vˆi−1 (a4) V ar∗ ( nBVn∗ ) = k1−4 − 1 n vˆi−2 . i=3

i=2

n n 3/2 1/2 P P √ √ n n (ˆ vin )1/2 vˆi−1 . (ˆ vin )3/2 vˆi−1 +n (a5) Cov ∗ ( nRVn∗ , nBVn∗ ) = n i=2

i=2

Proof of Theorem 3.1. We first show that   RVn∗ − E ∗ (RVn∗ ) d∗ ∗ ∗−1/2 √ Zn ≡ Σn n −→ N (0, I2 ) , ∗ ∗ ∗ BVn − E (BVn ) in prob-P . Write −1/2

Zn∗ = Σ∗n

n n √ X √ X n Di e∗i = n zi∗ , i=1

∗−1/2

with zi∗ = Σn

(S1.1)

i=1

Di e∗i , and

Di =

vˆin 0

!

0 1 k12

n (ˆ vin )1/2 vˆi−1

,

1/2

and

e∗i

 =

ui − E ∗ (ui ) wi − E ∗ (wi )

 ,

where we set vˆ0n = 0 and where ui = ηi2 and wi = |ηi | |ηi−1 | and ηi ∼ i.i.d. N (0, 1). Note that e∗i is a zero mean vector that is lag-1-dependent. We follow Pauly (2011) and rely on a modified Cramer-Wold device to establish the bootstrap CLT. Let D = {λk : k ∈ N} be a countable dense subset of the unit d∗

circle of R2 . We have to show that for any λ ∈ D, λ0 Zn∗ → N (0, 1), in prob-P , as n → ∞. From Lemma 3.1, we have V ar∗ (λ0 Zn∗ ) = 1 for all n. Hence, to conclude, it remains to establish that 0 λ Zn∗ is asymptotically normally distributed, conditionally on the original sample and with probability P approaching one. Since zi∗ ’s are lag-1-dependent, we adopt the large-block-small-block type of argument to prove this central limit result (see Shao (2010) for an example of this idea). The large blocks are made of Ln successive observations followed by a small block that is made of a single element. h i Let `n = Lnn+1 . Define the (large) blocks Lj = {i ∈ N : (j − 1)(Ln + 1) + 1 ≤ i ≤ j (Ln + 1) − 1}, P where 1 ≤ j ≤ `n and L`n +1 = {i ∈ N : `n (Ln +1)+1 ≤ i ≤ n}. Let Uj∗ = i∈Lj λ0 zi∗ , j = 1, . . . , `n +1. Clearly, `n n +1 √ `X √ X 0 ∗ ∗ ∗ λ Zn = n Uj + n λ0 zj(L . n +1) j=1

j=1

Next, we show that under Condition A, √ P`n 0 ∗ (i) n j=1 λ zj(Ln +1) = oP ∗ (1), in prob-P ; and (ii) for some δ > 0, `X n +1 √ 2+δ P E ∗ nUj∗ → 0. j=1

√ P n +1 ∗ d∗ This latter is sufficient to deduce that n `j=1 Uj → N (0, 1), in prob-P , since {Uj } form an independent array, conditionally on the sample. The expected result then follows from (i). Let us 2

 √ P n ∗ λ0 zj(L = oP (1). establish (i). Since E ∗ (zi∗ ) = 0 for all i, it suffices to show that V ar∗ n `j=1 n +1)  √ P n Letting Ω∗n ≡ V ar∗ Dj(Ln+1 ) e∗j(Ln +1) , by the Cauchy-Schwarz inequality, we have: n `j=1

 

`n



X



∗−1/2 2 ∗ ∗ 0 ∗−1/2 ∗ ∗−1/2 ∗

V ar  n  = λ Σ Ω Σ λ ≤ Σ z

n

kΩn k . n n n j(Ln +1)

j=1   2 2 P ∗ Condition A and Lemma 3.1 ensure that Σn → IQ which is positive definite almost 2 θ −1/2 ∗ surely. Hence Σ∗n = OP (1). Turning to Ω∗n , since Ln ≥ 1 for n large enough, zj(L ’s are n +1) independent along j conditionally on the sample so that Ω∗n

=n

`n X

  0 Dj(Ln+1 ) E ∗ e∗j(Ln +1) e∗0 j(Ln +1) Dj(Ln+1 ) .

j=1

By the triangle and the Cauchy-Schwarz inequalities, we have: kΩ∗n k ≤ n

`n `n  X X



∗ ∗

∗0

Dj(L ) 2 ,

Dj(L ) 2 e e ≤ Cn E

j(Ln +1) j(Ln +1) n+1 n+1 j=1

j=1

where C is a generic constant. Hence,  2 `n P n ∗ vˆj(L kΩn k ≤ Cn + n +1) j=1

≤ Cn

`n  P j=1

n vˆj(L n +1)

2

+C

1 k14

  n vˆj(Ln +1)−1 ! 1/2 2 1/2  P `n  n P n n vˆj(Ln +1) n (ˆ vin )2 

n vˆj(L n +1)

j=1

i=1

= oP (1) + oP (1)OP (1) = oP (1) with the equalities following from Condition A. Next, we verify (ii). Let δ > 0. For any 1 ≤ j ≤ `n + 1, we have 2+δ

∗ 2+δ X 0 ∗

∗−1/2 2+δ X Uj = λ zi kDi k2+δ ke∗i k2+δ ≤ L1+δ Σ

n n i∈Lj i∈Lj where the inequality follows from the Jensen’s and the Cauchy-Schwarz inequalities. It follows that

2+δ X

2+δ

∗−1/2 2+δ X 2+δ ∗ ∗ 2+δ 1+δ ∗−1/2 ≤ CL Σ kDi k2+δ , kD k E ke k E ∗ Uj∗ ≤ L1+δ Σ



i n n n n i i∈Lj

i∈Lj

implying that `X n +1

E

∗ √



2+δ nUj∗



Cn1+δ/2 L1+δ n

`n +1

∗−1/2 2+δ X X kDi k2+δ

Σn

j=1 i∈Lj

j=1



Cn1+δ/2 L1+δ n

  `n +1

 2+δ

∗−1/2 2+δ X X n n (2+δ) n 2+δ 2 (ˆ vi ) + (ˆ vi ) 2 vˆi−1

Σn

j=1 i∈Lj



Cn1+δ/2 L1+δ n

 n 

 2+δ

∗−1/2 2+δ X n (2+δ) n 2+δ n 2 2 (ˆ vi ) + (ˆ vi ) vˆi−1

Σn

i=1

2+δ

≤ C Σ∗−1/2 nα(1+δ)−δ/2

n

n1+δ

n X i=1

3

! (ˆ vin )(2+δ)

  = OP nα(1+δ)−δ/2 ,

where the second inequality follows from the Jensen’s inequality (recall that C is generic constant) and the last one follows from the Cauchy-Schwarz inequality, given that Ln = Cnα . Since α ∈ [0, 37 ),  2α 1−2α

∈ [0, 6). Choosing any δ ∈ This establishes (S1.1).

2α 1−2α , 6

ensures the last equality, given Condition A(i)) and (ii).

p √ d∗ By the delta method, we can claim that n(RVn∗ − BVn∗ − E ∗ (RVn∗ − BVn∗ ))/ Vn∗ −→ N (0, 1) in √ prob-P , with Vn∗ = V ar∗ ( n(RVn∗ − BVn∗ )). Therefore, to conclude, it suffices to show that Vˆn∗ − Vn∗ = P

oP ∗ (1), in prob-P . From Lemma 3.1 and Condition A(i), Vn∗ −→ τ IQ. Hence,  it∗ suffices to show that ∗ ∗ c n = IQ + oP ∗ (1), in prob-P . We can claim this by observing that E IQ c n = IQ + oP (1) and IQ  ∗  ∗ P n ∗ IQ n )2/3 (ˆ n )2/3 c c V ar∗ IQ vin )2/3 (ˆ vi−1 vi−2 n = oP (1). Indeed, it is not hard to obtain that E n =n i=3 (ˆ and that n   X 4/3 n 4/3 ∗ c∗ 2 n V ar IQn = C n (ˆ vin )4/3 vˆi−1 vˆi−2 i=3

+n2

+n

n X

2

n (ˆ vin )2/3 vˆi−1

i=4 n X

4/3

n vˆi−2

4/3

n vˆi−3

2/3 !

(ˆ vin )2/3

2/3 n vˆi−1

4/3 n vˆi−2

2/3 n vˆi−3

2/3 n vˆi−4

,

i=5

for some constant C that does not depend on n. The desired result follows from Condition A(i). st Proof of Theorem 3.2. Strong asymptotic size control: Since Tn −→ N (0, 1), in restriction to Ω0 , for all measurable subsets S of Ω0 , we have P (Tn ≤ x|S) → Φ(x), as n → ∞, where Φ(x) is the cumulative distribution function of the standard normal random variable. Also, since the bootstrap P is valid on Ω0 , in restriction to this set, we have P ∗ (Tn∗ ≤ x) → Φ(x). Thus, by continuity of Φ(·), P

∗ denote the bootstrap (1 − α)supx∈R |P ∗ (Tn∗ ≤ x) − P (Tn ≤ x|S)| → 0. As a result, letting qn,1−α P

∗ quantile, we have P (Tn > qn,1−α |S) → α. This establishes that the bootstrap test controls the strong asymptotic size. d∗ Alternative-consistency: Since in restriction to Ω1 we still have under Condition A that Tn∗ → ∗ N (0, 1), in prob-P , we have Tn∗ = OP ∗ (1), in prob-P . As a result, we can claim that qn,1−α = OP (1).  P ∗ Since Tn → +∞ on Ω1 , it is clear that P ( Tn ≤ qn,1−α ∩ Ω1 ) → 0 as n → ∞. This establishes the alternative-consistency of the bootstrap test.

To prove Lemma 3.2, we rely on the following auxiliary result, the proof of which is omitted since it follows from simple algebra. Lemma S1.2 Let {ai : i = 1, . . . , n} be any sequence such that for i = 1, . . . , n/M, aj+(i−1)M = a ¯i , PK Pk K j = 1, . . . , M . Then, for any (s1 , . . . , sK ) ∈ R , letting s = k=1 sk and s¯k = l=1 sl , we have that for M ≥ K − 1, n Y K X

n/M k asi−k+1

= (M − K + 1)

i=1 k=1

X

s

(¯ aj ) +

j=1

K−1 X n/M X

(¯ aj )s¯k (¯ aj−1 )s−¯sk .

k=1 j=2

n by v¯i . For kn Proof of Lemma 3.2. For i = 1, . . . , knn and j = 1, . . . , kn , let us denote vˆj+(i−1)k n large enough, by Lemma S1.2, we have

n

−1+ 2q

n Y K X i=K k=1

n vˆi−k+1

 qk 2

n/kn n/kn K−1 n/kn q¯k q−¯ qk q q kn X 1 X 1 X X = (n¯ vi ) 2 + (1 − K) (n¯ vi ) 2 + (n¯ vi ) 2 (n¯ vi−1 ) 2 . n n n i=1

i=1

4

k=1 i=2

Using the notations of Theorem A.1, note that n¯ vi = cˆi,n . Hence, by this theorem, Z 1 n/kn n/kn q q kn X kn X P 2 2 (n¯ vi ) = (ˆ ci,n ) −→ σuq du. n n 0 i=1

i=1

This also shows that n/kn q 1 X (n¯ vi ) 2 = OP (kn−1 ) = oP (1). n i=1

Thus, to conclude, it remains to show that, for any k = 1, . . . , K − 1, n/kn n/kn q−¯ qk q−¯ qk q¯k q¯k 1 X 1 X vi−1 ) 2 ≡ ci−1,n ) 2 = oP (1). (n¯ vi ) 2 (n¯ (ˆ ci,n ) 2 (ˆ n n i=2

i=2

q¯k

q−¯ qk

For x, y ∈ R, let g(x, y) = |x| 2 |y| 2 . We have that    q    q q q q q |g(x, y)| ≤ max 1, (|x| + |y|) 2 ≤ 1 + (|x| + |y|) 2 ≤ 1 + Cq |x| 2 + |y| 2 ≤ Cq 1 + |x| 2 + |y| 2 for some Cq ≥ 1 where the third inequality follows from the Cr -inequality. Given Theorem A.1, Z 1 n/kn kn X P g(ˆ ci,n , cˆi−1,n ) −→ σuq du, n 0 i=2

hence n/kn 1 X g(ˆ ci,n , cˆi−1,n ) = OP (kn−1 ) = oP (1). n i=2

Proof of Theorem 3.3. It suffices to verify Condition A(i) and A(ii). Take Condition A(i). If X is continuous, by Lemma 3.2, A(i) holds for all q ∈ R+ and in particular for q ∈ [0, 8]. If X is not continuous, let q¯ = 8 and 0 ≤ q ≤ q¯. If q < 2, the convergence statement in A(i) holds, given Lemma 3.2. If 2 ≤ q ≤ q¯, since q 7→ (q − 1)/(2q − r) is an increasing function on [2, q¯], q¯−1 q−1 7 $ ≥ 16−r = 2¯ q −r ≥ 2q−r , and Lemma 3.2 implies the convergence statement in A(i). Next, consider Condition p A(ii). If X is continuous, given Lemma 1 of Barndorff-Nielsen, Shephard and Winkel (2006), |ri | = OP ( (log(n))/n), uniformly over i = 1, . . . , n. Thus, n

[n/(Ln +1)] 

X

n vˆj(L n +1)

2

= OP (n−α (log(n))2 ) = oP (1),

j=1

for all α ∈ (0, 73 ). Hence, A(ii) is fulfilled. If X is not continuous, thanks to the truncation, we have that [n/(Ln +1)]  2 X   n n vˆj(L = OP n2−α u4n = OP n2−α−4$ . n +1) j=1

Note that 2 − 4$ ≤

2 4 − 2r ≤ . 16 − r 7

Hence, A(ii) is fulfilled as we can choose α ∈ ( 27 , 37 ).

5

Appendix S2: Asymptotic expansions of the cumulants of Tn , Tn∗ and T¯n∗ In this section, we provide proofs for the results in Section 4. We start by introducing some notations and by presenting alternative expressions of Tn , Tn∗ and T¯n∗ that are suitable for higher order expansions. Then, we provide proofs of the main theorems, followed by useful auxiliary lemmas along with their proofs. R i/n R1 q We let vin = (i−1)/n σu2 du, σ q ≡ σuq du and σq,p ≡ pσ q/p , for any q, p > 0. Throughout σ ) ( 0 this section, E(·) and V ar(·) denote expectation and variance of the relevant quantities conditionally on the volatility process σ. We rely on the following expression of the test statistic Tn : Vˆn Vn

Tn = (Sn + An )

!−1/2

 −1/2 1 = (Sn + An ) 1 + √ (Un + Bn ) , n

(S2.1)

where √

Sn = Sn,1 − Sn,2 ≡ An =

Un =

n(RVn −E(RVn )) √ Vn

√ n(E(RVn )−E(BVn )) √ Vn

=

√ √n Vn







n P

i=1

vin

n(BVn −E(BVn )) √ Vn

n P v n 1/2 |v n |1/2 − i i−1



i=2

√ ˆ n(Vn −E (Vˆn )) Vn

n P Vˆn = τ kn3 |ri |4/3 |ri−1 |4/3 |ri−2 |4/3 4 3

i=3

  n P v n 2/3 v n 2/3 |v n |2/3 ; E Vˆn = τn i−2 i−1 i i=3

  τ = θ − 2 = k1−4 − 1 + 2 k1−2 − 1 − 2

√ Vn = V ar ( n (RVn − BVn ))  n n n 1/2 n 3/2 3/2 n 1/2 P P P 2 n n n = 2n (vi ) − 2 n vi−1 (vi ) + n vi−1 (vi ) +

Bn =

i=1 k1−4

i=2

3/2 − nVn

i=3

i=2

√ n(E (Vˆn )−Vn ) Vn 3/2 −2 nVn

i=2

n n  P  n  P 1/2 n  n 1/2 n n −1 n vi−1 (vi ) + 2 k1−2 − 1 n vi−2 vi−1 (vi )





n P

i=1

=

(vin )2

k1−4

n3/2 Vn τ



n P v n 2/3 v n 2/3 |v n |2/3 i−2 i−1 i

i=3

n P

1/2 n 3/2 n vi−1 (vi )



n P

3/2 n 1/2 n vi−1 (vi )



i=2  n n P  n P 1/2 n  n 1/2 −2 n n −1 vi−1 (vi ) + 2 k1 − 1 vi−2 vi−1 (vi ) . i=2

i=3

i=2

Similarly, for the bootstrap statistics, we have: √ Tn∗

=

 −1/2 n (RVn∗ − BVn∗ − E ∗ (RVn∗ − BVn∗ )) 1 ∗ ∗ ∗ ∗ q = (Sn + An ) 1 + √ (Un + Bn ) n Vˆ ∗ n

6

(S2.2)

and √ T¯n∗ =

n (RVn∗ − BVn∗ − E ∗ (RVn∗ − BVn∗ )) 1 q + 2 Vˆn∗



 −1/2  n (ˆ v n + vˆnn ) 1 ∗ ∗ ∗ ∗ ¯ q1 √ = S n + An 1 + (U + Bn ) , n n Vˆn∗ (S2.3)

where: ∗ − S∗ ≡ Sn∗ = Sn,1 n,2



√ n(RVn∗ −E ∗ (RVn∗ )) √ ∗ Vn



n(BVn∗ −E ∗ (BVn∗ )) √ ∗ Vn

A∗n = 0 √

A¯∗n =

1 2 √

Un∗ =

n n(vˆ1n +ˆ vn )



Vn∗

n(Vˆn∗ −E ∗ (Vˆn∗ )) Vn∗

n P r∗ 4/3 r∗ 4/3 |r∗ |4/3 Vˆn∗ = τ kn3 i−2 i−1 i 4 3

i=3

  n 2/3 n 2/3 n 2/3 P n E ∗ Vˆn∗ = τn vˆi−2 vˆi−1 (ˆ vi ) i=3

√ Vn∗ = V ar∗ ( n (RVn∗ − BVn∗ )) n n n  n 1/2  P P P n n (ˆ vin )1/2 vˆi−1 vˆi−2 (ˆ vin ) vˆi−1 + 2(k1−2 − 1)n = (ˆ vin )2 + (k1−4 − 1)n i=1

n P

−2n

i=2

Bn∗ =

√ n(E ∗ (Vˆn∗ )−Vn∗ ) Vn∗ 3/2 −2 nV ∗ n 3/2

− nV ∗ n

S2.1

(ˆ vin )3/2



n P

i=2 1/2 n vˆi−1 −

=

(ˆ vin )2

n3/2 Vn∗ τ n P

2n

n P i=2

i=3

(ˆ vin )1/2

3/2 n vˆi−1

n P vˆn 2/3 vˆn 2/3 |ˆ vin |2/3 i−1 i−2

i=3

1/2 n 3/2 n vˆi−1 (ˆ vi )

n P

3/2 n 1/2 n vˆi−1 (ˆ vi )



− − i=2 i=2 i=1  P n n  n P 1/2 n  n 1/2 −4 −2 n n k1,1 − 1 vˆi−1 (ˆ vi ) + 2 k1 − 1 vˆi−2 vˆi−1 (ˆ vi ) . i=2

i=3

Proofs of the main results

Proof of Theorem 4.1. The first and third cumulants of Tn are given by   κ1 (Tn ) = E (Tn ) and κ3 (Tn ) = E Tn3 − 3E Tn2 E (Tn ) + 2 [E (Tn )]3 . Following Gon¸calves and Meddahi (2009), provided that these two cumulants exist, we identify the  −1/2 terms of order up to O n in their asymptotic expansions. We first derive the first three moments  −1/2 of Tn up to O n . For a given value k, a first-order Taylor expansion of f (x) = (1 + x)−k/2   around 0 yields f (x) = 1 − k2 x + O x2 . We first derive the moments of Tn up to O n−1/2 . Using  Lemmas S2.1 and S2.3, we have An = O n−1/2 and Bn = O (1). Thus, using (S2.1), we have:  k Tnk = (Sn + An )k − √ (Sn + An )k (Un + Bn ) + OP n−1 2 n  k −1 ≡ Ten + OP n . 7

Hence, for k = 1, 2, 3, the moments of Tenk are given by   1 E Ten = E (Sn + An ) − √ E[(Sn + An ) (Un + Bn )] 2 n 1 = E (Sn ) + An − √ [E (Sn Un ) + Bn E (Sn ) + An E (Un ) + An Bn ] 2 n  E (Sn Un ) √ = − + An + O n−1 , |{z} 2 n ≡b1,n



E Ten2



1 = (Sn + An )2 − √ E[(Sn + An )2 (Un + Bn )] n   Bn   1 = E Sn2 + 2An E (Sn ) − √ E Sn2 Un − E Sn2 √ + O n−1 n n   1 B n = 1 − √ E Sn2 Un − √ + O n−1 , n n | {z } ≡b2,n

and   3 E Ten3 = E (Sn + An )3 − √ E[(Sn + An )3 (Un + Bn )] 2 n  3 = E Sn3 + 3An Sn2 − √ E[Sn3 (Un + Bn )] + O(n−1 ) 2 n      3 3 = E Sn3 − √ E Sn3 Un + 3An E Sn2 − √ E Bn Sn3 + O n−1 2 n 2 n     3 B 3 n = E Sn3 − √ E Sn3 Un + 3An − √ E Sn3 + O n−1 2 n 2 n {z } | ≡b3,n

 where we used E (Sn ) = 0 and E Sn2 = 1 (see Lemma S2.5 in the next subsection). Below, we let  Bn 3 Bn b1,n = An , b2,n = − √ , and b3,n = 3An − √ E Sn3 . 2 n n It follows that κ1 (Tn ) = −

E (Sn Un ) √ + b1,n , 2 n

(S2.4) " #   3 (E (Sn Un ))2 (E (Sn Un ))3 3 3 3 2 E (Sn Un ) √ κ3 (Tn ) = E Sn − √ E Sn Un + b3,n + 2 b1,n − 3b1,n + 3b1,n − 4n 2 n 2 n 8n3/2 " #  2U  E (S U ) E S E (Sn Un ) b1,n E (S U ) n n n n n n √ √ − √ E Sn2 Un + + b1,n −3 b1,n b2,n − b2,n − 2n 2 n n 2 n = κ3,1 (Tn ) + κ3,2 (Tn ) ,

(S2.5)

8

where " #  E (Sn Un ) E Sn2 Un (E (Sn Un ))3 3 E (Sn Un ) 3 3 √ − κ3,1 (Tn ) = E + − √ E Sn Un − 3 , and 2 2n n 2 n 4n3/2    E (Sn Un ) b1,n 2 √ κ3,2 (Tn ) = b3,n − 3b1,n − 3 b1,n b2,n − b2,n − √ E Sn Un 2 n n # " 2 (E (S U )) E (S U ) n n √n n + 3b1,n +2 b31,n − 3b21,n 4n 2 n Sn3



Therefore, from Lemmas S2.5(a2) and S2.3, we can write   1 1 κ1 (Tn ) = √ κ1 + o √ . n n with κ1 = κ1,1 +κ1,2 ,

κ1,1 = lim

n→∞



nb1,n

σ2 + σ2 σ2 + σ2 = 0p 1 , = q 0R 1 1 2 τ σ4 2 τ 0 σu4 du

 κ1,2 = lim

n→∞

 E (Sn Un ) a1 − = − σ6,4 , 2 2

where a1 is defined as in Lemma S2.5(a2). Similarly, for the third cumulant, we have   1 1 κ3 (Tn ) = √ κ3 + o √ , n n where κ3 = κ3,1 + κ3,2 , such that κ3,1 =

lim

n→∞

√ nκ3,1 (Tn )

 3  √ 3 lim nE Sn3 + lim E (Sn Un ) − lim E Sn3 Un n→∞ n→∞ 2 n→∞  2 3 = a2 + (a1 − a3 ) σ6,4 , 2 √ with a2 , a1 and a3 given in Lemma S2.5. The other terms in nκ3,1 (Tn ) have zero limit: √ κ3,2 = p lim nκ3,2 (Tn ) = 3κ1,2 − 3κ1,2 = 0, =

n→∞

 where we use in this derivation Lemma S2.5 and the fact that An = O n−1/2 and Bn = O (1). Proof of Theorem 4.2. So long as A∗n = OP (n−1/2 ) and Bn∗ = OP (1), we can use the same arguments as in the proof of Theorem 4.1 and claim that E ∗ (Sn∗ Un∗ ) √ + b∗1,n , 2 n κ∗3 (Tn∗ ) = κ∗3,1 (Tn∗ ) + κ∗3,2 (Tn∗ ) , where

κ∗1 (Tn∗ ) = −

(S2.6) (S2.7) "

E ∗ (Sn∗ Un∗ ) E ∗

 3 E ∗ (Sn∗ Un∗ )  3 √ κ∗3,1 (Tn∗ ) = E ∗ Sn∗3 + − √ E ∗ Sn∗3 Un∗ − 3 2 2n n 2 n   ∗ ∗ ∗ b∗1,n ∗ ∗2 ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ E (Sn Un ) √ κ3,2 (Tn ) = b3,n − 3b1,n − 3 b1,n b2,n − b2,n − √ E Sn Un 2 n n " # 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗3 ∗2 E (Sn Un ) ∗ (E (Sn Un )) √ +2 b1,n − 3b1,n + 3b1,n , 4n 2 n 9

Sn∗2 Un∗

#

3



(E ∗ (Sn∗ Un∗ )) , and 4n3/2

with

 B∗ 3 B∗ b∗1,n = A∗n = 0, b∗2,n = − √n and b∗3,n = 3A∗n − √n E ∗ Sn∗3 . 2 n n

We can write: 1 κ∗1 (Tn∗ ) = √ κ∗1 + oP n By Lemma S2.6, we have



1 √ n



1 and κ∗3 (Tn∗ ) = √ κ∗3 + oP n



1 √ n

 .

√ κ∗1 = p lim nκ∗1 (Tn∗ ) = κ1,2 6= κ1 n→∞

and

√ √ κ∗3 = p lim nκ∗3,1 (Tn∗ ) + p lim nκ∗3,2 (Tn∗ ) = κ3,1 + κ3,2 = κ3 . n→∞

A∗n

n→∞

(n−1/2 )

We recall that = 0 = OP and Lemma S2.6(a6) ensures that Bn∗ = OP (1), which concludes the proof. Proof of Theorem 4.3. From Theorem 9.3.2 of Jacod and Protter (2012), we have that p lim nˆ v1n = σ02 n→∞

p lim nˆ vnn = σ12

and

n→∞

−1/2 ). Using the same arguments as in the proof of Theorem 4.2, it follows showing that A¯∗n = OP (n   that κ∗1 T¯n∗ and κ∗3 T¯n∗ are given as in (S2.6) and (S2.7), respectively, where we now set √  1 n (ˆ v n + vˆnn ) ∗ B∗ 3 B∗ ∗ ∗ ¯ p1 b1,n = An = , b2,n = − √n and b∗3,n = 3A¯∗n − √n E ∗ Sn∗3 . 2 2 n n Vn∗   √ √ Letting κ∗1 = p lim nκ∗1 T¯n∗ and κ∗3 = p lim nκ∗3 T¯n∗ κ∗3n , we have: n→∞

κ∗1

n→∞

 1 T¯n∗ = √ κ∗1 + oP n



1 √ n

 and

κ∗3

 1 T¯n∗ = √ κ∗3 + oP n



1 √ n

Using the expansions in (S2.6) and (S2.7), Lemma S2.6 and the fact that p lim



n→∞

. √

2

2

σ0 +σ1 nb∗1,n = √ , we 2

τ σ4

can conclude that κ∗1 = κ1,1 + κ1,2 = κ1

S2.2

and κ∗3 = κ3,1 + κ3,2 = κ3 .

Auxiliary lemmas

Lemma S2.1 If the volatility process σ is c` adl` ag and locally bounded away from 0 and for all t < ∞, then, for any q1 , q2 , q3 ≥ 0, we have that ! n−2 n X X n n )q3 − (vin )q1 +q2 +q3 = OP (n−1/2 ). n−1+q1 +q2 +q3 (vin )q1 (vi+1 )q2 (vi+2 i=1

Rt 0

σu2 du < ∞

i=1

Rt Lemma S2.2 If the volatility process σ is c` adl` ag bounded away from zero and 0 σu2 du < ∞ for all t < ∞, then for any q1 , q2 , q3 ≥ 0, such that q ≡ q1 + q2 + q3 > 0, as n → ∞, we have that n−1+q/2

n Y K X

n vi−k+1

i=K k=1

with K ∈ {1, 2, 3} . 10

qk /2

p

→ σ q > 0,

(S2.8)

Lemma S2.3 If Assumption V holds, then, as n → ∞, n

n X

vin −

i=1

with vin =

R

i n i−1 n

n X

! n (vin )1/2 (vi−1 )1/2

i=2

p 1 → (σ02 + σ12 ), 2

σu2 du.

Lemma S2.4 Let Xt be described as in (10). Then, conditionally on the path of volatility, for i = R i/n 1, . . . , n, ri ∼ N (0, vin ) , where vin = (i−1)/n σu2 du and the following results hold: (a1) E (Sn,1 ) = 0 and E (Sn,2 ) = 0. (a2)   τ k 24 k 10 − k 34 3

3

E (Sn,1 Un ) =

3

3/2 k 34 Vn 3

 Pn 2/3 n 2/3 n 5/3  n v (v ) i=3 vi−2 2/3 i n 2/3  5/3 i−1 Pn 2 n n n  + i=3 vi−2 . v (v ) 2/3 i−1 5/3 in 2/3 Pn n n vi−1 (vi ) + i=3 vi−2

(a3)   τ k 4 k 27 − k12 k 34

" P 2/3 n 7/6 n 7/6 # n n vi−2 v (v ) i=3 n E (Sn,2 Un ) = 7/6 i−1 7/6 i n 2/3 Pn 3/2 n n 2 3 + i=3 vi−2 vi−1 (vi ) k1 k 4 Vn  3  " P 1/2 n 7/6 n 2/3 n 2/3 # τ k1 k 24 k 7 − k12 k 34 n n vi−3 vi−2 vi−1 (vi ) 2 3 3 3 i=4 + n .    Pn 2/3 2/3 7/6 3/2 n n n vi−2 vi−1 (vin )1/2 + i=4 vi−3 k12 k 34 Vn 3

3

3

2

3

(a4)  2 E Sn,1 Un = O(n−1/2 ). (a5) E (Sn,1 Sn,2 Un ) = O(n−1/2 ). (a6)  2 E Sn,2 Un = O(n−1/2 ). (a7) n  (k6 − 3k4 + 2) 3/2 X 3 E Sn,1 = n (vin )3 . 3/2 Vn i=1

(a8) 2 E Sn,1 Sn,2



=

k1 k5 − k12 k4 − 2k1 k3 + 2k12 3/2 k12 Vn

+2

k32

− 2k1 k3 + 3/2 k12 Vn

k12

"

 n3/2

n X

n vi−1

1/2

i=2

 n3/2

n X i=2

11

n vi−1

3/2

(vin )5/2 +

n X i=2

(vin )3/2 .

# n vi−1

5/2

(vin )1/2

(a9) E

2 Sn,1 Sn,2



2 1 − k13 k3 + k14

=

 n

3/2

k14 Vn

3/2

n h X

 n 2 2 n i n n vi−1 (vi ) + vi−1 (vi )

i=2  3 4 1/2 n 1/2 i 2 − k1 k3 + k1 3/2 X h n 1/2 n 2 n 1/2 n 2 n n vi−2 vi−1 (vi ) + (vi ) vi−1 vi+1 + 3/2 k14 Vn i  3/2 n  n 1/2 i k1 k3 − k13 k3 − k12 + k14 3/2 X h n 1/2 n  n 3/2 n n v v (v ) + v vi−1 (vi ) + i−2 i−1 i i−2 3/2 k14 Vn i  1/2 1/2 n 3/2 i k14 − k12 − k13 k3 + k1 k3 3/2 X h n 3/2 n n n n + n v (v ) v + (v ) v vi+1 . i−1 i i+1 i i−1 3/2 k14 Vn i

k12

(a10) E

3 Sn,2



k32 − 3k12 + 2k16

=

 n3/2

3/2 k16 Vn

n X

n vi−1

3/2

(vin )3/2

i=2  n 2 4 3/2 n 1/2 i 2 k1 k3 − k1 − 2k1 + 2k16 3/2 X h n 1/2 n 3/2 n n n n + v v v + v v (vi ) i−2 i−1 i i−2 i−1 3/2 k16 Vn i=3  1/2 n 3/2 n i 2k16 − 2k14 − k12 + k1 k3 3/2 X h n  n 3/2 n 1/2 n n v v (v ) + v (vi ) vi+1 + i−2 i−1 i i−1 3/2 k16 Vn i  1/2 6 k16 − 2k14 + k12 3/2 X n 1/2 n  n n + n vi−2 vi−1 (vi ) vi+1 . 3/2 k16 Vn i

(a11)    2 Pn n )2 3 k (v k − k 3 (k4 − k2 ) 10 4 4 i=1 i   P 2/3 n 2/33 3n 5/3 3  n  n vi−2 v (v )  5/3 i−1 2/3 i n 2/3    Pi=3 n n n  ×  + i=3 vi−2  v (v ) 2/3 i−1 5/3 in 2/3 Pn n n vi−1 (vi ) + i=3 vi−2  E

3 Sn,1 Un



=

τ n3 5/2

k 34 Vn 3

    + O(n−1 ).  

(a12) 2 E(Sn,1 Sn,2 Un ) =

τ n3 [(1) + (2)], k12 k 34 V 25 n 3

where   P n 2 (1) = (k4 − k2 ) (vi ) i     P n 7/6 n 7/6 n 2/3 P n 2/3 n 7/6 n 7/6 × k 4 k 27 − k12 k 24 (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) + 3

3

3

i

i

 n )2/3 (v n )7/6 (v n )1/2 (vin )2/3 (vi−1  i−2 i−3  iP  n )1/2 (v n )7/6 (v n )2/3 (v n )2/3  + (vi+1 i i−1 i−2  P



k1 k 24 k 7 − k1 k 4 3

3

3



i

+O(n−4 ), 12

and    P n 3/2 n 1/2 P n 1/2 n 3/2 (2) = 2 × k1 (k3 − k1 k2 ) (vi ) (vi−1 ) + (vi ) (vi−1 ) i

×

i

n k 24 (k 10 − k2 k 4 ) 3

3

3

  P n 5/3 n 2/3 n 2/3 P n 2/3 n 5/3 n 2/3 P n 2/3 n 2/3 n 5/3 × (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) i

i

i

+O(n−4 ). (a13) τ n3 [(3) + (4)], k14 k 34 V 25 n 3

2 E(Sn,1 Sn,2 Un ) =

where (3) =

X   n vin vi−1 k22 − k14 k 24 k 10 − k2 k 4 3

3

3

i

! ×

X

n n (vin )5/3 (vi−1 )2/3 (vi−2 )2/3 +

i −4

+O(n

X

n n (vin )2/3 (vi−1 )5/3 (vi−2 )2/3 +

i

X

n n (vin )2/3 (vi−1 )2/3 (vi−2 )5/3

i

)

and   n P n 1/2 n n 1/2 2 2 (4) = 2 × k1 (k2 − k1 ) (vi+1 ) vi (vi−1 ) × k 24 (k 10 − k2 k 4 ) 3

i

3

3

  P n 5/3 n 2/3 n 2/3 P n 2/3 n 5/3 n 2/3 P n 2/3 n 2/3 n 5/3 × (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) i

i

i

 P n 3/2 n 1/2 P n 1/2 n 3/2 (vi ) (vi−1 ) + (vi ) (vi−1 ) +2 × k1 (k3 − k1 k2 ) i   i  P P n 2/3 n 7/6 n 7/6 2 2 2 n 7/6 n 7/6 n 2/3 × k 4 (k 7 − k1 k 4 ) (vi ) (vi−1 ) (vi−2 ) + (vi+1 ) (vi ) (vi−1 ) 

3



3

3

i

i

 P n 1/2 n 7/6 n 2/3 n 2/3  (vi ) (vi−1 ) (vi−2 ) (vi−3 )  2 i   . P +k1 k 4 (k 7 − k1 k 4 ) n )2/3 (v n )7/6 (v n )1/2 3 3  + (vin )2/3 (vi+1 3 i i−1 i

(a14) 3 E(Sn,2 Un ) =

τ

n3

k16 k 34

Vn2

3

13

5

[(6) + (7)],

where   P n (6) + (7) = 3 × (k22 − k14 ) vin vi−1 × i

 ×

   P P n 2/3 n 7/6 n 7/6 n )7/6 (v n )2/3 + (vin )7/6 (vi−1 k 4 k 27 − k12 k 24 (v ) (v ) (v ) i−2 i+1 i i−1 3

3

3

i



+k1 k 24 k 7 − k1 k 4 3

3



3

i

 P n 1/2 n 7/6 n 2/3 n 2/3  (vi ) (vi−1 ) (vi−2 ) (vi−3 )   iP  n )2/3 (v n )2/3 (v n )7/6 (v n )1/2  + (vi+2 i+1 i i−1 i

+O(n−4 ). Lemma S2.5 Let Xt be described as in (10). Then, conditionally on the path of volatility, for i = R i/n 1, . . . , n, ri ∼ N (0, vin ) , where vin = (i−1)/n σu2 du and the following results hold: (a1)  E (Sn ) = 0 and E Sn2 = 1. (a2) lim E (Sn Un ) = a1 σ6,4 ,

n→∞

where



k 27

k 10



k7

1 a1 = √ 3 3 − 2 2 3 2 − 2 3 + 1 ' −1.792629988661774. k4 k1 k 4 τ k1 k 4 3

3

3

(a3) lim



n→∞

 nE Sn3 = a2 σ6,4 ,

where a2 =

1 τ 3/2

  k3 15 k3 k32 (4 − k32 ) (k5 + 2k3 ) + 12 + − 6 − ' 1.958608591285652. +6 k6 + 3k4 − 6 k1 k12 k13 k14 k15 k16

(a4)  lim E Sn3 Un = a3 σ6,4 ,

n→∞

with 

a3 =

k 27 k 10 k7 1  3 18 k3 3 3 3 − − 30 − 30 33 + 27 + − 12 4 2 2 2 3/2 k4 k1 k 4 k1 k1 k1 k1 k 4 τ 3

k 27 −6

k7

3

k16 k 24 3

−6

3

k15 k 4

− 36

k3 k 10 3

k1 k 4

+9

3

3

3

k14 k 4



+ 18

3

 nE Sn2 Un = O (1) . 14

k3 k 27

k 10

k 10

' 33.52851853541578. (a5)

3

3

3

k12 k 4 3

+ 24

3

k13 k 24 3

+ 24

k3 k 7



k12 k 4



3 3

Remark 1 The bootstrap analogue of Lemma S2.4 replaces vin with the local measure of volatility vˆin and Vn with Vn∗ , yielding for example n  (k6 − 3k4 + 2) 3/2 X ∗3 n E Sn,1 = (ˆ vin )3 . ∗3/2 Vn i=1

Lemma S2.6 Let Xt be described as in (10). Then, conditionally on the path of volatility, the following results hold: (a1)  E ∗ (Sn∗ ) = 0 and E ∗ Sn∗2 = 1. (a2) p limE ∗ (Sn∗ Un∗ ) = a1 σ6,4 , n→∞

where a1 is as in part (a2) of Lemma S2.5. (a3) p lim

√

n→∞

nE ∗ Sn∗3



= a2 σ6,4 ,

where a2 is as in part (a3) of Lemma S2.5. (a4)  p lim E ∗ Sn∗3 Un∗ = a3 σ6,4 , n→∞

where a3 is as in part (a4) of Lemma S2.5. (a5)

√ ∗ ∗2 ∗  nE Sn Un = OP (1) .

(a6) If in addition n = O(kn2 ),

S2.3

Bn∗ = OP (1) .

Proofs of auxiliary lemmas

Proof of Lemma S2.1. Let σi,n ≡ (vin )1/2 . We first show that, for any q1 , q2 ≥ 2, n−1 X

n (vin )q1 (vi+1 )q2

i=1

n X 1 − (vin )q1 +q2 = OP (n 2 −q1 −q2 ). i=1

We have: n n n−1 n−1 X X X X 2(q +q ) 2q1 2q2 n σi,n σi+1,n − σi,n 1 2 )q2 − (vin )q1 +q2 = (vin )q1 (vi+1 i=1 i=1 i=1 i=1 n−1 X   2q1 2q2 2q2 2(q1 +q2 ) ≤ σi,n σi+1,n − σi,n + σn,n i=1 !1 ! 12 n−1 X 4q 2 n−1 X 2q 2q2 2 2(q1 +q2 ) 2 − σi,n ) + σn,n . ≤ σi,n1 (σi+1,n i=1

15

i=1

(S2.9)

The last inequality follows from Cauchy-Schwarz inequality. Thus, with ψi = n n−1 1 X n q1 n q2 X n q1 +q2 (v ) (v ) − (v ) ≤ n 2 −q1 −q2 i i+1 i i=1

i=1

n 1 X 4q1 ψi n

!1

n−1 X

2

i=1

√ nσi,n , we have:

2q2 ψi+1 − ψi2q2

2

! 12 +n−q1 −q2 ψn2(q1 +q2 ) .

i=1

Note that following the same argument as Barndoff-Nielsen and Shephard’s (2004) proof of their Eq. 2 Pn−1  2q2 (14), we have: ψi ’s are uniformly bounded by sup1≤s≤t σ(s) < ∞ and i=1 ψi+1 − ψi2q2 = OP (1). This establishes (S2.9). To complete the proof, we have: n−2 n X X n n )q2 (vi+2 )q3 − (vin )q1 +q2 +q3 (vin )q1 (vi+1 i=1 i=1 n−2 ! n−2 n−1 X   X 2q 2q +2q X 2(q +q +q ) 2q1 2q2 2q3 2q3 1 2 3 2(q1 +q2 +q3 ) 2 3 ≤ σi,n σi+1,n σi+2,n − σi+1,n + σi,n1 σi+1,n − σi,n + σn,n i=1

i=1

≡ |an + bn | +

2(q1 +q2 +q3 ) σn,n

i=1

= |an + bn | + OP (n

−q1 −q2 −q3

). 1

1

From (S2.9), we can claim that bn = OP (n 2 −q1 −q2 −q3 ). It remains to show that an = OP (n 2 −q1 −q2 −q3 ). By the Cauchy-Schwarz inequality, we have: n−2 X

|an | ≤

! 12 4q1 4q2 σi,n σi+1,n

i=1

n−2 X

≤ n

! 21

i=1 n−1

1 −q1 −q2 −q3 2

2q3 2q3 σi+2,n − σi+1,n

2

1 X 4q1 4q2 ψi ψi+1 n

! 12

n−1 X

2q3 ψi+1



ψi2q3

2

! 12 .

i=1

i=1

1

By the same arguments as previously, we conclude that an = OP (n 2 −q1 −q2 −q3 ), which concludes the proof. Proof of Lemma S2.2. Write: # " " n K # n n n Y K X X XY qk /2 qk /2 X q/2 q/2 n n n −1+q/2 n −1+q/2 −1+q/2 −σ q = n − (vi ) vi−k+1 vi−k+1 + n (vi ) − σ q . n i=K k=1

i=1

i=K k=1

i=1

From Lemma S2.1, the first term in the RHS is oP (1) and by Riemann integrability of σt , the second term is oP (1) (see Barndorff-Nielsen and Shephard (2004, p.10). Proof of Lemma S2.3. We use a similar expansion that Eq. (13) of Barndoff-Nielsen and Pn to Pof n n 1/2 2 Shephard (2004). Let σi,n = (vi ) . Then, Ξn ≡ i=1 σi,n − i=2 σi,n σi−1,n is equal to n X

σi,n (σi,n − σi−1,n ) +

2 σ1,n

=

i=2

n X i=2

σi,n 2 2 (σ 2 − σi−1,n ) + σ1,n . σi,n + σi−1,n i,n

Alternatively, Ξn can also be written as n X i=2

2 σi−1,n



n X i=2

σi,n σi−1,n +

2 σn,n

=

n X i=2

σi−1,n 2 2 (σ 2 − σi,n ) + σn,n . σi,n + σi−1,n i−1,n

It results that Ξn =

n n 2 − σ2 2 1 2 1 X (σi,n 1 2 1 X σi,n − σi−1,n 2 i−1,n ) 2 2 2 (σi,n −σi−1,n )+ (σ1,n +σn,n )= + (σ1,n +σn,n ) ≡ Cn +Dn . 2 2 σi,n + σi−1,n 2 2 (σi,n + σi−1,n ) 2 i=2

i=2

16

p

p

We show that nCn → 0 and nDn → 21 (σ02 + σ12 ) as n → ∞. Since σu2 is bounded on [0, 1] and away 2 ≥ from 0, we have: σ 2 = inf u∈[0,1] σu2 > 0 and, for all i = 1, . . . , n, σi,n

σ2 n

> 0. Thus,

n n X 2 Cn ≤ 2 (σi,n − σi−1,n )2 . 8σ i=2

 i−1

Also, by pathwise continuity of σu2 , there exists ξi ∈ nCn ≤

n

 Ri 2 ≡ n σ 2 du = , ni such that σi,n i−1 u n

σξ2 i n .

Hence,

n 1 X 2 (σξi − σξ2i−1 )2 . 8σ 2 i=2

The L2 (P )-H¨ older continuity of σu2 implies that, for some K > 0, and for all i = 1, . . . , n,   22δ E (σξ2i − σξ2i−1 )2 ≤ K 2δ . n It follows that

n X

E

! (σξ2i



σξ2i−1 )2

≤ K22δ

i=2

n−1 → 0, n2δ

P as n → ∞. We conclude by the Markov inequality that ni=2 (σξ2i − σξ2i−1 )2 = oP (1). It follows that nCn = oP (1) since 1/σ 2 = OP (1).   σ2 2 = ξ1 with ξ ∈ 0, 1 , we deduce from the right-continuity of σ 2 at Next, using the fact that σ1,n 1 u n n p

p

2 → σ 2 . We obtain along the same line that nσ 2 → σ 2 using left continuity at u = 1 u = 0 that nσ1,n n,n 0 1 p

establishing that nDn → 21 (σ02 + σ12 ). Proof of Lemma S2.4. In the following recall that k2 = 1, k4 = 3, and k6 = 15. Let √ √ n n τ n3/2 K1n = √ , K2n = 2 √ , and K3n = 3 . k 4 Vn Vn k1 Vn 3

Write Sn,1 = K1n Sn,2 = K2n

n X i=1 n X

ri2 − E ri2



≡ K1n

n X

ai ,

i=1

(|ri ri−1 | − E (|ri ri−1 |)) ≡ K2n

i=2

Un = K3n

n  X

n X

bi,i−1 ,

i=1



|ri ri−1 ri−2 |4/3 − E |ri ri−1 ri−2 |4/3



≡ K3n

i=3

n X

ci,i−1,i−2 .

i=1

(a1) Follows directly given the definition of Sn,1 and Sn,2 . (a2) E (Sn,1 Un ) =

τ n2

n X n X

3/2

k 34 Vn 3

Ii,j

i=1 j=3

where Ii,j

= E (ai cj,j−1,j−2 ) h  2/3 n 2/3 n 2/3 i n = E ri2 − vin |rj−2 |4/3 |rj−1 |4/3 |rj |4/3 − k 34 vj−2 vj−1 vj . 3

17

The non zero contribution to E (Sn,1 Un ) are when i = j; i = j − 2 and i = j − 1. In particular, we have n X X Ii,j = E (ai ci,i−1,i−2 ) i=j

i=3 n X

=

 2/3 n 2/3 n 2/3 ∗2  n vi−1 (vi ) ri E |ri−2 |4/3 |ri−1 |4/3 |ri |10/3 − k 34 vi−2 3

i=3



=

k 24 k 10 − k 34 3

X

Ii,j

n−2 X

=

i=j−2

3

n X

3

n vi−2

2/3

n vi−1

2/3

i=3

h  2/3 n 2/3 i n vi+2 E ri2 |ri |4/3 |ri+1 |4/3 |ri+2 |4/3 − k 34 (vin )2/3 vi+1 3

i=1



=

k 24 k 10 − k 34 3

(vin )5/3 ,

3

3

 n−2 X

n (vin )5/3 vi+1

2/3

n vi+2

2/3

,

i=1

and X

Ii,j

n−1 X

=

i=j−1

h  2/3 n 2/3 n 2/3 i n (vi ) vi+1 E ri2 |ri−1 |4/3 |ri |4/3 |ri+1 |4/3 − k 34 vi−1 3

i=2



=

k 24 k 10 − k 34 3

3

3

 n−1 X

n vi−1

2/3

n (vin )5/3 vi+1

2/3

.

i=2

Therefore,   τ k 24 k 10 − k 34 E (Sn,1 Un ) =

3

3

3/2 k 34 Vn 3

3

 Pn 2/3 n 2/3 n 5/3  n vi−1 (vi ) i=3 vi−2   Pn  5/3 2/3 2 n n n  + i=3 vi−2 vi−1 (vin )2/3  .   P 2/3 5/3 n n vi−1 (vin )2/3 + ni=3 vi−2

(a3) E (Sn,2 Un ) =

n X n X

τ n2 3/2

k12 k 34 Vn 3

Ii,j

i=2 j=3

where Ii,j

= E (bi,i−1 cj,j−1,j−2 ) h  q 2/3 n 2/3 n 2/3 i 4/3 4/3 4/3 3 n n vn |r | |r | |r | − k v = E |ri−1 | |ri | − k12 vi−1 vj−1 vj . 4 j−2 j−1 j j−2 i 3

The non zero contributions to E (Sn,2 Un ) are when i = j; i = j − 1, i = j − 2; and i = j + 1. In particular, we have n h  X X 2/3 n 2/3 n 2/3 i n Ii,j = E |ri−1 | |ri | |ri−2 |4/3 |ri−1 |4/3 |ri |4/3 − k 34 vi−2 vi−1 (vi ) i=j

=

i=3 n X

3

  2/3 n 2/3 n 2/3 n vi−1 (vi ) |ri−1 | |ri | E |ri−2 |4/3 |ri−1 |7/3 |ri |7/3 − k 34 vi−2 3

i=3

=



k 4 k 27 − k12 k 34 3

3

3

n X

n vi−2

2/3

i=3

18

n vi−1

7/6

(vin )7/6 ,

X

Ii,j

n−1 X

=

i=j−1

h  2/3 n 2/3 n 2/3 i n E |ri−1 | |ri | |ri−1 |4/3 |ri |4/3 |ri+1 |4/3 − k 34 vi−1 (vi ) vi+1 3

i=2



=

k 4 k 27 − k12 k 34 3

X

Ii,j

n−2 X

=

i=j−2

3

n X

3

n vi−2

7/6

n vi−1

7/6

(vin )2/3 ,

i=3

h  2/3 n 2/3 i n vi+2 E |ri−1 | |ri | |ri |4/3 |ri+1 |4/3 |ri+2 |4/3 − k 34 (vin )2/3 vi+1 3

i=2



=

2

k1 k 4 k 7 − 3

3

k12 k 34

n X

3

n vi−3

1/2

n vi−2

7/6

n vi−1

2/3

(vin )2/3 ,

i=4

and X

Ii,j

n X

=

i=j+1

h  2/3 n 2/3 n 2/3 i n vi−2 vi−1 E |ri−1 | |ri | |ri−3 |4/3 |ri−2 |4/3 |ri−1 |4/3 − k 34 vi−3 3

i=4



=

2

k1 k 4 k 7 − 3

3

k12 k 34

n X

3

n vi−3

2/3

n vi−2

2/3

n vi−1

7/6

(vin )1/2 .

i=4

It follows that   τ k 4 k 27 − k12 k 34

" P 2/3 n 7/6 n 7/6 # n n vi−2 v (v ) i=3 n E (Sn,2 Un ) = 7/6 i−1 7/6 i n 2/3 Pn 3/2 n n 2 3 vi−1 (vi ) + i=3 vi−2 k1 k 4 Vn  3  " P 1/2 n 7/6 n 2/3 n 2/3 # τ k1 k 24 k 7 − k12 k 34 n n vi−3 v v (v ) 2 3 3 3 i=4 + n 2/3 i−2 2/3 i−1 7/6 i n 1/2 . Pn 3/2 n n n 3 2 vi−2 vi−1 (vi ) + i=4 vi−3 k1 k 4 Vn 3

3

3

2

3

(a4) We have n X n X n  τ n5/2 X 2 E Sn,1 Un = 3 2 Ii,j,k , k 4 Vn i=1 j=1 k=2

3

where Ii,j,k = E

h

ri2 − vin



rj2 − vjn



n |rk−2 |4/3 |rk−1 |4/3 |rk |4/3 − k 34 vk−2

2/3

3

n vk−1

2/3

(vkn )2/3

i

.

 2 U The non zero contributions to E Sn,1 n are from triplets (i, j, k) in {(k − 2, k − 2, k), (k − 2, k − 1, k), (k − 2, k, k), (k − 1, k − 2, k), (k − 1, k − 1, k), (k − 1, k, k), (k, k − 2, k), (k, k − 1, k), (k, k, k) : k = 1, . . . , n} with the convention that out of range terms are set to 0. Tedious but straightforward calculations show that the sum of Ii,j,k of each relevant triplet is of order OP (n−3 ), by Lemma 3.2, completing the proof. (a5) We have n n n τ n5/2 X X X Ii,j,k , E (Sn,1 Sn,2 Un ) = 2 3 2 k1 k 4 Vn i=1 j=2 3

19

k=3

where " Ii,j,k = E

ri2



vin



|rj−1 | |rj | −

k12

1/2 n vj−1

1/2 vjn



|rk−2 |4/3 |rk−1 |4/3 |rk |4/3 2/3 n 2/3 n 2/3 n vk−1 (vk ) −k 34 vk−2

!# .

3

The non zero contributions to E (Sn,1 Sn,2 Un ) are from the triplets (i, j, k) in: {(k − 3, k − 2, k), (k − 2, k − 2, k), (k − 1, k − 2, k), (k, k − 2, k), (k − 2, k − 1, k), (k − 1, k − 1, k), (k, k − 1, k), (k − 2, k, k), (k − 1, k, k), (k, k, k), (k − 2, k + 1, k), (k − 1, k + 1, k), (k, k + 1, k), (k + 1, k + 1, k) : k = 1, . . . , n} with the convention that out of range terms are set to 0. Tedious but straightforward calculations show that the sum of Ii,j,k of each relevant triplet, using Lemma 3.2, is of order OP (n−3 ) yielding the expected result. (a6) We have n n n  τ n5/2 X X X 2 E Sn,2 Un = 4 3 2 Ii,j,k , k1 k 4 Vn i=1 j=2 k=3

3

where " Ii,j,k = E

−k12

!

|ri−1 | |ri | 1/2 n 1/2 n vi−1 (vi )

|rj−1 | |rj |  1/2  1/2 n −k12 vj−1 vjn

!

|rk−2 |4/3 |rk−1 |4/3 |rk |4/3 2/3 n 2/3 n 2/3 n (vk ) vk−1 −k 34 vk−2 3

2 U The non zero contribution to E Sn,2 n are from the triplets (i, j, k) in:



{(k − 3, k − 2, k), (k − 2, k − 3, k), (k − 2, k − 2, k), (k − 2, k − 1, k), (k − 2, k, k), (k − 2, k + 1, k), (k − 1, k − 2, k), (k − 1, k − 1, k), (k − 1, k, k), (k − 1, k + 1, k), (k, k − 2, k), (k, k − 1, k), (k, k, k), (k, k + 1, k), (k + 1, k − 2, k), (k + 1, k − 1, k), (k + 1, k, k), (k + 1, k + 1, k), (k + 1, k + 2, k), (k + 2, k + 1, k) : k = 1, . . . , n} , once again, with the convention that out of range terms are set to 0. Tedious but straightforward calculations show that the sum of Ii,j,k over each relevant triplet, using Lemma 3.2, is of order OP (n−3 ), yielding the expected result. (a7) n n n     n3/2 X X X  2 3 E Sn,1 = 3/2 E ri − vin rj2 − vjn rk2 − vkn . Vn i=1 j=1 k=1  3 The only non zero contribution to E Sn,1 is when i = j = k. Then we have

3 E Sn,1



= =

n n3/2 X ∗3/2 Vn i=1 n 3/2 X

n

=

3

  E ri6 − 3vin ri4 + 3 (vin )2 ri2 − (vin )3

3/2

Vn

E ri2 − vin

i=1

(k6 − 3k4 + 2) 3/2 Vn

n3/2

n X i=1

20

(vin )3

!# .

(a8) n n n  n3/2 X X X 2 E Sn,1 Sn,2 = Ii,j,k , 3/2 k12 Vn i=1 j=1 k=2

where

i q  n vn . rj2 − vjn |rk−1 | |rk | − k12 vk−1 k  2 S The non zero contribution to E Sn,1 n,2 are when i = j = k; i = j, k = i + 1; i = k, j = i − 1 and i = k − 1, j = k. In particular, we have Ii,j,k = E

X

Ii,j,k =

n X

h

ri2 − vin

2 



E

h

ri2 − vin

E

h

ri4 − 2vin ri2

E

h q 1/2 n 3/2 2 i 3 n 2 n n v n |r |4 − 2ˆ v |r | |r | + 2k v (vi ) ri |ri−1 | |ri |5 − k12 vi−1 i i−1 i i 1 i−1 i

|ri−1 | |ri | − k12

i q n vn vi−1 i

i=2

i=j=k

=

n X



|ri−1 | |ri | − k12

i q n vn vi−1 i

i=2

=

n X i=2

k1 k5 − k12 k4 − 2k1 k3 + 2k12

=

n X

n vi−1

1/2

(vin )5/2 ,

i=2

X

n−1 X

Ii,j,k =

E

h

ri2 − vin

E

h

ri4 − 2vin ri2

2 

|ri | |ri+1 | − k12

i q n vin vi+1

i=1

i=j,k=i+1

n−1 X

=



|ri | |ri+1 | − k12

i q n vin vi+1

i=1

k1 k5 −

=

k12 k4

− 2k1 k3 +

2k12

X  n−1

n (vin )5/2 vi+1

1/2

,

i=1

X

n X

Ii,j,k =

i=2 n X

i=k,j=i−1

=

E

h

ri2 − vin

E

h

2 n 2 ri−1 ri2 − vi−1 ri2 − vin ri−1

2 n ri−1 − vi−1





|ri−1 | |ri | − k12 

i q n vn vi−1 i

|ri−1 | |ri | − k12

i q n vn vi−1 i

i=2

k32 − 2k1 k3 + k12

=

n X

n vi−1

3/2

(vin )3/2 ,

i=2

and X

Ii,j,k =

n−1 X

E

h

ri2 − vin

2 n ri+1 − vi+1





|ri | |ri+1 | − k12

i=1

i=k−1,j=k

=

k32

− 2k1 k3 +

k12

X  n−1 i=1

21

n (vin )3/2 vi+1

3/2

.

i q n vin vi+1

Thus E

2 Sn,1 Sn,2



k1 k5 − k12 k4 − 2k1 k3 + 2k12

=

3/2

k12 Vn +2

k32

− 2k1 k3 + ∗3/2 k12 Vn

"

 n

3/2

n X

1/2 n 5/2 n vi−1 (vi )

+

i=2

k12

 n3/2

n X

n vi−1

3/2

n X

# 5/2 n 1/2 n vi−1 (vi )

i=2

(vin )3/2 .

i=2

(a9) n n n  n3/2 X X X 2 Ii,j,k , E Sn,1 Sn,2 = 3/2 k14 Vn i=1 j=1 k=1

where Ii,j,k = E

h

ri2 − vin



|rj−1 | |rj | − k12

i  q q 2 n vn n vn vj−1 v . |r | |r | − k k−1 k 1 j k−1 k

 2 The non zero contribution to E Sn,1 Sn,2 are from the triplets (i, j, k) in: {(k − 2, k − 1, k), (k − 1, k − 1, k), (k, k − 1, k), (k − 1, k, k), (k, k, k), (k − 1, k + 1, k), (k, k + 1, k), (k + 1, k + 1, k) : k = 1, . . . , n} . Some tedious but straightforward calculations yield:  n 2 n i  2 1 − k13 k3 + k14 3/2 X h n  n 2 n 2 n v (v ) + v (vi ) E Sn,1 Sn,2 = i−1 i i−1 3/2 k14 Vn i=2  1/2 n 1/2 i 2 k12 − k13 k3 + k14 3/2 X h n 1/2 n 2 n 1/2 n 2 n n + v v (v ) + (v ) v vi+1 i−2 i−1 i i i−1 3/2 k14 Vn i  3/2 n  n 1/2 i k1 k3 − k13 k3 − k12 + k14 3/2 X h n 1/2 n  n 3/2 n n v v (v ) + v vi−1 (vi ) + i−2 i−1 i i−2 3/2 k14 Vn i  1/2 1/2 n 3/2 i k14 − k12 − k13 k3 + k1 k3 3/2 X h n 3/2 n n n n + n v (v ) v + (v ) v vi+1 . i−1 i i+1 i i−1 3/2 k14 Vn i (a10) n n n  n3/2 X X X 3 E Sn,2 = Ii,j,k , 3/2 k16 Vn i=1 j=1 k=1

where Ii,j,k = E

h

|ri−1 | |ri | − k12

  i q q q 2 2 n vn n vn n vn vi−1 |r | |r | − k v |r | |r | − k v . j−1 j k−1 k 1 1 i j−1 j k−1 k

 3 The only non zero contribution to E Sn,2 are from the triplets (i, j, k) in: {(k − 2, k − 1, k), (k − 1, k − 2, k), (k − 1, k − 1, k), (k − 1, k, k), (k − 1, k + 1, k), (k, k − 1, k), (k, k, k), (k, k + 1, k), (k + 1, k − 1, k), (k + 1, k, k), (k + 1, k + 1, k), (k + 1, k + 2, k), (k + 2, k + 1, k) : k = 1, . . . , n} .

22

Some tedious but straightforward calculations yield:  n  k32 − 3k12 + 2k16 3/2 X n 3/2 n 3/2 3 n E Sn,2 = vi−1 (vi ) 3/2 k16 Vn i=2  n 3/2 n 1/2 i 2 k1 k3 − k12 − 2k14 + 2k16 3/2 X h n 1/2 n 3/2 n n n + n v v v + v v (vi ) i−2 i−1 i i−2 i−1 3/2 k16 Vn i=3  1/2 n 3/2 n i 2k16 − 2k14 − k12 + k1 k3 3/2 X h n  n 3/2 n 1/2 n n v v (v ) + v (vi ) vi+1 + i−2 i−1 i i−1 3/2 k16 Vn i  1/2 6 k16 − 2k14 + k12 3/2 X n 1/2 n  n n + n vi−2 vi−1 (vi ) vi+1 . 3/2 k16 Vn i (a11)  3 E Sn,1 Un =

n X n X n X n X

τ n3 5/2

k 34 Vn

Ii,j,k,l .

i=1 j=1 k=1 l=3

3

where Ii,j,k,l = E

h

ri2 − vin

rj2 − vjn



rk2 − vkn





n |rl−2 |4/3 |rl−1 |4/3 |rl |4/3 − k 34 vl−2

2/3

3

n vl−1

2/3

(vln )2/3

 3 U The non zero contribution to E Sn,1 n is given as follows " ! ! # 3 X X  τ n 3 E Sn,1 Un = 3 E(a2i ) E(ai + ai−1 + ai−2 )ci,i−1,i−2 + O(n−4 ) . 5/2 3 k 4 Vn i i 3

Hence, we have    2 Pn n )2 3 k (v 3 (k4 − k2 ) k − k 10 4 4 i=1 i   P 2/3 n 2/33 3n 5/3 3  n  n v v (v )  i−2 5/3 i−1 2/3 i n 2/3    Pi=3 n n n  ×  + i=3 vi−2  v (v ) 2/3 i−1 5/3 in 2/3 Pn n n + i=3 vi−2 vi−1 (vi )  E

3 Sn,1 Un



τ n3

=

5/2

k 34 Vn 3

     

+O(n−1 ). (a12) We can write 2 E Sn,1 Sn,2 Un



" #2 " #" # X X X 2 = K1n K2n K3n E  ai bi,i−1 ci,i−1,i−2  i

i

i

  XXXX 2 = K1n K2n K3n E  ai aj bk,k−1 cl,l−1,l−2  i

j

k

l

 2 = K1n K2n K3n E

! XXX i



2 K1n K2n K3n [(1)

k

a2i bk,k−1 cl,l−1,l−2

 + 2E 

 XXX i
l

+ (2)] . 23

k

l

ai aj bk,k−1 cl,l−1,l−2 

i

.

By the independence and  mean zero property of ai , aj , bk,k−1 and cl,l−1,l−2 , the non zero contri2 bution to E Sn,1 Sn,2 Un are given by: ! ! X X 2 (1) = E(ai ) E[(bi+1,i + bi,i−1 + bi−1,i−2 + bi−2,i−3 )ci,i−1,i−2 ] + OP (n−4 ), i

i

and ! X

(2) = 2 ×

E(ai bi,i−1 + ai−1 bi,i−1 )

! X

i

E[(ai + ai−1 + ai−2 )ci,i−1,i−2 ]

+ OP (n−4 ).

i

By tedious but simple algebra, we have   P n 2 (1) = (k4 − k2 ) (vi ) i     P n 7/6 n 7/6 n 2/3 P n 2/3 n 7/6 n 7/6 (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) × k 4 k 27 − k12 k 24 + 3

3

3

i

i

 n )2/3 (v n )7/6 (v n )1/2 (vin )2/3 (vi−1  i−2 i−3  iP  n )1/2 (v n )7/6 (v n )2/3 (v n )2/3  + (vi+1 i i−1 i−2  P



k1 k 24 k 7 − k1 k 4 3

3



3

i

+O(n−4 ), and 



P n 3/2 n 1/2 P n 1/2 n 3/2 (2) = 2 × k1 (k3 − k1 k2 ) (vi ) (vi−1 ) + (vi ) (vi−1 ) i

×



i

n k 24 (k 10 − k2 k 4 ) 3

3

×

3

  P n 5/3 n 2/3 n 2/3 P n 2/3 n 5/3 n 2/3 P n 2/3 n 2/3 n 5/3 (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) i

i

i

+O(n−4 ). Thus 2 2 E(Sn,1 Sn,2 Un ) = K1n K2n K3n [(1) + (2)] =

τ n3 [(1) + (2)]. k12 k 34 Vn5/2 3

(a13) We have 2 E(Sn,1 Sn,2 Un ) " 2 = K1n K2n K3n E 

X

ai

#" X

i

bi,i−1

#2 " X

i

# ci,i−1,i−2 

i

  XXXX 2 = K1n K2n K3n E  bi,i−1 bj,j−1 ak cl,l−1,l−2  i

j

k

l

 2 = K1n K2n K3n E

! XXX i



2 K1n K2n K3n [(3)

k

b2i,i−1 ak cl,l−1,l−2

 + 2E 

 XXX i
l

+ (4)] . 24

k

l

bi,i−1 bj,j−1 ak cl,l−1,l−2 

By the independence and mean zero property of ai , aj , bk,k−1 and cl,l−1,l−2 , the non zero contri2 U ) are given by: bution to E(Sn,1 Sn,2 n  P

(3) =

i

E(b2i,i−1 )

 P



E[(ai + ai−1 + ai−2 )ci,i−1,i−2 ] + O(n−4 )

i

and  P

(4) = 2 ×

E[bi,i−1 bi+1,i ]

 P

i

+2 ×

 E[(ai + ai−1 + ai−2 )ci,i−1,i−2 ]

i

 P

 E[bi,i−1 ai + bi,i−1 ai−1 ] ×

i

×

 P

 E[bi,i−1 (ci−1,i−2,i−3 + ci,i−1,i−2 + ci+1,i,i−1 + ci+2,i+1,i )] + O(n−4 )

i

By tedious but simple algebra, we have X   n vin vi−1 (3) = k22 − k14 k 24 k 10 − k2 k 4 3

3

3

i

! ×

X

n n (vin )5/3 (vi−1 )2/3 (vi−2 )2/3 +

i −4

+O(n

X

n n (vin )2/3 (vi−1 )5/3 (vi−2 )2/3 +

X

i

n n (vin )2/3 (vi−1 )2/3 (vi−2 )5/3

i

)

and  n  P n 1/2 n n 1/2 2 2 × k 24 (k 10 − k2 k 4 ) (4) = 2 × k1 (k2 − k1 ) (vi+1 ) vi (vi−1 ) 3

i

3

3

  P n 5/3 n 2/3 n 2/3 P n 2/3 n 5/3 n 2/3 P n 2/3 n 2/3 n 5/3 (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) + (vi ) (vi−1 ) (vi−2 ) × i

i

i







P n 3/2 n 1/2 P n 1/2 n 3/2 (vi ) (vi−1 ) + (vi ) (vi−1 ) +2 × k1 (k3 − k1 k2 ) i   i  P n 7/6 n 7/6 n 2/3 P n 2/3 n 7/6 n 7/6 2 2 2 × k 4 (k 7 − k1 k 4 ) (vi ) (vi−1 ) (vi−2 ) + (vi+1 ) (vi ) (vi−1 ) 3

3

3

i

i

 n )7/6 (v n )2/3 (v n )2/3 (vin )1/2 (vi−1  i−2 i−3 +k1 k 24 (k 7 − k1 k 4 )  iP n 2/3 n 2/3 n 7/6 n 1/2  . 3 3  + (vi+2 ) (vi+1 ) (vi ) (vi−1 ) 3  P

i

It follows that 2 2 E(Sn,1 Sn,2 Un ) = K1n K2n K3n [(3) + (4)] =

25

τ n3 [(3) + (4)]. k14 k 34 Vn5/2 3

(a14) We have 3 E(Sn,2 Un ) " #3 " # X X 3 = K2n K3n E  bi,i−1 ci,i−1,i−2  i

i

 3 = K2n K3n E 

 XXXX i

j

k

bi,i−1 bj,j−1 bk,k−1 cl,l−1,l−2 

l



! XX

3 = K2n K3n E

i

b3i,i−1 cl,l−1,l−2

  XX + 3E  b2i,i−1 bj,j−1 cl,l−1,l−2  i
l

l

    XX X X +3E  bi,i−1 b2j,j−1 cl,l−1,l−2  + 6E  bi,i−1 bj,j−1 bk,k−1 cl,l−1,l−2  i
l

3 K2n K3n [(5)

=

i
l

+ (6) + (7) + (8)] .

It is straightforward to see that X  (5) = E b3i,i−1 [ci+2,i+1,i + ci+1,i,i−1 + ci,i−1,i−2 + ci−1,i−2,i−3 ] = O(n−4 ), i

(8) = O(n−4 ), and (6) + (7) ! ! X X = 3× E(b2i,i−1 ) E[bi,i−1 (ci+2,i+1,i + ci+1,i,i−1 + ci,i−1,i−2 + ci−1,i−2,i−3 )] + O(n−4 ). i

i

The expansions lead to:  (6) + (7) = 3 ×  ×

k4



k2

7 3

3



k12 k 24

3

(k22

i

n vin vi−1

 ×

i

+k1 k 24 k 7 − k1 k 4 3

P

  P P n 2/3 n 7/6 n 7/6 n 7/6 n 7/6 n 2/3 (vi ) (vi−1 ) (vi−2 ) + (vi+1 ) (vi ) (vi−1 )



3



k14 )

3



i

 P n 1/2 n 7/6 n 2/3 n 2/3  (vi ) (vi−1 ) (vi−2 ) (vi−3 )    iP n )2/3 (v n )2/3 (v n )7/6 (v n )1/2  + (vi+2 i+1 i i−1 i

+O(n−4 ). Hence  3 E Sn,2 Un =

n3

τ k16 k 34 3

Proof of Lemma S2.5. (a1) Follows directly given the definition of Sn and Vn . 26

5/2

Vn

[(6) + (7)].

(a2) Follows given parts (a2) and (a3) of Lemma S2.4. (a3) Note that      3 2 2 3 E Sn3 = E Sn,1 − 3E Sn,1 Sn,2 + 3E Sn,1 Sn,2 − E Sn,2 . The result follows by using parts (a7)-(a10) of Lemma S2.4 and (S2.8). (a4) Write      3 2 2 3 E Sn3 Un = E Sn,1 Un − 3E Sn,1 Sn,2 Un + 3E Sn,1 Sn,2 Un − E Sn,2 Un . Then, the result follows by using parts (a11)-(a14) of Lemma S2.4 and (S2.8). (a5) This follows given parts (a4)-(a6) of Lemma S2.4 and (S2.8). Proof of Lemma S2.6. Proofs for (a1)-(a5) follow the same lines as in those of Lemma S2.5. The derivation are the same and we use Lemma 3.2 instead of (S2.8) to obtain the relevant probability limits. It remains to prove (a6). Since Vn∗ = OP (1) with  positive probability limit, we just have to √ ∗ ∗ ∗ ˆ show that conditionally on σ, an ≡ n E (Vn ) − Vn = OP (1). For this it suffices to show that E|an | = O(1) conditionally on σ. Using Lemma S1.2, we can see that for kn large enough, we can see obtain: ! n/k n/k n/k n n n P P P n )2/3 + n3/2 n )4/3 (ˆ vjn )2 + τ n3/2 (ˆ vjn )4/3 (ˆ vj−1 (ˆ vjn )2/3 (ˆ vj−1 an = −(k1−4 − 1)n3/2 j=1 j=1 j=1 ! n/k n/k n n P P −2 n 3/2 n 1/2 n 1/2 n 3/2 3/2 3/2 (ˆ vj ) (ˆ vj−1 ) (ˆ vj ) (ˆ vj−1 ) + n +2(2 − k1 ) n −(k1−4 −

j=1

j=1 n/k n P n ), 1)n3/2 (ˆ vjn )(ˆ vj−1 j=1

where vˆjn ’s involve returns in non overlapping blocks j = 1, . . . , n/kn . Hence, to conclude, it is sufficient to show that, conditionally on σ,     n/kn n/kn X X n (ˆ vjn )a (ˆ vj−1 )b  = O(1), E n3/2 (ˆ vjn )2  = O(1) and E n3/2 j=1

j=1

Pkn

2 for a, b > 0 and a+b = 2. By definition, vˆjn = k1n i=1 ri+(j−1)k and thanks to the Jensen’s inequality, n  P n we have: E(ˆ vjn )a ≤ k1n ki=1 E |ri+(j−1)kn |2a , for all a ≥ 1. Using Eq. (2.1.34) of Jacod and Protter

(2012), we can claim that, for all p ≥ 1, E (|ri |p ) ≤ E(ˆ vjn )a ≤

Kp . np/2

K2a na

Thus, for some constant K2a ,

for all

a ≥ 1.

(S2.10)

Also, if 0 < a < 1, the Jensen’s inequality implies that E[(ˆ vjn )a ] ≤ [E(ˆ vjn )]a which, in turn and using Ka

(S2.10), is less or equal to na2 , for some constant K2 . This means that (S2.10) actually holds for all a > 0. Since, conditionally on σ, ri ’s are pairwise independent with ri ∼ N (0, vin ), vˆjn ’s are also pairwise independent conditionally on σ. Hence, conditionally on σ,   √ n/kn n/kn X X n 3/2 n a n b 3/2 n a n b 3/2 n 1 1  E n (ˆ vj ) (ˆ vj−1 ) =n E[(ˆ vj ) ]E[(ˆ vj−1 ) ] ≤ Cn =C = O(1), a b kn n n kn j=1

j=1

for some constant C > 0. 27

Appendix S3: Bootstrap test statistic for the log version of the jump test The asymptotic test based on logarithm transformation of the linear version of the jump test as given by (6) has been proposed by Huang and Tauchen (2005). It follows from (4) and (5) that   √ IQ st , τ = θ − 2, n (log RVn − log BVn ) → N 0, τ IV 2 and the test statistic of the log version of the jump test is given by √ n (log RVn − log BVn ) r Tlog,n =  c  . IQn τ max 1, BV 2 n

∗ To derive the bootstrap test statistic Tlog,n for Tlog,n , we rely on the following result which is established as part of the proof of Theorem 3.1:   RVn∗ − E ∗ (RVn∗ ) d∗ ∗−1/2 √ −→ N (0, I2 ) . Σn n ∗ ∗ ∗ BVn − E (BVn )

By a Taylor expansion, we have   √  RVn∗ E ∗ (RVn∗ ) = n log BV ∗ − log E ∗ (BV ∗ ) n

n

1 E ∗ (RVn∗ )

1 − E ∗ (BV ∗) n

 √  RV ∗ − E ∗ (RV ∗ )  n n n BVn∗ − E ∗ (BVn∗ )

+oP ∗ (1), Prob-P. P

P

Conditionally on no jumps, E ∗ (RVn∗ ) → IV and E ∗ (BVn∗ ) → IV . From (S1.1), we conclude that  √  RVn∗ E ∗ (RVn∗ ) n log BV − log ∗ E ∗ (BVn∗ ) d∗ n q → N (0, 1), in Prob-P. IQ τ IV 2 The bootstrap test statistic for Tlog,n is given by  √  RVn∗ E ∗ (RVn∗ ) n log BV ∗ − log E ∗ (BV ∗ ) n n ∗ s = . Tlog,n   c∗

IQn τ max 1, (BV ∗ )2 n

Tlog,n satisfies the conditions of Theorem 3.2 and if Condition A holds, this theorem applies and we ∗ can claim that Tlog,n controls the strong asymptotic size and is alternative consistent.

Appendix S4: Bootstrap consistency for two alternative jump test statistics The purpose of this section is to show that the local Gaussian bootstrap can be applied more generally than just to the BN-S test statistic. Specifically, we consider the jump test of Podolskij and Ziggel (hereafter PZ, 2010) and the jump test of Lee and Hannig (hereafter LH, 2010), which extends that of Lee and Mykland (2008). We first introduce the test statistics and their bootstrap versions. We then give a set of high level conditions on vˆin under which the bootstrap is asymptotically valid when 28

applied to each of these tests. The main result is Proposition S2.1, whose proof appears at the end of this section. The PZ (2010) test statistic for jumps over [0, 1] is given by n  n P P p−1 p p 2 n |ri | − ξi |ri | 1{|ri |≤cn−$ } i=1 i=1 (S4.1) Tn (p) =  1 , n 2 P np−1 V ar(ξi ) |ri |2p 1{|ri |≤cn−$ } i=1

where p ≥ 2, ξi are positive i.i.d random variables, independent of X with E(ξi ) = 1, V ar(ξi ) > 0 and, for some a > 0, E(ξi2+a ) < ∞; c > 0 and $ ∈ (0, 1/2). PZ establish that for any p ≥ 2, conditionally on Ω0 , i.e. when there are no jumps over (0, 1], st

Tn (p) → N (0, 1)

(S4.2)

and, conditionally on Ω1 , i.e. under the occurrence of jumps over (0, 1], P

Tn (p) → ∞.

(S4.3)

LH’s (2010) test statistic for jumps at a given date τ is given by √ nri Tn (τ ) = , σ ˆ (ti )

(S4.4)

where i is such that τ ∈ (ti−1 , ti ] (ti = i/n) and i−1 n X 2 [ˆ σ (ti )] = rj 1{|ri |≤cn−$ } , k˜n ˜ 2

j=i−kn

for some c > 0 and $ ∈ (0, 1/2); and k˜n an arbitrary sequence of integers such that k˜n → ∞ and ˜ kn /n → 0 as n → ∞. This test statistic is used to test whether there is a jump at a particular time τ ∈ (0, 1]. Let Ωτ0 = {ω : s 7→ Xs (ω) : is continuous at s = τ } and Ωτ1 = {ω : s 7→ Xs (ω) : is discontinuous at s = τ } . Conditionally on Ωτ0 , d

Tn (τ ) → N (0, 1),

(S4.5)

and conditionally on Ωτ1 (see Theorem 1 of LH), P

Tn (τ ) → ∞.

(S4.6)

This test can also be used to detect the occurrence of big jumps over the whole interval (0, 1] by using critical value from the extreme value distribution µ, the asymptotic distribution of Tn = with Cn = (2 log n)1/2 −

log π+log(log n) , 2(2 log n)1/2

max1≤i≤n |Tn (ti )| − Cn , Sn Sn =

1 (2 log n)1/2

and

(S4.7) ∀x ∈ R, P (µ ≤ x) = exp (−e−x ) .

We refer to LH (2010, p. 275) for the full description of the testing procedure for big jumps detection. 29

To define the bootstrap test statistics, let the local Gaussian bootstrap sample be {ri∗ : i = 1, . . . , n}, with p ri∗ = vˆin · ηi , where ηi is i.i.d N (0, 1) independent of the data and vˆin is a local volatility estimator. We define the bootstrap version of PZ’s test statistic Tn (p) in (S4.1) by  n n P ∗p P p−1 ∗ p ζi |ri | 1{|r∗ |≤cn−$ } |ri | − n 2 i i=1 i=1 ∗ Tn (p) =  (S4.8) 1 , n 2 P ∗ 2p p−1 |ri | 1{|r∗ |≤cn−$ } n V ar(ζi ) i i=1 where ζi is an i.i.d sequence of positive random variables which is independent of the data, ξi and ηi , and has the same distribution as ξi . The bootstrap version of LH’s test statistic Tn (τ ) in (S4.4) for jump at date τ ∈ (ti−1 , ti ] is p n √ ∗ nˆ v nri ∗ Tn (τ ) = ∗ = ∗ i ηi , (S4.9) σ ˆ (ti ) σ ˆ (ti ) ∗ in [b where [ˆ σ ∗ (ti )]2 is the bootstrap analog of [ˆ σ (ti )]2 , obtained by replacing rm by rm σ (ti )]2 . More precisely, i−1 n X ∗2 [ˆ σ ∗ (ti )]2 = rj 1{|r∗ |≤cn−$ } . j k˜n ˜n j=i−k

We establish the bootstrap validity for the PZ and LH tests under the following Conditions A(PZp) and A(LH-τ ), respectively. These conditions are the analogue to Condition A in the main text under which the validity of the local Gaussian bootstrap is established for the BN-S jump test. Condition A(PZ-p) (i) There exists δ > p such that, 1 1 $< − 2 2δ

and ∀` ∈ (0, δ],

−1+`

n

Z n X n ` P (ˆ vi ) →

1

σu2` du.

0

i=1

(ii) n

−1+2p

n X

(ˆ vin )2p = OP (1).

i=1

Condition A(LH-τ ) (i) As n → ∞, k˜n → ∞ and k˜n /n → 0. (ii) For j = i − k˜n , . . . , i − 1, that τ ∈ (ti−1 , ti ].

P

nˆ vjn → στ2 as n → ∞ and

1 ˜n k

Pi−1 j=i−e kn



nˆ vjn

2

= Op (1), where i is such

Similarly to Condition A, these conditions apply to the sequence of local volatility estimates and so long as these conditions are satisfied both under the null and the alternative, the bootstrap test controls size under the null and is consistent under the alternative. The main result is as follows. Proposition S4.1 Let X be an Itˆ o semimartingale defined by (1) and satisfying Assumption (H-2). 30

(i) If Condition A(PZ-p) holds for some p ≥ 2, then d∗

Tn∗ (p) → N (0, 1), in probability. (ii) If Condition A(LH-τ ) holds for some τ ∈ (0, 1], then d∗

Tn∗ (τ ) → N (0, 1) , in probability. Before providing the proof of this proposition, we make the following remarks. Remark 1 The bootstrap version Tn∗ (τ ) of LH’s test statistic can be used to detect the occurrence of big jumps over a fixed time interval such as [0, 1]. A sufficient condition is that Condition A(LH-τ ) holds for all τ ∈ (0, 1]. Under this condition and because the ηi ’s are independent conditionally on the data, the Tn∗ (ti ) are also conditionally independent and asymptotically standard normal over the entire interval. In this case, the bootstrap can be used to compute the critical values of LH’s (2010) big jump test. In particular, we reject the absence of jumps at any given time ti whenever the absolute value of Tn (ti ) exceeds qα∗ Sn + Cn , where qα∗ is the α quantile of the bootstrap distribution of Tn∗ =

max1≤i≤n |Tn∗ (ti )| − Cn . Sn

(S4.10)

Note that the test statistic Tn can be used directly to test for occurrence of jumps over long time intervals. This has been highlighted by A¨ıt-Sahalia and Jacod (2014, Chap. 10). In this case, critical values from the extreme value distribution µ or from the bootstrap distribution of Tn∗ can be used. Remark 2 A bootstrap version of the QQ-plot test for small jumps can also be obtained by comparing the empirical quantiles of {Tn (ti ) : i = k˜n , . . . , n} to those of the bootstrap samples {Tn∗ (ti ) : i = k˜n , . . . , n}. The bootstrap samples replace the artificial samples drawn from the standard normal distribution originally proposed by Lee and Hannig (2010). Remark 3 If we implement the bootstrap jump tests of PZ and LH with vˆin based on thresholding (as discussed in Section 3.2 for the BN-S test), the truncation parameter, say $0 , used for the bootstrap data generating process need not be equal to $ - the truncation parameter used in the test statistics. In particular, to satisfy Condition A(PZ-p), one can $ ∈ (0, 1/2) and then, set $0 such that    first choose  δ−1 1 1 0 max 2p−1 4p−r , 2δ−r ≤ $ < 2 for some δ > max p, 1−2$ . We can show that under these conditions, Condition A(PZ-p) holds by Theorem 9.4.1 of Jacod and Protter (2012). While these restrictions on $ and $0 matter for Condition A(PZ-p) to be satisfied under the alternative of occurrence of jumps, they are immaterial under the null of no jumps since this condition is fulfilled for any choice $ and $0 in (0, 1/2) . Given Theorem 9.3.2 of Jacod and Protter (2012) and their comments leading to that theorem, we can claim that Condition A(LH-τ ) is also fulfilled for a local volatility estimate based on thresholding so long as we maintain that the volatility process σs2 is continuous at s = τ . The validity of the test over the full range [0, 1] is therefore guaranteed under the common assumption that the price and volatility processes do not jump at the same time. Remark 4 We have implemented the bootstrap versions of the PZ (2010) and LH (2010) tests in unreported simulation results using the same data generating processes as in the main text. Our findings are as follows: (1) the PZ (2010) is slightly oversized under the null of no jumps and the local Gaussian 31

bootstrap helps alleviate these finite size distortions without sacrificing power; (2) the bootstrap bigjump LH (2010) test outperforms the original test of LH (2010) by showing a lower probability of global misclassification. Specifically, the bootstrap version of the test has a lower probability of global spurious detection of jumps than the original test while both tests have the same probability of global failure to detect jumps. (3) the small-jump LH test also has a low probability of global spurious detection of jumps that ranges between between 3.65% for n = 78 and 3.47% for n = 576, although not as low as that of the bootstrap big-jump LH (2010). Its probability of global success in detecting actual jumps is much smaller than both versions of the big-jump LH test when the alternative is finite activity jumps but it dominates any of these two tests when there are infinite activity jumps. This is as expected since the small-jump test of LH (2010) is especially designed to detect small jumps; (4) The big-jump test over long time intervals using directly (S4.7) (A¨ıt-Sahalia and Jacod (2014, Chap. 10)) has a large size distortion under the null of no jumps that decays slowly from 63.14% (n = 78) to 58.09% (n = 576). Interestingly, the bootstrap version of this test, with rejection rates under the null from 3.14% to 5.56%, corrects this size distortion while showing reasonable power. Proof of Proposition S4.1: (i) Let a∗n

=n

p−1 2

n X

|ri∗ |p



n X

i=1

so that Tn∗ (p) = a∗n /

n X

! ζi |ri∗ |p 1{|r∗ |≤cn−$ } i

,

d∗n = np−1 V ar(ζi )

|ri∗ |2p 1{|r∗ |≤cn−$ } , i

i=1

i=1

p d∗n . Let

a∗1n

=n

p−1 2

n X

|ri∗ |p (1

a∗2n

− ζi ),

=n

p−1 2

n X

ζi |ri∗ |p 1{|r∗ |≤cn−$ } . i

i=1

i=1

Clearly, a∗n = a∗1n + a∗2n . We will show that (a) a∗2n = oP ∗p (1), in probability, and that d∗n is positive with probability approaching one so that Tn∗ (p) = a∗1n / d∗n + oP ∗ (1). Let vn = V ar∗ (a∗1n ) and √ d∗ Sn∗ = a∗1n / vn . We complete the proof of statement (i) by showing that: (b) Sn∗ → N (0, 1), in P∗

probability and (c) d∗n − vn → 0, in probability. (a) We have |a∗2n | ≤ n

p−1 2

n X

|ζi ||ri∗ |p 1{|r∗ |≤cn−$ } ≤ n

p−1 2

n X

i

i=1

i=1

for all l > 0. Hence, using the fact that ri∗ = E ∗ |a∗2n | ≤ C · n

p−1 +l$ 2

ζi |ri∗ |p

n X

|ri∗ |l , cl n−$l

p n vˆi · ηi , ηi ∼ N (0, 1), we have that

(ˆ vin )

p+l 2

1

l

= C · n 2 +l$− 2 · n−1+

i=1

p+l 2

n X

(ˆ vin )

p+l 2

,

i=1

where C > 0 is a generic constant. Choosing l close enough to δ so that $ < 12 − 2l1 ensures, using Condition A(PZ-p)-(i) that a∗2n = oP ∗ (1) in probability. The positivity of d∗n is proven in part (c) below. P (b) Simple calculations show that vn = µ2p V ar(ζi )n−1+p ni=1 (ˆ vin )p which, under Condition R1 A(PZ-p)-(i) converges in probability to the almost surely positive random variable µ2p V ar(ζi ) 0 σu2p du. We can therefore focus on establishing the conditions that ensure that a∗1n is asymptotically normal. Note that n n X X p−1 p−1 p ∗ ∗ p 2 a1n = n |ri | (1 − ζi ) = n 2 (ˆ vin ) 2 |ηi |p (1 − ζi ). i=1

i=1

32

By the independence across i of the terms in this summation and the fact that E ∗ (|ηi |p (1 − ζi )) = 0, it suffices to verify the Lyapunov condition to conclude (b). That is, we show that there exists ν > 0 such that n 2+ν p−1 X E ∗ n 2 |ri∗ |p (1 − ζi ) = oP ∗ (1), i=1

in probability. It is not hard to see that n X

n p−1 2+ν X = C · n−ν/2 · n−1+p(1+ν/2) E ∗ n 2 |ri∗ |p (1 − ζi ) (ˆ vin )p(1+ν/2) .

i=1

i=1

Again, one can choose ν > 0 so that p < p(1 + ν/2) ≤ δ and use Condition A(PZ-p)-(i) to conclude. (c) Note that d∗n

=n

p−1

V ar(ζi )

n X

|ri∗ |2p

−n

p−1

V ar(ζi )

i=1

n X

|ri∗ |2p 1(|r∗ |>cn−$ ) ≡ d∗1n + d∗2n . i

i=1

It is not hard to prove by following similar steps as those in (a) above that d∗2n = oP ∗ (1) in probability. P∗

Hence, it suffices to show that d∗1n − vn → 0, in probability. Note that E ∗ (d∗1n ) = vn and it suffices to show that V ar∗ (d∗1n ) = oP (1) to conclude (d). We have: n X  V ar∗ (d∗1n ) = V ar |ηi |2p [V ar(ζi )]2 n−1 n−1+2p (ˆ vin )2p = oP (1), i=1

thanks to Condition A(PZ-p)-(ii). The positivity of d∗n also follows.



(ii) Since ηi ∼ N (0, 1) and is independent of the data, it suffices to show that

nˆ vin P ∗ σ ˆ ∗ (ti ) →

1 in

P∗

probability and, under Condition A(LH-τ ), it suffices to show that [b σ ∗ (ti )]2 → στ2 , in probability. For this, we show that     P P σ ∗ (ti )]2 − στ2 → 0 and V ar∗ [ˆ σ ∗ (ti )]2 − στ2 → 0. E ∗ [ˆ The following inequality (proven by successive applications of the H¨older inequality with H¨ older conjugates q/p > 1 and q/(q − p)) and the Markov inequality (with exponent 2q) implies that for any q > p > 0,  √ q vjn n−2(q−p)(1/2−$) , (S4.11) E ∗ | nrj∗ |2p 1{|r∗ |≤cn−$ } ≤ K nˆ j   P where K is a positive constant. To show that E ∗ [ˆ σ ∗ (ti )]2 → στ2 , it suffices to show that  E∗  since

n ˜ kn

i−1 X

 P

2

rj∗ 1{|r∗ |≤cn−$ }  → 0, j

˜n j=i−k



 i−1 i−1 X n 1 X 2 P E∗  rj∗  = (nˆ vjn ) → στ2 . ˜n k˜n k ˜ e j=i−kn

j=i−kn

33

Note that 

 i−1 X n 2 E∗  rj∗ 1{|r∗ |≤cn−$ }  = j k˜n

i−1  √ 1 X E ∗ ( nrj∗ )2 1{|r∗ |≤cn−$ } j k˜n ˜n j=i−k   i−1 X  1 q −2(q−1)(1/2−$) nˆ vjn n ≤ K | {z }, k˜n ˜ =o(1) j=i−kn | {z }

˜n j=i−k

=Op (1)

  P where the above inequality follows given (S4.11) with q > p = 1. Next, we show that V ar∗ [ˆ σ ∗ (ti )]2 → 0. It is not hard to obtain that   V ar∗ [ˆ σ ∗ (ti )]2 =

1 k˜2

i−1 X

n j=i−k ˜n



i−1 1 X k˜n2 ˜

j=i−kn

nˆ vjn

2

  · V ar∗ ηj2 1{|r∗ |≤cn−$ } j

  i−1 X    1 1 2 2  nˆ vjn · E ∗ ηj4 ≤ K nˆ vjn . ˜ ˜ kn kn ˜n |{z} j=i−k {z } =o(1)| =Op (1)

The desired result follows from Condition A(LH-τ ).

References [1] A¨ıt-Sahalia, Y. and J. Jacod, 2014. High Frequency Financial Econometrics, Princeton University Press. [2] Barndorff-Nielsen, O.E., and N. Shephard, 2004. “Power and bipower variation with stochastic volatility and jumps,” Journal of Financial Econometrics 2 (1), 1–37. [3] Barndorff-Nielsen, O. E., Shephard, N. and M. Winkel, 2006. “Limit theorems for multipower variation in the presence of jumps,” Stochastic Processes and Applications, 116, 796-806. [4] Gon¸calves, S. and N. Meddahi, 2009. “Bootstrapping realized volatility,” Econometrica, 77(1), 283-306. [5] Huang, X., and G. Tauchen, 2005. “The relative contribution of jumps to total price variance,” Journal of Financial Econometrics 3 (4), 456–99. [6] Jacod, J., and P. Protter, 2012. “Discretization of processes,” Springer-Verlag, Berlin Heidelberg. [7] Lee, S. and J. Hannig, 2010. “Detecting jumps from L´evy jump diffusion processes,” Journal of Financial Economics, 96, 271-290. [8] Lee, S., and P.A. Mykland, 2008. “Jumps in financial markets: a new nonparametric test and jump dynamics,” Review of Financial Studies 21 (6): 2535–63. [9] Pauly, M., 2011. “Weighted resampling of martingale difference arrays with applications,” Electronic Journal of Statistics, 5, 41-52.

34

[10] Podolskij, M., and D. Ziggel, 2010. “New tests for jumps in semimartingale models,”Statistical Inference for Stochastic Processes 13(1), 15-41. [11] Shao, X., 2010. “The dependent wild bootstrap,” Journal of the American Statistical Association, 105, 218-235.

35

Supplementary Appendix

Nov 15, 2017 - (a2) E∗ (BV ∗ n ) = n. ∑ i=2. (vn i−1. )1/2. (vn i ). 1/2 . (a3) V ar∗ (. √. nRV ∗ n )=2n n. ∑ i=1. (vn i ). 2 . (a4) V ar∗ (. √. nBV ∗ n ) = (k. −4. 1. − 1)n n. ∑ i=2. (vn i )(vn i−1) + 2(k−2. 1. − 1)n n. ∑ i=3. (vn i ). 1/2 (vn i−1)(vn i−2. )1/2 . (a5) Cov∗ (. √. nRV ∗ n ,. √. nBV ∗ n ) = n n. ∑ i=2. (vn i ). 3/2 (vn i−1. )1/2.

434KB Sizes 1 Downloads 223 Views

Recommend Documents

Supplementary Appendix
product differentiation), Firm 2's net profit is negative (gross profit is zero, but the costs are positive). If σ = 0, the profit is zero. Moreover c2(0) = 0, which implies π2(0)−qc2(0) = π2(0) > 0. Therefore, Firm 2's net profit is increasing

Supplementary Appendix
through the institution, the pivotal member signals support, the audience supports x, and ..... For the pivotal member, there are two cases to check. Recall that D ...

Supplementary Appendix
Substitution of (43) and (44) for m ∈ {s ,0} in (23) gives: dV dp . = −(. Я(8 − 2Я − 3Я2). 8(2 − Я)(4 − Я2)(1 − Я2)2 − (1 − Я). Я(2 − Я2). (4 − Я2)2(1 − Я2)2 \E i {[E{θ |s } − θ ]2}. = −Я. 8(4 − Я2

Bootstrapping high-frequency jump tests: Supplementary Appendix
Bootstrapping high-frequency jump tests: Supplementary Appendix. ∗. Prosper Dovonon. Concordia University. Sılvia Gonçalves. University of Western Ontario. Ulrich Hounyo. Aarhus University. Nour Meddahi. Toulouse School of Economics, Toulouse Uni

Supplementary Appendix to: Perpetual Learning and Apparent Long ...
Apr 13, 2017 - Perpetual Learning and Apparent Long Memory. Guillaume Chevillon. ESSEC Business School & CREST .... T large enough, f (2π. T n) > 0. Also for n ≤ T, n−δTδ+1 → ∞ as n → ∞. Therefore, there exist (n0 ..... where ⌊x⌋ i

Supplementary Appendix to “Asymptotic Power of ...
Jun 22, 2012 - e-nf(z)g(z)dz that corresponds to a portion of K1 close to its boundary point, which in our case is z0(h). To make our exposition self-contained, we sketch Olver's derivation; for details, we refer the reader to pages. 1Here and throug

Supplementary Appendix of Strategic Disclosure of ...
Strategic Disclosure of Demand Information by. Duopolists: Theory and Experiment. Jos Jansen. Andreas Pollak. Aarhus University. MPI, Bonn. University of Cologne. July 2015. Supplementary Appendix: not for publication. Here we give missing proofs and

Supplementary Appendix to: Perpetual Learning and Apparent Long ...
Apr 13, 2017 - Perpetual Learning and Apparent Long Memory. Guillaume Chevillon. ESSEC Business School & CREST. Sophocles Mavroeidis. University of ...

Supplementary Appendix to Coevolution of Deception ...
supplementary analysis we relax the assumption of perfect observability in matches ... Given a configuration (µ, b) and two incumbent types θ, θ , we define.

Supplementary On-Line Appendix for “International ...
Supplementary On-Line Appendix for “International Institutions .... Std. Dev. Min. Max. No. of Obs. Source. PTA Negotiation. 0.02. 0.12. 0. 1. 4460. Authors. LeaderChange. 0.14. 0.34. 0. 1. 4460. Archigos (2009) ..... of Foreign Affairs and Trade,

Supplementary Materials 1. Supplementary Tables
3.87. 27. -75. -48. Orbitofrontal Cortex. 11. R. 76. 3.72. 30. 48. -15. Decreased DMN (Controls > FTD). Dorsomedial PFC. 32. L. 312. 3.98. -27. 51. 21. Anterior Cingulate. 24. -. 107. 3.83. -3. 21. 33 .... correlation pattern, corresponding to a Type

Online Appendix
Aug 13, 2013 - Online Appendix Figures 3a-4e present further evidence from the survey .... Control variables include age, gender, occupation, education, and ...

Online Appendix
Aug 13, 2013 - Online Appendix Figures 3a-4e present further evidence from the survey responses on the .... Notes: Data from a survey of 70 individuals in 9 villages. ...... You will stay in the assigned room for 20 minutes listening to a.

Online Appendix
Length of business registration in days. 2. Land access sub-score ..... Trends. Province trends. Cluster. Commune. Commune. Commune. Commune. Province.

APPENDIX 12
Certain LFAs, nominated as Dedicated User Areas (DUA), are allocated for special use (such as concentrated helicopter training) and are managed under local ...

Online Appendix
Power Capital Variables adds up all ranking positions by terms (excluding the above top 4 positions). 2 ever held by native officials connected to a commune (in.

Web Appendix
We again assume U(x)=x throughout, following Doyle. As in our paper and in. Bleichrodt, Rohde, and Wakker (2009; BRW henceforth), we write ln for the natural logarithm instead of Doyle's log. As in the main text, (T:F) denotes receiving $F>0 at time

Web Appendix
We again assume U(x)=x throughout, following Doyle. As in our paper and in. Bleichrodt, Rohde, and Wakker (2009; BRW henceforth), we write ln for the natural.

Online Appendix
When γ = 1, Equation 3 becomes α(p – c) = 1 + exp(δ – αp). The left-hand ... We averaged daily five-year maturity credit default swap (CDS) spreads on GM debt.

Supplementary Material
Jan Heufer ∗. *TU Dortmund University, Department of Economics and Social Science, 44221 Dortmund,. Germany. .... 3 More Details on the Data Analysis.

APPENDIX for LABORATORY 3 SHEET APPENDIX A
An Interrupt Service Routine (ISR) or Interrupt Handler is a piece of code that should be executed when an interrupt is triggered. Usually each enabled interrupt has its own ISR. In. AVR assembly language each ISR MUST end with the RETI instruction w

Appendix - Shuchita Prakashan
2012 - Dec [5] (a) Superb Electronics Ltd. is a manufacturer of electronic transformers, semi-conductor devices and other electrical and electronic equipments. During the course of such manufacture, the assessee also manufactured machinery in the nat

Online Appendix
War Draw. 0.006. 0.077. 0. 1. Civil War. 0.109. 0.312. 0. 1. Wealth (unlogged) ..... Sri Lanka. 1968. 2004. 0.405. 0.725. 3. 0.568. 0.835. 3. Sudan. 1968. 2004.

appendix
Mar 28, 2009 - TimE OF ExAmiNATiON. Vocational Subjects. 10.00 am to 12.45 pm [IST] including 15 minutes cool off time ... Physics/Geography/Accountancy.